用户名: 密码: 验证码:
基于团队智能的水电机组集成监测方法研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电是中国当前最主要的清洁能源,在全世界日益重视节能减排的背景下,如何在确保水电机组安全稳定运行的前提下尽可能提高其利用率便成为十分突出的研究课题。自上世纪90年代以来,旨在提高水电机组运行可靠性和经济效益的“状态检修”成为研究的焦点,以掌握水电机组健康状况为目标的状态监测技术取得了长足的发展与进步,多种水电机组状态监测系统投入工业应用。这些系统基本都是专项监测装置或集合监测系统,在保证水电机组的安全稳定运行、提高设备利用率等方面发挥了一定作用。
     然而,这些系统普遍没有实现机组的全面监测,也没能将各专项监测集成在同一平台上,因而专项监测装置之间难以做到信息共享与行为协同(如同步采集、同步存储、关联分析等)。加之,水电机组是一个由水力、机械、电气、控制和辅助设备构成的强耦合复杂大系统,往往牵一发而动全身。当前的各种监测方法不能有效解决多来源、多时标、异构机组状态数据的有机融合问题,从而不能实现机组的综合分析与诊断。
     为此,提出了基于团队智能的水电机组集成监测方法,其基本目标是:运用团队智能技术,将各监测装置通过实时现场总线网集成到同一平台上进而构成一个有机的机组集成监测团队,建立各监测装置之间关联协同的机制,共同实现多来源、多时标及异构机组状态数据的有机融合,便于进行机组的综合分析与诊断。
     通过总结团队的鲜明特征,引出了团队智能(TI)的概念并给出了其定义,并对团队中可能出现的团队行为进行了形式化描述。系统地研究了团队模型,包括组织结构、任务描述、角色关系、组织规范及人事关系等内容;通过任务描述,实现了团队目标、行为与任务的统一,并可将团队的协同行为归结为组织规范约束下的角色关系。建立了基于消息机制的三层垂直分布结构团队成员模型(TIP),并分别对成员模型的消息处理层、行为控制层及核心功能层的框架进行了设计。
     根据团队智能理论,建立了水电机组集成监测团队框架;整个监测团队由控制单元TIP、机械单元TIP、电气单元TIP、综合单元TIP及其它TIP组成,并分别对这些TIP的核心功能进行了阐述;讨论了机组集成监测团队的基本运行机制,包括分工、协同、制约及冲突等。通过时间融合、运行工况融合及异常事件融合等关键技术实现机组状态数据的有机融合。
     围绕机组海量状态数据的组织、存储与管理等问题,分别研究了机组状态数据的优化组织策略、选择性智能存储策略以及有效性验证与管理。
     在实现机组集成监测的基础上,探讨了水电机组的综合分析方法。将传统的阈值分析与机组运行工况、异常事件相结合,研究了基于动态阈值的实时故障预警方法,并介绍了该方法在变压器故障预警方面的应用实例。以机组集成监测提供的全面、关联性强的状态数据为基础,介绍了机组稳定性综合分析的现场案例。针对调速油系统常见的异常或故障,分别定义了能较好反映它们的性能指标并给出了相应的计算方法;以状态数据与性能指标为基础,探讨了调速油系统性能分析与异常检测的方法;最后给出了调速油系统实时监测、日分析、漏油检测及故障预警等应用实例。
     实践证明,基于团队智能的水电机组集成监测为开展设备的综合分析与诊断提供了优良的平台,这对提高分析与诊断结果的准确性、可靠性及可信性具有极其重要的作用。
Hydroelectricity is the main clean energy at present in China. Under the background of the worldwide increasing attention to energy saving and emission reduction, It's a prominent issue that how to improve the utilization of Hydro Turbine Generator Sets (HTGS) as much as possible when the save and stable operation of HTGS can be guaranteed. Since the 1990s, condition based maintenance aimed at improving the reliability of HTGS and economic benefits has become the focus of research. The technique of condition monitoring used to master the health condition of HTGS has made considerate development and progress, and a variety of condition monitoring systems of HTGS have been put into industrial application. These systems are basically special monitoring devices or collective monitoring systems, which play a role in ensuring the save and stable operation of HTGS and improving the facility utilization.
