用户名: 密码: 验证码:
河北省农田土壤磷素转化、平衡与产量效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对农业生产中过量施用磷肥导致农田土壤磷素不断积累、磷肥增产效应不断降低、农田磷环境风险逐渐增大等系列问题,安全管理农田磷养分资源已成为目前关注的热点问题。本文宏观上采用大面积调查磷肥施用与产量效应、土壤磷水平和变化相结合的方法研究了河北省30年来肥料-植物-土壤系统中磷素输入输出与平衡状况及土壤磷的时空变化;在微观上采用长期肥料定位试验、长期土壤磷行为与含量变化的定位监测相结合的方法,系统研究了土壤磷行为、形态转化特点与影响因素。通过宏观与微观研究的结合,系统揭示了河北省农业生产中磷肥用量动态变化、不同种植方式下土壤磷素平衡状况的演化,磷养分形态、施用量对作物产量和土壤磷形态转化的影响、积累磷在土壤中纵向运移等规律。主要研究结果如下:
     1、河北省从1980年至今磷肥用量快速增长高峰期分别出现在1980~(-1)985年和1990~(-1)995年间,年均增加14.0%,而且复合肥用量不断增加,1980-2009年复合肥中磷占总磷比重从10%增加到48.5%。
     2、目前粮田、菜地、果园土壤磷素收支平衡均表现为盈余。其中冬小麦-夏玉米轮作土壤磷素经历了亏缺(1949~(-1)972)、盈余(1972~(-1)995)和大量盈余阶段(1996-今)的变化过程,其中1996年至今磷素盈余量为109.4~(-1)34.9 kg·hm-2;蔬菜生产中盈余量随时间推进而不断增加,1980~(-1)997年间和1998年至今磷素盈余量分别为314.9和367.2 kg·hm-2,日光温室的盈余量高达626.1 kg·hm-2;在水果生产中(以苹果为例),在1980-2000和2000至今期间,磷素的盈余率分别为339.6%和435.7%。
     3、与第二次土壤普查结果相比,河北省粮田土壤磷素逐渐积累,土壤有效磷<5 mg·kg~(-1)粮田面积显著减低,10-20 mg·kg~(-1)粮田面积大幅增加。不同区域土壤有效磷含量的增幅有所不同,石家庄、唐山、廊坊3个地区的有效磷的增幅较大,年均增幅为15.0~(-1)9.7%,有效磷年均增加0.7 mg·kg~(-1);而沧州、邢台和邯郸地区有效磷的增幅较小,年均增幅为7.7-9.1%,年均增加0.3-0.4 mg·kg~(-1)。
     4、不同种植方式下磷素累积状况有明显差异:冬小麦-夏玉米轮作中粮田耕层土壤有效磷平均为24.5 mg·kg~(-1),年均增加0.6mg·kg~(-1);菜地土壤有效磷为74.9-582.6 mg·kg~(-1) ,平均为271.9 mg·kg~(-1),年均增加23.1-33.7 mg·kg~(-1);果园土壤0~20 cm土壤有效磷含量为159.1-211.3 mg·kg~(-1)。
     5、8年施用不同用量磷肥和有机肥的田间定位试验结果表明,施用化学磷肥或有机肥均可显著增加蔬菜产量,P2O5用量为180~360 kg·hm-2 (P1~P2)时,4种蔬菜的产量增加了21.5 %-71.6 %,但施用有机肥基础上增施化学磷肥,蔬菜产量无显著变化。通过分析8年后土壤有效磷的积累量和各处理的磷素表观盈余量的数量关系,计算出土壤磷素盈余每增加100 kg·hm-2可导致土壤有效磷上升1.06 mg·kg~(-1)。
     6、通过长期田间定位试验研究不同用量磷肥和有机肥对土壤磷素形态转化的影响,结果表明土壤全磷、有效磷、无机磷含量均显著增加。磷肥用量180-720 kg/hm-2条件下每年有效磷的增幅为2.7~(-1)0.5 mg·kg~(-1),有机肥用量150、300t/hm-2时土壤有效磷年均增加2.1和5.9 mg·kg~(-1)。施用化学磷肥土壤全磷含量的增加主要以无机磷为主,而施用有机肥还可增加土壤有机磷含量,而且无论增施磷肥或有机肥,有效磷占全磷的比重都有所增加。
     7、连续8年定位施用不同用量的磷肥和有机肥增加了土壤磷素的积累量,土壤Ca2- P、Ca8-P、Al-P、Fe-P含量均显著增加,而O-P、Ca10-P含量变化不显著。随着磷肥和有机肥用量的增加,Ca2-P、Ca8-P无机磷的比重在逐渐增加,而Fe-P、O-P、Ca10-P在逐渐降低。积累磷的有效性比重逐渐增加,增施磷肥Ca2-P、Ca8-P、Al-P、Fe-P含量每年分别增加0.3-6.6、10.5-42.7、3.0~(-1)3.1和1.6-4.7 mg·kg~(-1)。
     8、长期的有机-无机肥配施试验表明,连续3年过量施用磷肥或有机肥,土壤0-60cm土壤有效磷显著增加,施肥5年后,60~80cm土壤有效磷显著增加,而且高量施用磷肥和有机肥80~(-1)00cm土层有效磷明显增加,说明随着施肥时间的延长,积累的磷素逐渐向下迁移。
     9、定位监测不同土层菜地土壤有效磷的变化结果:土壤磷素主要在表层富集,随着磷肥用量和棚龄的增加,积累磷素逐渐向深层迁移,其中60-80cm土层积累磷素占0-80cm土体总积累量的6.7%~(-1)1.9%。
