用户名: 密码: 验证码:
带附加气室空气弹簧系统动态特性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气弹簧悬架系统具有变刚度、低振动频率、抗路面冲击的特性,能有效改善车辆的行驶平顺性、乘坐舒适性以及操纵稳定性,还可降低车辆对路面的破坏等性能。在国外,空气弹簧已广泛应用于车辆悬架系统,而在国内,缺乏系统的空气悬架系统设计理论,空气悬架系统的研发能力较低,绝大多数整车及零部件生产企业缺乏空气悬架系统的设计开发能力,影响了参与国际市场竞争。开展空气悬架系统关键部件——空气弹簧系统的关键技术研究,既能满足提高车辆悬架系统性能的要求,又能为我国相关企业参与国际市场竞争提供有力支持,同时推进我国汽车悬架行业的科技进步。
     以管路连接主副气室的带附加气室空气弹簧系统为研究对象,应用CFD技术对系统内部气体流动进行数值模拟,探索带附加气室空气弹簧系统的动态特性机理。
     运用有限元分析理论,建立空气弹簧主气室的有限元模型,分析空气弹簧主气室的非线性特性。利用ABAQUS/Standard模块分析初始气压、帘线角、帘线间距和帘线层数对空气弹簧承载性能的影响;用Explicit模块分析空气弹簧主气室的动态特性与弹簧内部初始气压和激振频率的关系。
     运用均熵修正理论,建立连接管路的动态分布模型,分析管路对气体流动产生的“时滞”效应。综合空气动力学、流体力学和热力学理论,考虑系统部件之间气体流动过程中热量的交换,假设带附加气室空气弹簧系统各部件内的气体压力均匀(整体等效气压),基于变质量系统理论,推导带附加气室空气弹簧系统的振动微分方程,为系统特性分析奠定理论基础。
     在等效气压模型基础上,研究带附加气室空气弹簧系统的自由振动和受迫振动响应特性。结果表明:系统响应特性受附加气室容积、连接管路内径等因素的影响明显。随附加气室容积的增大,系统的固有频率逐渐降低,当附加气室容积从OL增加至与主气室等容积时,系统的固有频率由1.8Hz降低至1.45Hz;随管路内径的增大,自由振动的周期先增大后减小,连接管路内径为12mm时,系统的自振频率最小,约为1.34Hz;增设附加气室后,系统的自由振动是有阻尼振动,随附加气室容积的增大,系统的阻尼比增大;随着连接管路内径的增大,带附加气室空气弹簧系统的振动衰减变慢,阻尼比减小,说明连接管路的阻尼作用降低。
     探索CFD与动网格技术在带附加气室空气弹簧系统特性分析中的应用,应用有限体积法对系统内部的三维湍流进行数值模拟,得到带附加气室空气弹簧系统的内部压力场、速度场、温度场等,分析系统内部气体的流动现象和规律,研究带附加气室空气弹簧系统的动态特性机理。
     根据系统内部流动的数值模拟结果,应用面积加权平均法求解带附加气室空气弹簧系统工作高度位置的等效气压,并与理论计算得到的整个气室等效气压进行对比。结果显示,两者之间存在一定差异。在不考虑连接管路内径影响时,通过数值模拟获得系统工作高度位置的等效气压,在此基础上求解动刚度,并对其进行三维曲面拟合、试验验证及误差比较等,建立工作高度位置等效气压下带附加气室空气弹簧系统的动刚度模型。
     设计了带有连接管路的带附加气室空气弹簧特性试验系统,提出了带附加气室空气弹簧系统静态特性和动态特性的试验方案,并在INSTRON 8800数控液压伺服激振试验台上对不同连接管路内径、不同附加气室容积的空气弹簧系统进行静态和动态特性试验,得到位移、载荷、气压等随时间的变化关系,求解空气弹簧系统动刚度,并与工作高度位置等效气压下模拟得到的动刚度进行对比,验证了利用局部等效气压求解系统动刚度的准确性。通过试验和动刚度模型分析空气弹簧系统动刚度的影响因素和影响规律,为弹簧系统内部参数的匹配和选择奠定基础。
     提出两种附加气室容积可调的结构方案,讨论附加气室容积可调的实现方法。
Air spring suspension system, mainly characterized in its variable stiffness, lower resonance frequency and road-friendliness, has been applied to vehicle. The riding performance and handling stability of vehicle with air spring suspension system have been improved. Furthermore, the damage to road from vehicle with air suspension system is greatly reduced. In developed countries, air spring suspension system has been widely used. However, domestic research level in this filed lags behind developed countries. Being lack of appropriate design theory, vehicle manufacturing enterprises are short of own intellectual properties about air spring system which affects their international market competitiveness. Priority should be given to key technologies in development of the key component—the air spring. It can not only improve the performance of suspension, provide great support to related companies to participate in international market, but also make the science and technology progress in our national suspension system industry.