     However, these systems neither achieve overall monitoring generally, nor can make all special monitoring devices be integrated into the same platform, and thus information sharing and behavior collaborating (such as synchronous sampling, synchronous storage, correlation analysis) among special monitoring devices are difficult to be realized. Additionally, HTGS is a close-coupling, complex, and large system consisted of hydraulic, mechanical, electrical, control and auxiliary equipment, whose health condition can be affected by any one part. The current monitoring methods cannot solve organic fusion issue of state data of HTGS that has the characteristics of multi source, multi time scope, and isomerization, so the synthetic analysis and diagnosis of HTGS cannot be achieved.
     For this reason, the method for integrated monitoring of HTGS based on Team Intelligence (TI) is proposed. The basic objective of this method is to make all special monitoring devices be integrated into the same platform via real-time fieldbus and then form an organic integrated monitoring team of HTGS; the correlation and coordination mechanisms of these special monitoring devices are established; they jointly realize organic fusion of state data of HTGS that has the characteristics of multi source, multi time scope, and isomerization, and as a result it's convenient for the synthetic analysis and diagnosis of HTGS.
     By summarizing the distinctive characteristics of teams, the concept of TI is drawn forth and its definition is given, and the formal descriptions of team behaviors possibly existed in a team are conducted. The research of team model is carried out systematically, including organizational structures, task descriptions, role relations, organizational norms and human relations, etc.. The unity of goals, behaviors and tasks of the team is achieved through task descriptions, and the collaborative behaviors can be contributed to the role relations under constraint of organizational norms in a team. The model of Team Intelligence Player (TIP) with three-layer vertical structure based on the message mechanism is established, and the frameworks of message processing layer, behavior control layer, and core functional layer included in the model of TIP are separately designed.
     According to TI theory, the framework of the integrated monitoring team of HTGS is established, which is composed of control unit TIP, mechanical unit TIP, electrical unit TIP, synthetic unit TIP and other TIPs, and core functions of these TIPs are discussed separately. The basic operating mechanisms of the integrated monitoring team of HTGS are elaborated, including divisions of work, coordination and cooperation, constrains and conflicts, etc.. Organic fusion of state data of HTGS is achieved by key techniques such as time fusion, operating condition fusion and abnormal event fusion, etc..
     Surrounded by the problems of organization, storage and management of mass state data of HTGS, optimizing organization strategy, selectively intelligent storage strategy, and validity confirmation and management of state data of HTGS are separately studied.
     Based on integrated monitoring of HTGS, the synthetic analysis approach to HTGS is discussed. Making the conventional threshold analysis combine with operating conditions and abnormal events of HTGS, the method for real-time fault prewarnings based on the dynamic threshold is studied, whose application examples in the fault prewarning of the transformer are introduced. On basis of the overall and strong relevance state data provided by integrated monitoring of HTGS, the field case of the synthetic analysis for the stability of HTGS is presented. Aimed at common failures or faults of the Oil System of the Governor (OSG), the performance indices that can well reflect them are defined separately, and the calculation methods are given. Based on state data and performance indices, the approaches to the performance analysis and failure detection of OSG are introduced. In the end, the application examples such as the real-time monitoring, daily analysis, oil leakage, and fault prewarning of OSG are given.
     It has been proved that the integrated monitoring of HTGS based on TI can provide a good platform for carrying out the synthetic analysis and diagnosis of facilities, which plays extremely important roles in improving the accuracy, reliability, and credibility of the analysis and diagnosis results.
引文
[1]B.Bajic. Multidimensional Diagnostics of Turbine Cavitation [J]. Journal of Fluids Engineering, 2002,124(4):943-950.
    [2]Electric Power Research Institute. Computer-Based Training Module:Erosion in Piping System, Reports,2006.
    [3]P.Bourdon, M.Farhat, Y.Mossoba, et al. Hydro Turbine Profitability and Cavitation Erosion [C]. In Proceedings of Waterpower,1999,1-10.
    [4]Model 7915 Cavitation Monitoring System. http://www.poweronline.com/ product.mvc/Model-7915-Cavitation-Monitoring-System-0001.
    [5]B.Zeqiri, P.N.Gelat, M.Hodnett, et al. A Novel Sensor for Monitoring Acoustic Cavitation Part I: Concept, Theory, and Prototype Development [J]. IEEE Transactions on Ultrasonics, Freeoelectrics, and Frequency Control,2003,50(10):1342-1350.