Safe management practices on the soil phosphorus (P) has been highly concerned by the public due to the consecutive accumulation, decling yield response and increasing environmental risk caused by the excessive application of P fertilizers in the agriculture in China. In this study, the input, balance and spatio-tempeoral variation of phosphorus in the continuum of fertilizer-plant-soil during the last 30 years were investigated from literature at macro scale, and the transformation and availability of the accumulated P in soil were monitored in situ during long-term experiment. The results obtained at macro and plot level were combined to indicate the changes of total P application in Hebei province as well as the P balance, yield response to the application rate and forms of P fertilizers, transformation and movement in the soil profile for the grain, vegetable and orchard production system in Hebei. The main results are as following:
     1. It was found that the fast increase periods of P fertilization rate in Hebei province during 1980-1985 and 1990-1995 were observed, where the average annual increase rate was 14%; meanwhile, the total consumption of compound P fertilizers reached up to 894*103 tones and the respective contribution to the total P consumption increased from 10%2. Analysis of P balance based on the input-output indicated that the soil P status of winter wheat-summer maize rotation systems were characterized with depletion period (1949-1972), surplus (1972-1995) and high surplus (1996-), and the current P surplus is estimated to be 109.4-134.9 kg·hm~(-2). In vegetable soils, the estimated annual P surplus ranged from 314.9 kg·hm~(-2) to 367.2 kg·hm~(-2) durng the periods of 1980-1997 and 1998-now, higher P surplus up to 626.1 kg·hm~(-2) were found in greenhouse vegetable production. While in orchard production (e.g. apple), the P surpluses during 1980~(-2)000 and 2000-now were 339.6% and 435.7%, respectively. Thus an increasing P surplus in agricultural soils in Hebei province was recognized.
     3. In comparison with the P status obtained in second state survey, the average soil Olsen-P in Hebei increased with 18.5 mg·kg-1 and the annual increase rate was 0.6 mg·kg-1 by 2008. This has been confirmed by the decline arable lands with Olsen-P <5 mg·kg-1 and increase of arable land with Olsen-P 20-40 mg·kg-1. However, the increase rate differed among different regions. For example, Shijiazhuang, Tangshan and Langfang were with greater annual increase rate varied from 15.0% to 19.7% with an annual accumulating rate of 0.7 mg·kg-1; and lower increase rates ranging from 7.7% to 9.1% with an annual accumulating rate of 0.3-0.4 mg·kg-1in Cangzhou, Xingtai and Handan were found. Such difference might be driven by the local economy situation.