     The research focuses on a complex system, which consists of the main air spring chamber, the auxiliary chamber and the connecting pipe allowing air flow between the two chambers; In order to study on dynamic characteristics mechanism of air spring system with auxiliary chamber, interior air flow is numerically simulated with CFD technology.
     With the finite element analysis method, a non-linear model of the air spring is established to analyze its special non-linear characteristics. In the Standard block of ABAQUS, the influence of initial pressure, cord angle, cord layers and cord layer spacing on the loading capacity of the spring is analyzed respectively. The results can help to develop and choose the main rubber chamber. In the Explicit block, the dynamic characteristics of the main chamber changing with the initial pressure and exciting frequency is analyzed.
     With the mean entropy correction theory, the dynamic distribution model of the connecting pipe is derived in order to display the air flow hysteresis, which is caused by the air restriction because flowing in the connecting pipe. On basis of theories of the aerodynamics, fluid mechanics and thermodynamics, the heat conduction in the air flow considered, the vibration differential equation of the spring system under the overall equivalent air pressure is derived with the mass changeable theory, which lays the theoretical foundation for further analysis of the system characteristics.
     When the equivalent air pressure model is established, the response of free vibration and forced vibration of the air spring system with auxiliary chamber is analyzed. The result shows that the system natural characteristics are related to the volume of the auxiliary chamber and the diameter of the connecting pipe. With the volume of the auxiliary chamber increasing, the system resonance frequency goes down accordingly. To be specific, the auxiliary chamber volume increases from OL to the same volume as the main chamber, the frequency decreases from 1.8Hz to 1.45Hz accordingly. As the diameter of the pipe rises, the free vibration period firstly increases to some extent, then starts to decline, the resonance frequency reaches its lowest value (approximately 1.34Hz) when the pipe diameter is 12mm; As the auxiliary chamber integrated into the system, the free vibration of the system becomes to damping vibration system. When the volume of the auxiliary chamber increases, the system damping ratio will rise. And when the pipe diameter increases, the damping will decrease.
     The application of the CFD and dynamic mesh technology is explored in performance analysis of the air spring system with auxiliary chamber, and the finite volume method is used to simulate the three-dimension turbulent flow in the system. Consequently, the pressure field, temperature field and velocity field are got. The phenomena and laws of the flow inside the system are analyzed, and the mechanism of dynamic characteristics for the spring system with auxiliary chamber is investigated.
     With the simulation results of interior flow of the spring system, the area weighted mean method is employed to analyze the equivalent air pressure at the working height position. And it is compared with the overall equivalent air pressure. The result shows some differences between the two methods. Then, without considering the connecting pipe effect, the dynamic stiffness model of the air spring system with auxiliary chamber is established via three-dimension curve fitting, experimental verification and error comparison.
     An experimental platform for the air spring system consisting of the main air spring chamber, the auxiliary chamber and the connecting pipe is developed based on INSTRON 8800 NC hydraulic servo exciting system. The experimental scheme of the static and dynamic characteristics for the spring system is proposed respectively. On the platform a serial of experiments are carried out under different auxiliary chamber volume and different pipe diameters. The curves of displacement, load, and interior pressure vs time are obtained respectively, the dynamic stiffness is calculated and is compared with that simulated stiffness from equivalent air pressure at working height position. The method calculating dynamic stiffness with the equivalent air pressure at working height position is verified. Experimental method and model simulation are respectively used to analyze the influencing factors towards the spring dynamic stiffness, and all these work will lay the theoretical foundation for matching and choosing for the spring interior properties.
     Two structural schemes are proposed to adjust the volume of the auxiliary chamber, and methods to adjust the volume are discussed.
引文
[1]Backman Al. Health survey of processional drivers [J]. Scand J Work Environ Health,1983, (9):30.