    [6]DIA TECH CAV-Cavitation Monitoring Model, http://www.diatechsystems.com.
    [7]J.R.Rasmussen, B.Howard. Conditiong Monitoring for Hydro Machinery. Orbit Article Preview, 2004.
    [8]王涛,南海鹏,王德意等.水电机组空蚀在线监测系统的研究[J].大电机技术,2002(6):44-46,66.
    [9]蒲中奇,张伟,施克仁等.水轮机空化在线监测系统设计[J].电力系统自动化,2004,28(21):62-64.
    [10]吴玉林,陈乃祥,徐朝晖等.水力机械空化空蚀破坏的在线监测方法及诊断装置.技术应用专利,2002.
    [11]李文清.水电机组转轮汽蚀监测技术的应用[J].浙江电力,2005(4):76-78.
    [12]林礼清,陈伟,任继顺.水口水电厂设备状态监测与诊断系统[J].水电厂自动化,2006(4):137-144.
    [13]李建威.水力机械测试[M].北京:机械工业出版社,1981.
    [14]盛鹏,何永勇,褚福磊.水轮机空蚀在线监测与诊断系统[J].水利水电技术,2002,33(7):17-20,65.
    [15]史会轩.大型水轮机空化在线监测与分析一方法与应用研究[D].湖北:华中科技大学,2008.
    [16]G.C. Stone. Advancements during the Past Quarter Century in On-line Monitoring of Motor and Generator Winding Insulation[J]. IEEE Trans on Dielectrics and Electrical Insulation,2002,9(5): 746-751.
    [17]S.R. Campbell., G.C. Stone, H. G. Sedding, et al. Practical On-line Partial Discharge Tests for Turbine Generators and motors [J]. IEEE Trans on Energy Conversion,1994,9(2):281-287.
    [18]张毅刚,郁惟镛,黄成军等.发电机局部放电在线监测研究的现状与展望[J].高电压技术, 2002,28(12):32-35.
    [19]王昌长,李福祺,高胜友.电力系统的在线监测与故障诊断[M].北京:清华大学出版社,2006.
    [20]苏鹏声,汪小明,曹海翔等.大型发电机定子绕组局部放电在线监测系统的研究[J].电工电能新技术,2002(2):49-52.
    [21]乐波,曹戌平,谢恒垫等.基于虚拟仪器技术的大型发电机局部放电在线监测系统[J].中国电力,2002,35(9):47-51.
    [22]童晓阳,张广春,吴广宁等.基于CAN总线的分布式绝缘在线监测系统的设计与实现[J].电力系统自动化,2003,27(1):57-60.
    [23]Xu Yang, Zhenbo Zang, Baofeng Xi, et al. The Study of Noise-rejection by Using Pulse Time-delay Identification Method and the Analysis of PD Data Obtained in the Field [C].2007 International Conference on Solid Dielectrics,2007.
    [24]项琼,伍志荣,彭兆银等.大型水轮发电机用数字式局放仪[J].高电压技术,2001,27(5):22-26.
    [25]范春学,韩凤琴,韦彩新等.水轮发电机局部放电在线监测[J].水电能源科学,2003,21(3):79-81.
    [26]杨合民,李朝晖,王宏.基于局部放电监测的水轮发电机主绝缘诊断分析系统[J].电力系统自动化,2004,28(15):61-66.
    [27]Huang Chenjun, Yu Weiyong. Development of PD on-line monitoring system for large turbine generators [C]. IEEE International Symposium on Electrical Insulation, Boston:2002,23-26.
    [28]万元.大型发电机局部放电在线监测与分析方法研究[D].湖北:华中科技大学,2009.
    [29]W. R. Rutgers, Y. H. Fu. UHF PD detection in a power transformer [C]. In Proc.10th Int. Symp. High Voltage Engineering,1997,4:219-222.
    [30]M. D. Judd, B. M. Pryor, S. C. Kelly. Transformer monitoring using the UHF technique [C]. In Proc.1 lth Int. Symp. on High Voltage Engineering, London, Aug.1999,362-365.
    [31]M. D. Judd, J. S. Pearson, O. Farish, et al. Power transformer monitoring using UHF sensors: Installation and testing [C]. In Proc. Int. Symp. Elect. Insul.,2000,373-376.