     4. The accumulative level of soil P was highly different among winter wheat-summer maize rotation (WMR), vegetable production and orchards. For example, Olsen-P in the 0~(-2)0cm layer of WMR soil ranged from 9.5 mg·kg-1 to 47.7 mg·kg-1 with an average of 21.3 mg·kg-1 and average increase rate of 0.6 mg·kg-1; where 43.3% of the sampling sites were associated with an Olsen-P over 20. While the Olsen-P in 0~(-2)0cm layer of vegetable soils ranged from 74.9 to 582.6 mg·kg-1 with an average of 271.9 mg·kg-1, and the estimated annual increase of Olsen-P were 23.1-33.7 mg·kg-1; Similarly, high accumulation of soil P were found in orchards, where Olsen–P in 0~(-2)0cm layer were 159.1~(-2)11.3 mg·kg-1 or 7.6-10.1 times greater than in WMR.
     5. It was obtained through a long-term experiment of 8 years on vegetables that P fertilization significantly increased the yields of four vegetables by 21.5%-71.6% when 180~360 kg P2O5/ha (P1~P2) were applied, but no significant impact of applying organic P on the basis of mineral P application were obtained. Such yield response to P application can be fitted with Quadratic function and the maximal P fertilization rate for Chinese cabbage was 357-596 kg·hm~(-2) with an average of 443.0 kg·hm~(-2), 250-350 kg·hm~(-2) for summer cabbage, pepper and kidney bean. The analysis of accumulated P and Olsen-P level showed that the soil Olsen-P level might be increased by 1.06 mg·kg-1 when 100 kg·hm~(-2) of fertilizer P accumulated in soil during the 8-year experiment.
     6. P in vegetable soils were significantly increased after continuous 8-year P fertilization, where the annual increase of Olsen-P were 2.7-10.5 mg·kg-1 with the P fertilization of 180-720 kg hm~(-2), and 2.1 mg·kg-1 and 5.9 mg·kg-1 for M1 and M2 treatments. Mineral P mainly accumulated in the form of inorganic P, but the P in organic fertilizer accumulated in both inorganic and organic forms. It also indicated that the ratios of Olsen-P to total P increased under both organic and inorganic P fertilizations, indicating a favored enrichment of soil P in the form of Olsen-P.
     7. Significant increases of soil Ca2-P, Ca8-P, Al-P and Fe-P were observed after 8-year P fertilization but such increases were not found in O-P and Ca10-P. It was also indicated that the proportion of Ca2-P and Ca8-P in the total inorganic P increased with P fertilization rate, and the annual increase rate of Ca2-P, Ca8-P, Al-P and Fe-P were 0.3-6.6 mg·kg-1, 10.5-42.7 mg·kg~(-1), 3.0-13.1 mg·kg-1 and 1.6-4.7 mg·kg-1, respectively.
     8. In the long-term experiment, P accumulation occurred in 0-60 cm in the first three years, and the increase of Olsen-P in 60-80cm were observed after 5 years, especially in high P fertilization treatments, P accumulation in 80-100 cm were also observed.
     9. In situ measurements of Olsen-P in the vegetable soil profiles in Gaocheng, Xushui and Tangshan showed that major accumulation of P occurred in the top layer but the P downward movements were also observed, where accumulated P in 60-80 cm accounted for 6.7%-11.9% of the total accumulation and Olsen-P in this layer increased by 1.8-4.3 mg·kg-1 annually. While in orchard, the accumulated P in 60-80cm layer reached 3.2 kg/hm-2 after 21-year fertilization, accounting for 7.4% of the total accumulation.
引文
[1]张卫峰,马文奇,张福锁,等.中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J].自然资源学报,2005,20(3):378-386.