    [2]Helmut Sranate H. Long-term effects of whole body vibration [J]. Int Arch Occup Environ Health,1986,58:1.
    [3]Kevin Waish. Occupational causes of low-back pain [J]. Scand J Work Environ Health,1989, 15:54.
    [4]骆知俭,毛晓全.全身振动对人体腰椎的影响[J].职业医学,1989,16(5):7-9.
    [5]巴福森.长时间全身振动对作业人员胃的影响的跟踪研究[J].航天医学与医学工程,1993,6(4):27-281.
    [6]张祥春,程宏,张新生,等.全身振动对人体脊柱的损害[J].中华劳动卫生职业病杂志,1993,11(6):321-324.
    [7]熊敏如,吴维生,何兴轩,等.全身振动对农用拖拉机驾驶员心血管系统影响的研究[J].职业医学,1994,21(3):24-26.
    [8]I. Hostens, H. Ramon. Descriptive analysis of combine cabin vibrations and their effect on the human body [J]. Journal of Sound and Vibration,2003,266:453-464.
    [9]徐斌,郑钢铁,范轶,等.道路破坏的影响因素及悬架参数优化[J].汽车工程,2007,22(6):408-422.
    [10]张庆明.超载车辆对道路使用寿命影响的研究[J].交通标准化,2007(10):68-69.
    [11]喻凡,黄宏成,管西强.汽车空气悬架的现状及发展趋势[J].汽车技术2001(8):6-10.
    [12]陈兴林,胡树华.汽车空气悬架的应用发展与我国汽车业的应对策略[J].汽车科技,2004(4):6-9.
    [13]王忠会.凌志LS400半主动悬架的减振特性及电控机理分析[J].西安公路交通大学学报,1999,19(2):82-84.
    [14]陈志林,金达峰,赵六奇,等.油气主动悬架非线性模型的建立、仿真与试验验证[J].汽车工程,2000,22(3):162-165.
    [15]Kazuo Ogawa, Kunihito Satoh, Takaaki Enomoto. Development of damping control system for air suspension [J]. JSAE Review 17(1996)314-324.
    [16]刘小英,王凌,赵淑英,等.汽车磁悬浮减振系统的结构分析与模型研究[J].武汉汽车工业大学学报,2000,22(3):14-17.
    [17]倪富建、邓学钧.汽车轴重与路面破坏的关系[J].重庆交通学报,1997,16(4):41-50.
    [18]John Lewis. Car spring [P]. US Patent:No.4965.1847-02-10.
    [19]William R Fee. Pneumatic spring [P]. US Patent:No.19764.1858-03-30.
    [20]Alsop Gorge M. Carriage spring [P]. US Patent:No.24184.1859-05-31.
    [21]Hoagland I W. Carriage spring [P]. US Patent:No.32848.1861-07-16.
    [22]Annable W W. Pneumatic spring for vehicle [P]. No.673011.1901-04-03.
    [23]Bancroft George. Pneumatic cushion for vehicle [P]. No.980138.1910-12-27.
    [24]Gieck Hack. Ride on air:a history of air suspension [M]. New York SAE Inc,1999.
    [25]Sugahara Yoshiki. Vertical vibration suppression of railway vehicle by damping control of air springs [J]. Transactions of the Japan Society of Mechanical Engineers.2006,72 (9): 2762-2769.
    [26]李敬东.汽车悬架空气弹簧匹配技术研究[D].镇江:江苏大学,2007.
    [27]Giuseppe Quaglia, Massimo Rorli. Experimental and theoretical analysis of an air spring with auxiliary reservoir [EB/oL]. http://www.callisto.si.usherb.ca/-fluo/2000/PDF/Fl-003.pdf,2004-11-10.
    [28]王林超.凌志L400轿车电子调节空气悬架[J].汽车运输,1996,vol16.
    [29]汪冬.汽车空气悬架的发展及我国研发对策思考[J].机电信息,2004(20):25-27.
    [30]刘增华.空气弹簧及其在轨道车辆上的应用[J].电力机车与城轨车辆,2003,26(6):24-27
    [31]喻凡,黄宏成,管西强.空气弹簧悬架的现状及发展趋势[J].汽车技术,2001(8):6-9.
    [32]金峰,张先彤,王广宏.空气弹簧隔振技术[J].应用能源技术,1997.