    [32]M. D. Judd, G. P. Cleary, C. J. Bennoch. Applying UHF partial discharge detection to power transformers [J]. IEEE Power Eng. Rev.,2002,22(8):57-59.
    [33]G. P. Cleary, M. D. Judd. An investigation of discharges in oil insulation using UHF PD detection [C]. Proc. of 14th Int. Conf. on Dielect. Liquids, Graz, Austria, Jul.2002,341-344.
    [34]M. D. Judd, G. P. Cleary, S. Meijer. Testing UHF partial discharge detection on a laboratory based power transformer [C]. In Proc.13th Int. Symp. on High Voltage Engineering, Delft,2003.
    [35]J. Gorablenkow, T. Huecker, U. Schichler. Application of UHF partial discharge monitoring and expert system diagnosis [C]. In IEEE Int. Symp. on Elect. Insul., Arlington, Virginia, USA, Jun. 1998,61-64.
    [36]K. Raja, T. Floribert. Source characterization of discharges using UHF PD signatures [C]. In IEEE Power Engineering Society Winter Meeting,2002,1383-1388.
    [37]K. Raja, S. Lelaidier. Experience with UHF partial discharge measurements [C]. In Proc. of 14th Int. Conf. on Dielectric Liquids, Graz, Jul.2002.
    [38]K. Raja, F. Devaux, S. Lelaidier. Recognition of discharge sources using UHF PD signatures [J]. IEEE Elect. Insul. Mag.,2002,18(5):8-14.
    [39]M. D. Judd. Dielectric windows improve sensitivity of partial discharge detection at UHF [C]. In IEEE Int. Symp. on Elect. Insul., Anaheim, CA USA, Apr.2000,304-307.
    [40]M. D. Judd, O. Farish, J. S. Pearson, et al. Dielectric windows for UHF partial discharge detection [J]. IEEE Trans. Dielect. Elect. Insul.,2001,8(6):953-958.
    [41]L. Yang, M. D. Judd, C. J. Bennoch. Time delay estimation for UHF signals in PD location of transformers [C]. In Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2004,414-417.
    [42]M. D. Judd, L. Yang, B. B. Hunter. Partial discharge monitoring for power transformers using UHF sensors part 1:Sensors and signal interpretation [J]. IEEE Elect. Insul. Mag.,2005,21(2): 5-14.
    [43]M. D. Judd, L. Yang, B. B. Hunter. Partial discharge monitoring for power transformers using UHF Sensors part 2:Field experience [J]. IEEE Elect. Insul. Mag.,2005,23(3):5-13.
    [44]G. P. Cleary, M. D. Judd. UHF and current pulse measurements of partial discharge activity in mineral oil [J]. IEE Proc.-Sci. Meas. Technol.,2006,153(2):500-503.
    [45]K. Raja. On the UHF partial discharge measurement in transformers [C]. In IEEE Electrical Insulation and Dielectric Phenomena,2003,349-352.
    [46]S. Meijer, E. Gulski, J. J. Smit, et al. Sensitivity check for UHF PD detection on power transformers [C]. In Conf. Record of the 2004 IEEE Int. Symp. on Elect. Insul., Indianapolis, Sep. 2004,58-61.
    [47]R. A. Jongen, P. Morshuis, S. Meijer, et al. Identification of partial discharge defects in transformer oil [C]. In 2005 Annual Report Conf. on Elect. Insul. and Dielect. Phenomena,2005, 565-568.
    [48]S. Meijer, P. D. Agoris, J. J. Smit. Application of UHF diagnostics to detect PD during power transformer acceptance tests [C]. In IEEE Int. Symp. on Electrical Insulation,2006.
    [49]王国利,郝艳捧,李彦明.变压器油中局部放电信号超高频特性的研究[J].电工电能新技术,2002,21(1):49-53.
    [50]王国利,郑毅,郝艳捧等.用于变压器局部放电检测的超高频传感器的初步研究[J].中国电机工程学报,2002,22(4):154-160.
    [51]王国利,袁鹏,单平等.变压器典型局放模型超高频放电信号分析[J].高电压技术,2002,28(11):28-31.
    [52]王国利,单平,袁鹏等.变压器局部放电超高频电磁波的传播特性[J].高电压技术,2002,28(12):26-28.