    [2]曹宁.基于农田土壤磷肥力预测的我国磷养分资源管理研究[D].博士论文,北京:中国农业大学.2007.
    [3]张夫道.有机-无机肥料配合是现代施肥技术的发展方向[J].土壤肥料,1984,1:16-19.
    [4]鲁如坤.中国农业中的磷[A],中国磷肥应用研究现状及展望学术讨论会论文集[C].北京:中国农业出版社,2005,19-30.
    [5]李庆逵,朱兆良,于天仁主编.中国农业持续发展中的肥料问题[M].南昌:江西科技出版社,1998,13-17.
    [6]鲁如坤.我国的磷矿资源和磷肥生产消费-磷矿资源和磷肥生产[J].土壤,2004,36(1):1-4.
    [7]张永志.2003年我国磷肥工业的回顾[J].磷肥与复肥,2004,19(3):8-11.
    [8]曹宁.从土壤肥力变化预测中国未来磷肥需求[J].土壤学报,2007,44(3):536-543.
    [9]鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究[J].中国农业科学,2000,33(2):63-67.
    [10]鲁如坤,时正元,顾益初.土壤积累态磷研究Ⅱ磷肥的表观积累利用率[J].1995,6:286-289.
    [11]鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究Ⅲ全国和典型地区养分循环和平衡现状[J].土壤通报,1996,27(5):193-196.
    [12] Shen R P, B. Sun, Q G Zhao.Spatial and temporal variability of N, P and K balances for agoecosystems in China [J]. Pedosphere, 2005, 15(3): 347-355.
    [13]李俊良,张瑞清,赵荣芳,等.华北地区冬小麦-夏玉米轮作体系的农田养分平衡模式[J].中国农业科技导报,2003,5(增刊):40-44.
    [14]孔庆波.基于GIS我国农田土壤磷素管理及磷肥需求预测研究[D].博士论文,北京:中国农业科学院,2008.
    [15]陈新平,张福锁主编.小麦-玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2006.
    [16]陈清,张福锁主编.蔬菜养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    [17]姜远茂,张宏彦,张福锁主编.北方落叶果树养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    [18]李同杰.高产粮田磷素的迁移转化及磷素平衡研究[D].泰安:山东农业大学,2007.
    [19]方玉东.中国县域农田养分收支平衡研究[D].北京:中国科学院地理科学与资源研究所,2006.
    [20]黄绍文,金继运,杨俐苹,等.乡(镇)级区域土壤养分空间变异与分区管理技术研究[J].资源科学,2002,24(2):76-82.
    [21] Chen Q, 2003. Development of controlling tools in irrigation and fertilization for vegetable production in North China Plain:[PhD dissertation]. Verlag Grauer, Beuren, Stuttgart, 37-43.
    [22]陈明昌,张强,程滨,等.山西省主要农田施肥状况及典型县域农田养分平衡研究[J].水土保持学报,2009,15(4):45-48.
    [23]石元亮,李彬,肖延华,等.我国近年化肥的发展历程、问题与前景[A].中国土壤学会编.中国土壤科学的现状与展望,南京:河海大学出版社,2007,189-200.
    [24]曹宁,张玉斌,陈新平.中国农田土壤磷平衡现状及驱动因子分析[J].中国农学通报,2009,25(13):220-225.
    [25]沈善敏主编.中国土壤肥力[M].北京:中国农业出版社,1998.
    [26] Goulding K. P & K in the crop, the soil and the environment [R]. Beijing: China agriculture university, 2004.
    [27]陈浮,蹼励杰,曹慧,等.近20年太湖流域典型区土壤养分时空变化及驱动机理[J] .土壤学报,2002,39(2):236-245.
    [28]黄健,张惠琳,傅文玉,等.东北黑土区土壤肥力变化特征的分析[J].土壤通报,2005,5:659-663
    [29]刘蝴蝶,李晓萍,赵国平,等.山西主要耕作土壤肥力现状及变化规律[J].山西农业科学,2010,38(1):73-77.