    [33]Wang F., Cheng C., Qin M., Liu Z.-W. Rigid-elastic coupling modeling of air suspension and fatigue life prediction of its key part for heavy-duty truck [J]. International Journal of Vehicle Design.2008,47 (1-4):305-317.
    [34]孙文春,冯国刚.斯太尔S35加强型空气悬架[J].重型汽车,2004.
    [35]方应明,田卫.奥迪A8轿车自适应空气悬架系统结构与维修[J].汽车维修与修理,2006.
    [36]张英会.弹簧[M].北京:机械工业出版社,1982.
    [37]董学峰.膜片空气弹簧的设计计算[J].汽车技术,1990.
    [38]张清俊.橡胶空气弹簧的研制[M].北京:中国橡胶,2000.
    [39]王家胜,朱思洪.带附加气室空气弹簧动刚度影响因素试验研究[J1.振动与冲击,2010,29(6):1-3,20-21.
    [40]Bell Benjamin. Pneumatic spring [P]. US Patent:No.971583.1910-10-04.
    [41]J. R. Evans. Rail vehicle dynamic simulation using VAMPIRE [J]. Vehicle System Dynamics. 1999(9):31-35.
    [42]Alf Homeyer(德).采用现代方法设计空气弹簧系统[J].国外铁道车辆,1999,(3):35-38.
    [43]C. Erin, B. Wilson, J. Zappee. An improved model of pneumatic vibration isolator:Theory and experiment [J]. Journal of Sound and Vibration,1998 (218):81-101.
    [44]Jack Gieck. Riding on air:A history of air suspension [M]. SAE, Inc,1999.
    [45]畦田,利大.铁道车辆用空气弹簧耐久性评价[J].国外铁道车辆,2002,39(1):36-41.
    [46]D. Hrovat. Survey of advanced suspension developments and related optimal control application [J]. Automatic,1997,33 (10)
    [47]Chance B K.1984 continental Mark7/Lincoln continental electronically-controlled air suspension system [A]. SAE Paper[C]. New York:SAE Inc,1984, SAE840342.
    [48]A. Murata, Y. Kume, F. Hashimoto. Application of catastrophe theory to forced vibration of a diaphragm air spring [J]. Journal of Sound and Vibration,1987,11 (1):31-44.
    [49]Takuya Yuasa. The application of CAE in the development of air suspension beam [A]. SAE Paper[C]. New York:SAE Inc,1997, SAE973232.
    [50]Theo Meller. Self-energizing leveling systems their progress in development and application [A]. SAE Paper [C]. New York:SAE Inc,1999.
    [51]Jon Bunne, Roger Jable. Air suspension factors in driveline vibration [A]. SAE Paper[C] New York:SAE Inc,1996, SAE962207.
    [52]John Woodrooffe. Heavy truck suspension dynamics:Methods of evaluating suspension road friendliness and ride quality [A]. SAE Paper[C] New York:SAE Inc,1996, SAE962152.
    [53]Donald Margolis. The stability of trailing air suspension in heavy trucks [J]. Int. J. Vehicle Design,2001 (3):211-229.
    [54]Malin Presthus. Derivation of air spring model parameters for train simulation [D]. Lulear University of Technology,2002.
    [55]P. Polach, M. Hajzman. Design of characteristics of air-Pressure-controlled hydraulic shock absorbers in an intercity bus [J]. Multibody System Dynamics,2008,19 (1-2):73-90.
    [56]E.J. Stone, D. Cebon. An experimental semi-active anti-roll system [J]. Journal of Automobile Engineering,2008,222 (12):2415-2433.
    [57]P. Mahmoudian, R. Kashani. Active stiffness and damping control of air mounted/suspended systems [A].2008 ASME International Mechanical Engineering Congress and Exposition[C]. Boston,2009:531-544.
    [58]A. J. Nieto, A. L. Morales, J. M. Chicharro, et al. Unbalanced machinery vibration isolation with a semi-active pneumatic suspension [J]. Journal of Sound and Vibration,2010,329(1):3-12.
    [59]郭孔辉.空气弹簧特性理论初步研究[J].汽车与拖拉机.1959(2).
    [60]张建文.空气弹簧非线性有限元分析和空气悬架大客车隔振性能的研究[D].吉林:吉林大学.2003.
    [61]王树林,黄会荣.空气弹簧的形变特性[J].中国机械工程,1995(6):64-67.