    [53]王国利,郝艳捧,袁鹏等.变压器局部放电超高频检测中的混频技术研究[J].中国电机工程 学报,2004,24(10):115-160.
    [54]王国利.油浸式电力变压器局部放电特高频检测技术研究[D].西安:西安交通大学,2003.
    [55]陈庆国,龚细秀,李福祺等.变压器油中局部放电超高频检测的试验研究[J].高电压技术,2002,28(12):23-25.
    [56]王伟,唐志国,李成榕.用UHF法检测电力变压器局部放电的研究[J].高电压技术,2003,29(10):32-34.
    [57]王伟,李成榕,丁燕生等.局部放电UHF信号检波及其仿真[J].高电压技术,2004,30(2):32-34.
    [58]王娟,律方成,蒋庆云等.超高频局放电磁波在变压器中的传播特性[J].华北电力大学学报,2007,34(6):19-22.
    [59]孟延辉,唐炬,许中荣等.变压器局部放电超高频信号传播特性仿真分析[J].重庆大学学报,2007,430(5):70-74.
    [60]黄兴泉.基于超高频电磁波测量的变压器局部放电在线监测的研究[J].变压器,2005,42(5):22-26.
    [61]盛梦周.电力变压器局部放电超高频检测方法的研究[D].湖北:华中科技大学,2005.
    [62]盛梦周,李朝晖,刘明军.变压器超高频检测信号处理单元的设计[J].湖北电力,2006,30(1):31-33.
    [63]陈婷,陈燚涛,李朝晖.基于PXI的变压器在线监测系统[J].水电自动化与大坝监测,2006,30(4):30-34.
    [64]陈婷.变压器在线监测计算机选型和移动工作站开发[D].湖北:华中科技大学,2006.
    [65]彭小圣.发电设备高频信号处理硬件设计与噪声监测系统开发[D].湖北:华中科技大学,2009.
    [66]刘民军.变压器局放超高频集成监测与综合分析方法研究[D].湖北:华中科技大学,2010.
    [67]陈维克,张松,吴雅等.我国水电机组振动监测与故障诊断技术的现状和发展方向.大电机技术,1994.
    [68]刘金凤.水轮发电机组振动在线监测与分析系统研究[D].陕西:西安理工大学图书馆,2004.
    [69]刘玉刚.水轮发电机组振动监测与故障诊断系统设计与应用[D].陕西:西安理工大学图书馆,2006.
    [70]秦建明,邵锐.基于PC机的水电机组振动监测系统的开发[J].水利电力机械,2007,29(10):105-107.
    [71]黄天戌,向继东,任清珍.一种新型的水电机组振动摆度在线状态监测仪[J].工业仪表与自动化装置,2003,51-54.
    [72]孙长飞,段志善.旋转机械实时监测与诊断系统数字滤波模块分析.现代电子技术,2005(7):71-72.
    [73]李初辉.水电机组集成监测系统中稳定性单元研究与开发[D].湖北:华中科技大学,2009.
    [74]陈燚涛,李朝晖.基于数字化模型的水轮机调速系统状态监测与分析[J].电力系统自动化,2005,29(9):72-76.
    [75]胡国,李朝晖,杨兴斌等.葛洲坝电厂19F机组励磁系统状态监测与诊断[J].水电自动化与大坝监测,2005,29(2):23-27.
    [76]VibroSysTM—On-line monitoring and diagnostic system for hydroelectric units, http://www.vibrosystm.com/Legacy/PDF/ZOOM_C.PDF.
    [77]北京华科同安监控技术有限公司—TN8000水电机组状态监测分析故障诊断系统,http://www.hktongan.com/production/tn8000.html.
    [78]北京中水科水电科技开发有限公司—HM9000水电机组状态监测综合分析系统,http://www.bitc.net.cn/bitc/kychx/hxchp/webinfo/2010/11/1289784731644479.htm.
    [79]北京奥技异电气技术研究所—PSTA-2003系列: 网络化全状态监测系统,http://www.orientge.com.cn/c2.htm.
    [80]张杰.水电机组集成监测系统研究与开发[D].湖北:华中科技大学,2009.
    [81]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用[J].中国电机工程学报,2002,22(3):43-47.
    [82]符向前,蒋劲,孙慕群等.水电机组故障诊断系统中的模糊诊断技术研究[J].华中科技大学学报:自然科学版,2006,34(1):81-83.