    [62]丁良旭,等.空气弹簧悬挂特性计算机模拟[J].中国公路学报,1997,10(1):97-104.
    [63]李芾,傅茂海,黄运华,等.车辆空气弹簧动力学参数特性研究[J].中国铁道科学,2003,24(5):91-95.
    [64]刘增华,李芾,傅茂海,等.空气弹簧的刚度及阻尼特性研究[J].机车电传动,2005(4):16-19.
    [65]黄卫平,鲍卫宁.汽车用空气弹簧垂向弹性特性分析与计算[J].机械,2008,35(8);9-11.
    [66]刘天叶,伟何琳.导向附件对空气弹簧垂向刚度的影响[J].舰船电子工程,2008,28(5):194-197.
    [67]鲍卫宁,陈立平,张云清.汽车耦合空气弹簧悬架系统动力学模型的研究[J].汽车工程,2008,30(3):231-324.
    [68]李锋祥,杨卫民.胶囊容积计算宏应用于空气弹簧ANSYS多步分析[J].橡塑技术与装备,2007,33(5):5-10.
    [69]杨春贵,何锋.基于Msc. Marc的空气弹簧垂向特性的有限元分析[J].计算机辅助工程,2006,15(Suppl.):297-299.
    [70]叶珍霞,朱海潮,赵应龙.囊式空气弹簧刚度特性的非线性有限元法研究[J].振动与冲击,2006,25(4):94-98.
    [71]郭微,钱德猛.汽车用膜式空气弹簧的非线性有限元分析[J].客车技术与研究,2006,(3):14-16.
    [72]袁春元.车用空气弹簧设计理论和现代化设计方法研究[D].镇江:江苏大学,2007.
    [73]吴琳琪.车用膜式空气弹簧垂向弹性特性有限元分析及优化[D].镇江:江苏大学,2007.
    [74]兰艳,蔡海涛,王成国.空气弹簧力学性态的非线性有限元模拟仿真[J].湘潭大学自然科学学报,2005,27(1):90-93.
    [75]刘宏伟,陈燕虹,林逸.空气弹簧非线性弹性特性的有限元分析[J].农业机械学报,2004,35(5):201-204.
    [76]吴善跃,黄映云.空气弹簧刚度的有限元分析方法[J].海军[程大学学报,2001,13(6):94-98.
    [77]张广世,沈钢.带有连接管的空气弹簧动力学模型研究[J].铁道学报,2005,27(4):36-41.
    [78]张广世,孔军.汽车悬架用空气弹簧的开发与设计[J].汽车技术,2001(1):5-7.
    [79]郭荣生.空气弹簧悬挂的振动特性和参数计算[J].铁道车辆,1992(6):8-12.
    [80]杨兴龙.基于多体系统动力学的空气悬架大客车平顺性试验仿真研究[D].北京:北京理工大学,2003.
    [81]陈燕虹,杨兴龙,王勋龙.大客车空气弹簧动态特性的试验分析[J].汽车技术,2002(10):19-20,40.
    [82]贺亮,周永清,朱思洪.基于激振法的空气弹簧垂向刚度和阻尼特性研究[J].振动与冲击,2008,27(7):167-170.
    [83]牛光.空气弹簧动态特性有限元仿真及试验研究[D].镇江:江苏大学,2008.
    [84]陈燕虹.半主动空气弹簧悬架智能控制算法的仿真及试验研究[D].吉林:吉林大学,2005.
    [85]姜立标,王登峰.汽车半主动空气悬架自适应模糊神经网络控制[J].哈尔滨工业大学学报,2005,37(12):1747-1750.
    [86]王辉,朱思洪.半主动空气悬架神经网络的自适应控制[J].农业机械学报,2006,37(1):28-31.
    [87]孙闯,张有强,张庆爽.基于H∞半主动控制的空气悬架系统的研究[J].机械工程师,2008(1):87-89.
    [88]于军,陈亮明.自适应空气悬架控制器设计[J].机电工程技术,2009,38(1):37-38.
    [89]杨启耀.ECAS客车悬架系统的匹配与充放气研究[D].镇江:江苏大学,2008.
    [90]徐兴,陈照章,李仲兴,等.ECAS客车车身高度调节建模及其控制研究[J].汽车技术,2009(11):42-46.
    [91]江洪,李坤,周文涛,等.ECAS系统控制模式及控制策略[J].机械工程学报,2009,45(12):224-231.
    [92]R. D. Cavanaugh. Air suspension and servo-controlled pneumatic isolation systems:Shock and vibration handbook [M]. Mcgrawaw-Hill B. C.,1961, chapter 33.
    [93]D. Gee-Clough, R. A. Waller. An improved self-damped pneumatic isolator [J]. Journal of Sound and Vibration,1968, (3):364-376.
    [94]E. Esmailzadeh. Compact self-damped pneumatic isolators for road vehicles [J].Trans. ASME, J. Dyn. Sys. Meas. Cont,1980(102):270-277.
    [95]M S. Hundal. Literature review-pneumatic shock absorbers and isolators [J]. Shock and Vibration Degest,1980,12(9):364-376.
    [96]M S. Hundal. Passive pneumatic shock isolator:Analysis and design [J].Journal of Sound and Vibration,1982,84(1):1-9.
    [97]B. I. Bachrach, E. Rivin. Anlysis of a damped pneumatic spring [J]. Journal of Sound and Vibration,1983,86(2):191-197.
    [98]S. Y. Bhave. Effect of conneeting the front and rear air suspensions of a vehicle on the transmissibility of road undulation inputs [J]. Vehicle System Dynamic,1992(21):225-245.
    [99]Yoyofuku K, Yamada C, Kagawa T, et al. Study on dynamic characteristic analysis of air spring with auxiliary chamber [J]. Society of Automotive Engineers of Japan Inc.,1999.
    [100]Mats Berg. Three-dimensional air spring model with friction and orifice damping [J]. Vehicle System Dynamics 2000,33(suppl):528-539.
    [101]G. Quaglia. M. Soli. Air suspension:Nonlinear analysis and design considerations [C].2nd IFK Int. Fluid Techniques Kolloquium, Dresden, March 2000.
    [102]G. Quaglia. M. Soli. Experimental and theoretical analysis of an air spring with auxiliary reservoir [C]. Proc of The 6th International Symposium on Fluid Control Measurement and Visualization. Sherbrooke, Canada, Aug,2000.
    [103]G. Quaglia. M. Soli. Air suspension dimension analysis and design procedure [J].Vehicle System Dynamics,2001,35(6):443-75.
    [104]I. Hostens, K. Deprez, H. Ramon. An improved design of air suspension for seats of mobile agricultural machines [J]. Journal of Sound and Vibration,2004(276):141-156.
    [105]Kenji Kawashima, Tomonori Kato, Koichi Sawamoto, et al. Realization of virtual sub chamber on active controlled pneumatic isolation table with pressure differentiator [J]. Precision Engineering,2007(31):139-145.
    [106]Jeung-Hoon Lee, Kwang-Joon Kim. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations [J] Journal of Sound and Vibration,2007(301):909-926.
    [107]郭荣生.空气弹簧悬挂的振动特性和参数计算(上)[J].铁道车辆,1992(5):1-5.
    [108]郭荣生.空气弹簧悬挂的振动特性和参数计算(下)[J].铁道车辆,1992(6):8-14.
    [109]陆正刚.空气弹簧振动系统阻尼特性及改进措施[J].铁道车辆,1994(6):5-9.
    [110]原亮明,宫相太,刘爽望,等.铁道车辆空气弹簧垂向特性分析方法的研究[J1.中国铁道科学,2004,25(4):37-41.
    [111]原亮明,宫相太,王渊,等.铁道车辆空气弹簧-可变节流阀垂向动态特性的研究[J].铁道学报,2005,27(1):40-44.
    [112]吴善跃,朱石坚,黄映云.带辅助气室橡胶空气弹簧的冲击特性分析[J].振动工程学报,2005,18(2):248-251.
    [113]尹万建,杨绍普,申永军,等.空气弹簧悬架的振动模型和刚度特性研究[J].北京交通大学学,2006,30(1):71-74.
    [114]应杏娟,李郝林,倪争技.空气弹簧隔振器的动力学特性研究[J].上海理工大学学报,2006,28(6):164-168.
    [115]周永清,朱思洪.带附加气室空气弹簧动刚度试验研究[J].机械强度,2006,28(1):013-015.
    [116]王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击,2009,28(2):72-76.
    [117]刘彦,谭久彬,王雷,等.辅助气室连通的空气弹簧隔振系统隔振特性研究[J].振动与冲击,2008,27(4):98-100.