    [83]刘晓波,黄其柏,黄开启.基于框架式规则的水轮机组故障诊断专家系统研究[J].水力发电,2005,31(12):50-53.
    [84]刘晓波,黄其柏.水轮发电机组故障诊断模糊专家系统研究[J].华中科技大学学报:自然科学版,2006,34(1):71-73.
    [85]SORSA T, HEIKKI N, KOIVO H N. Application of artificial neural networks in process fault diagnosis [J]. Automatica,1993,29(4):843-849.
    [86]余晓晖,杜林,陈明英等.基于BP神经网络的水轮机调速系统故障诊断[J].重庆大学学报,2001,24(6):71-74.
    [87]洪治,李国宏,蔡维由等.基于小波包分析的水轮发电机组振动的故障诊断[J].武汉大学学报:工学版,2002,35(1):65-68.
    [88]桂中华,韩风琴.小波包——最大熵谱估计及其在水轮机故障诊断中的应用[J].电力系统自动化,2004,28(2):62-66.
    [89]Narayanan N H, Viswanadham N. A methodology for knowledge acquisition and reasoning in failure analysis of systems [J]. IEEE Transactions on System, Man and Cybernetics,1987, SMC-17(2):74-288.
    [90]Khodabandehlehloo A. Analyses of robot systems using fault and event tree, case studies [J]. Reliability Engineering and System Safety,1996(53):247-264.
    [91]BUCKLEYJ J, HAYASHI Y. Fuzzy neural networks:a survey [J]. Fuzzy Sets and Systems,1994, 66:1-13.
    [92]陈喜阳,张克危,彭玉成.基于多种诊断方法的水电机组故障诊断系统的研究[J].水力发电,2003,29(5):23-26.
    [93]Stuart Russell, Peter Norvig. Artificial Intelligence:A Modern Approach [Third Edition] [M]. Pearson Education, Inc., USA,2010.
    [94]Liu Zhiyong, Jia Xisheng, Rong Liqiang. Study on Maintenance Decision-making Technology Based on Multi-Agent in PHM [C].2011 Third International Conference on Measuring Technology and Mechatronics Automation:495-498.
    [95]Stephen D. J. McArthur, Scott M. Strachan, Gordon Jahn. The Design of a Multi-Agent Transformer Condition Monitoring System [J]. IEEE TRANSACTIONS ON POWER SYSTEMS,2004,19(4):1845-1852.
    [96]Yujiong Gu, Xiaofeng Dong, Jianjun Wu, et al. Study on Multi-agent Based Maintenance Decision Support System Used for Power Plant Equipment [C]. Proceedings of the 2008 IEEE IEEM:2167-2171.
    [97]G. M. West, S.D.J. McArthur, D. Towle. Industrial implementation of intelligent system techniques for nuclear power plant condition monitoring [J]. Expert Systems with applications, 2012,39(8):7432-7440.
    [98]E.E. Mangina, S.D.J. McArthur, J.R. McDonald. Multiagent system for condition-monitoring applications [J]. Cybernetics and Systems,2002,33(6):543-558.
    [99]N. Obeid. Towards a predictive multi-agent model-based diagnosis system [J]. WSEAS Transactions on Systems,2004,3(5):2194-2200.
    [100]O.B. Kwon, J.J. Lee. A multi-agent intelligent system for efficient ERP maintenance [J]. Expert Systems with applications,2001,21(4):191-202.
    [101]Hongtao ZENG, Zhaohui LI, Yaxiong BI. Hydroelectric Enterprise Model Based on Community Intelligence [C]. Proceedings of IEEE International Conference on Systems, Man&Cybernetics, October,2004(2):537-562.
    [102]Hongtao ZENG, Zhaohui LI, Yaxiong BI. A New Engineering Management System of the Three Gorges Project Based on Community Intelligence[C]. Proceedings of IEEE International Engineering Management Conference,2004(1):297-301.
    [103]曾洪涛,李朝晖.基于Community Intelligence的水电厂状态检修决策支持系统[J].水力发电学报,2006,24(3):130-135.
    [104]李勇,段正澄.动态蚁群算法求解TSP问题[J].计算机工程与应用,2003,39(17):103-106.
    [105]高尚,韩斌,吴小俊等.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289.