    [118]Zhongxing Li, Jiwei Guo, Mei Li, Xufeng Shen, Yue Wu, Weijuan Jiang. Study on Damping of Air Spring with Additional Chamber. CECNet, XianNing,2011. CECNet 2011-Proceedings: 5290-5293.
    [119]大卫R,萨利姆.聚合物纤维结构的形成[M].北京:化学工业出版社,2003.
    [120]李卓球,董文堂.非线性弹性理论基础[M].北京:科学出版社,2004.
    [121]高玉臣.橡胶材料的大变形分析及有限元技术[D].北京:北京交通大学,2003.
    [122]Rivlin R S. Large elastic deformation of isotropic materials:Ⅰ. Fundamental concepts, Ⅱ. some uniqueness throries for pure homogeneous deformations [J]. Philos Trans Roy Soclond Ser A,1948,240:459-508.
    [123]Moony R. A theory of large elastic deformation [J]. J Appl phys,1940,11:582-592.
    [124]Fazilay Laraba Abbes. A new tailor made methodology for the mechanical behavior analysis of rubber like materials:Ⅱ. Application to the hyperelastic behavior characterization of a carbon black filled natural rubber vulcanizate [J]. Polymer,2003,44(3):821-840.
    [125]ABAQUS Analysis User's Manual 6.10-1.19.5 Hyperelasticity. HKS Co.Ltd.
    [126]Song, G; Chandrashekhara, K, Breig, W. F. egal, Analysis of cord-reinforced poly-rib serpentine belt drive with thermal effect, Transactions of the ASME. Journal of Mechanical Design, v 127, n 6, Nov.2005:198-206.
    [127]王士杰.复合材料力学导引[M].重庆:重庆大学出版社,1987.
    [128]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [129]吕和详,蒋和洋.非线性有限元[M].北京:化学工业出版社,2003.
    [130]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [131]张玉峰,朱以文.有限元分析系统ABAQUS中的特征技术[J1.工程图学学报,2006.
    [132]Yang Weiming, Chen Canhui, Chen Yaling, et al. Finet element analysis of an air spring for automobile suspension [J]. Journal of Beijing University of Chemical Technology.2004 (1): 105-109.
    [133]郭乙木,陶伟明,庄茁.线性与非线性有限元及应用[M].北京:机械工业出版社,2003.
    [134]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,2007.
    [135]张广世,沈钢.带有连接管路的空气弹簧动力学模型研究[J].铁道学报,2005,27(4)-36-41.
    [136]侯友山,石博强,肖成勇,等.铰链车辆转向系统液压管路动态特性[J].农业工程学报,2009,25(10):112-115.
    [137]M. Abbaspour, et al. Dynamic modeling of non-isothermal gas pipeline system [C]. Proceedings of International Pipeline Conf.Calgary, Alberta, Canada, Oct,2004.
    [138]Yoshida, et al. Simulation of gas transmission system [C].Proceedings of asian simulation conf./the 5th International Conference on System Simulation and Scientific Computing, Shanghai, China,2002.
    [139]李新,肖启强.往复压缩机脉动理论研究[J].压缩机技术,2008(4):7-13.
    [140]周禹,阎超.Roe格式中不同类型熵修正性能分析[J].北京航空航天大学学报,2009(03):356-360.
    [141]陈守五,黄幼玲.一维不稳定气流方程组解法及其应用的研究[J].西安交通大学学报, 1982(01):58-69.
    [142]王保国,刘淑艳,黄伟光.气体动力学[M].北京:北京理工大学出版社,2005.
    [143]Chester C R. Technique in partial differential equations[J]. McGrew-Hill, Inc,1971.
    [144]蔡茂林.现代气动技术理论与实践第二讲:固定容腔的充放气[J].液压气动与密封,2007(3):43-47.
    [145]《气动工程手册》编委会.气动工程手册[M].北京:国防工业出版社,1995.
    [146]GB/T1306-1991.汽车悬架用空气弹簧橡胶气囊[S].国家标准局,1991.
    [147]Malin Presthus. Derivation of air spring model parameters for train simulation [D]. Lulea: Lulea University of Technology,2002.
    [148]张淳民.物理学[M].北京:电子工业出版社,2003.
    [149]赵兴艳,苏莫明,张楚华,等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25.
    [150]张兆顺.湍流(近代空气动力学丛书)[M].北京:国防工业出版社,2002.
    [151]Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low reynolds numbers in a channel flow [J]. Journal of Fluid Mechanics,2002(458):419-441.
    [152]Wissink J G. DNS of separating low reynolds number flow in a turbine cascade with incoming wakes [J]. International Journal of Heat and Fluid Flow,2003,24(4):626-635.
    [153]Michelassi V, Wissink J G, Rodi W, Direct numerical simulation, large eddy simulation and unsteady reynolds-averaged navier-stokes simulations of periodic unsteady flow in a low-pressure turbine cascade:A comparison [J]. Journal of Power and Energy,2003,217(4): 403-412.
    [154]Stephane V. Local mesh refinement and penalty methods dedicated to the direct numerical simulation of incompressible multiphase flows [J]. Proceeding of the ASME/JSME Joint Fluids Engineering Conference.2003,129-1305.
    [155]Miet P R, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles [J]. International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    [156]Duque E P, Gordon R, Berry M D, etal. Reynolds-averaged navier-stokes simulations of helicopter slung loads [J]. Presented at the AHS 4th International Decennial Specialists' Conference on Aeromechnics. San Francisco, CA, United States:American Helicopter Society. 2004.
    [157]Pan J, Loth E. Reynolds-averaged navier-stokes simulations of airfoils and wings with ice shapes [J]. Journal of Aircraft,2004,41 (4):879-891.
    [158]Hara T, Kato S. Numerical simulation of thermal plumes in free space using the standard k-ε model [J]. Fire Safety Journal,2004,39 (2):105-129.
    [159]Feiz A A, Rouis M O, Lauriat G. Large eddy simulation of turbulent flow in a rotating pipe [J]. Journal of Heat and Fluid Flow,2003,24 (3):412-420.
    [160]Mary I, Sagaut P. Large eddy simulation of flow around an airfoil near stall [J]. AIAA Journal. 2002,40 (6):1139-1145.
    [161]Grigoriadis D E, Bartzis J G, Goulas A. Efficient treatment of complex geometrics for large eddy simulations of turbulent flows [J]. Computers and Fluids,2004,33 (2):201-222.
    [162]Shen L, Yue D K. Large-eddy simulation of free-surface turbulence [J]. Journal of Fluid Mechanics,2001, (440):75-116.
    [163]Julian R E, Piotr K.S. Eddy resolving simulations of turbulent solar convection [J]. International Journal for Numerical Methods in Fluids,2002,39 (9):855-864.
    [164]Li J C. Large eddy simulation of complex turbulent flows:Physical aspects and research trends [J]. Acta Mechanica Sinica,2001,17 (4):289-301.
    [165]Shih T H, Liou W W, Shabbir A, Zhu J. A new k-ε eddy-viscosity model for high reynolds number turbulent flows [J]. Model Development and Validation. Computers Fluids,1995, (243): 227-238.
    [166]杨辅政.代数应力模型在水轮机内部湍流计算的应用[D].北京:清华大学,1997.
    [167]崔学明.水轮机转轮内三维湍流流场分析及计算模型比较[D].北京:中国农业大学,2002.
    [168]Patankar S V, Spalding D B. A calculation procedure for heat, mass and moment transfer in three-dimensional parabolic flow [J]. International Journal of Heat and Transfer,1972,(15), 1787-1806.
    [169]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [170]王海松.轴流泵CAD-CFD综合特性研究[D].北京:中国农业大学,2005.
    [171]江帆,黄鹏FLUENT高级应用与实例分析[M].北京:清华大学出版社,2008.
    [172]TB/T2841-2010.铁道车辆空气弹簧[S].中华人民共和国铁道部,2010.
    [173]王进,林达文,彭立群,等.轨道车辆用空气弹簧的刚度特性试验[J].世界橡胶工业,2006,33(11):40-43.
    [174]江洪、祁晨宇,汪栋,等.空气弹簧特性试验研究[J].机床与液压,2008,36(9)204-208.
    [175]黎吉明.橡胶空气弹簧静态特性曲线测绘[J].橡胶工业,2003,50:700.
    [176]刘爽堃,原亮明,刘金朝.TY550型空气弹簧静态刚度特性分析[J].铁道机车车辆,2003,23(5):29:32.
    [177]郭文观,石柏军.空气悬架的发展和试验方法研究[J].机床与液压,2008,36(5)351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700