    [106]郜庆路,罗欣.基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统桟IMS,2003,9(6):456-459.
    [107]秦元庆,孙德宝,李宁等.基于粒子群算法的移动机器人路径规划[J].机器人,2004,26(3):222-225.
    [108]Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems [C]. Proceedings of the IEEE Conference on Evolutionary Computation. Soul:IEEE,2001,87-93.
    [109]闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21.
    [110]Salman A, Ahmad I, A-1Madani S. Particle swarm optimization for task assignment problem [J]. Microprocessors and Microsystems,2002,26(8):363-371.
    [111]符强,夏瑛,张华等.基于粒子群算法的粗轧宽展控制模型优化仿真[J].冶金自动化,2003,27(3):1-4.
    [112]Kennedy J, Eberhart R C. Swarm intelligence [M]. San Francisco:Morgan Kaufmann,2001.
    [113]Japaridze G... The logic of tasks [J], Annals of Pure and Applied Logic,2002,117:263-295.
    [114]F.Baader and U.Sattler. Tableau Algorithms for Description Logics[C]. In Proceedings of the International Conference on Automated Reasoning with Tableaux and Related Methods (Tableaux 2000), Lecture Notes in Artificial Intelligence, Scotland:Springer-Verlag,2000,1847: 1-18.
    [115]Ferber, J., Gutknecht, O. A Meta-Model for the Analysis and Design of Organizations in Multi-Agent Systems [C]. In Proc.of the 3rd. International Conference on Multi-Agent Systems (ICMAS'98), IEEE Computer Society,1998.
    [116]Meyer. J-J., Wieringa,R. Deontic Logic in Computer Science, Wiley,1993.
    [117]曾洪涛.基于Community Intelligence的水电企业模型及应用研究[D].湖北:华中科技大学,2006.
    [118]张旭明.团队的本质与管理中的团队悖论困境[J].商场现代化,2007,497:309-310.
    [119]HAN Y, SONG Y. Condition monitoring techniques for electrical equipment—a literature survey [J]. IEEE Transactions on Power Delivery,2003,18(1):4-13.
    [120]NANDI S, HAMID A. Condition monitoring and fault diagnosis of electrical motors—a review [J]. IEEE Transactions on Energy Conversion,2005,20(4): 719-729.
    [121]李朝晖,杨贤,毕亚雄.水电机组数字化及其工程应用[J].电力系统自动化,2008,32(23):76-80.
    [122]LI Zhaohui, AI Yongzhong, SHI Huixuan. Optimal maintenance information system of Gezhouba hydro power plant [C].//Proceedings of 2007 IEEE PES General Meeting, June 24-28,2007, Tampa, FL, USA.
    [123]沈东,褚福涛,陈思.水轮发电机组振动故障诊断与识别[J].水动力学研究与进展(A辑),2000,15(1):129-133.
    [124]沈东,褚福涛,陈思.水轮发电机组振动故障诊断方法研究[J].红水河,2000,19(1):61-63.
    [125]艾友忠.葛洲坝电厂最优维护方法研究与实践[D].湖北:华中科技大学,2007.
    [126]王宏.水电站维护自动化研究与实践[D].湖北:华中科技大学,2009.
    [127]赵晶.水轮机调速油系统状态监测与分析[D].湖北:华中科技大学,2007.
    [128]朱传古.水电机组状态监测与诊断中的分析方法及案例[D].湖北:华中科技大学,2007.
    [129]邬承玉,王义林.水轮发电机组辅助设备与测试技术[M].北京:中国水利水电出版社,1999.
    [130]刘同安,冯广华.介绍一种新型的压油罐补气装置[J].水电厂自动化,1994(3):43-45.
    [131]U.Fayyad, G.Piatetsky-Shapiro, and P.Smyth. Knowledge discovery and data mining:Towards a unifying framework [C]. In Second International Conference on Knowledge Discovery and Data Mining,1996.
    [132]GB/T 9652.1—2007.水轮机控制系统技术条件[S],2007.
    [133]GB/T 9652.2—2007.水轮机控制系统试验[S],2007.
    [134]IEC 60270:2000. High-voltage test techniques:Partial discharge measurements[S],2000.
    [135]常兆堂,姜之琦,陈仲华.水轮机调节系统原理试验与故障处理[M].北京:中国电力出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700