    [30]刘付程,史学正,潘贤章,等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,2003,23(1):77-81.
    [31]李明悦.近20年来大同市土壤肥力质量的时空演化分析[D].硕士论文,北京:中国农业大学,2005.
    [32]刘杏梅.基于GIS和地统计学的不同尺度水稻田土壤养分时空变异及其机理研究[D].博士论文,杭州:浙江大学, 2005.
    [33]林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,1:5-18.
    [34]田有国,张淑香,刘景,等.褐土耕地肥力质量与作物产量的变化及影响因素分析[J].植物营养与肥料学报,2010,16(1):105-111.
    [35]刘杏兰,高宗,刘存寿,等.有机-无机肥配施的增产效应及对土坡肥力影响的定位研究[J].土壤学,1996,33(2):138-147.
    [36]程明芳,何萍,金继运.我国主要作物磷肥利用率的研究进展[J].作物杂志,2010,1,12-14
    [37]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2009,45(4):915-925.
    [38]高静,张淑香,徐明岗等.长期施肥下三类典型农田土壤小麦磷肥利用效率的差异[J].应用生态学报,2009,20(9):2142-2148.
    [39]沈善敏,宇万太,陈欣,等.施肥进步在粮食增产中的贡献及其地理分异[J].应用生态学报,1998,9(4):386-390.
    [40]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):154-157.
    [41]李忠芳,徐明岗,张会民,等.长期施肥下中国主要粮食作物产量的变化[J].应用生态学报,2010,21(5):1264-1269.
    [42]宇万太,马强,张璐,等.不同施肥制度下茬口对作物产量增益、土壤养分状况及施肥贡献率的影响[J].生物学杂志,2007,26(11):1798-1803.
    [43]刘建玲,杨福存,李仁岗.长期肥料定位试验栗钙土中磷肥在莜麦上的产量效应及行为研究[J].植物营养与肥料学报,2006,12(2):201-207.
    [44]葛晓光,高慧,张恩平,等.长期施肥条件下菜田一蔬菜生态系统变化的研究III,蔬菜产量与养分吸收量的变化[J].园艺学报,2004,31(4):456-460.
    [45]贾可,刘建玲,廖文华,等.磷肥在油菜和大白菜上的产量效应及土壤磷素的化学行为研究[J].河北农业大学学报,2005,28(4):11-16.
    [46]刘建玲,李仁岗,廖文华,等.白菜-辣椒轮作中磷肥的产量效应及土壤磷积累研究[J].中国农业科学,2005,38(8):1616-1620.
    [47]来璐,郝明德,彭令发,等.黄土高原旱地长期施肥条件下土壤有机磷的变化[J].土壤,2003,35(5):413-418.
    [48]向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663-670.
    [49]束良佐,邹德乙.长期定位施肥对棕壤无机磷形态及其有效性的影响Ⅱ肥料中的磷向各形态无机磷的转化及其有效性[J].辽宁农业科学,2001,2:5-7.
    [50]曹翠玉,张亚丽,沈其荣,等.有机肥料对黄潮土有效磷库的影响[J].土壤1998,29(5):235-238
    [51]宋付朋.长期施磷石灰性土壤无机磷形态特征及其有效性研究[D].济南:山东农业大学,2006.
    [52]田秀平,马艳梅,韩晓日.长期耕作、施肥对白浆土无机磷形态的影响[J].土壤,2003,35(4):344-346.
    [53]张奇春,王光火,冯玉科.水稻肥料定位试验中土壤各形态磷的变化动态研究[J].浙江大学学报(农业与生命科学版),2003,339(1):82-88.
    [54]刘建玲,张福锁.小麦-玉米轮作长期肥料定位试验中土壤磷库的变化II.土壤Olsen-P及各形态无机磷的动态变化[J].应用生态学报,2000,11(3):365-368.
    [55] Motavalli P P, Miles R J. Soil phosphorus fractions after 111 years of animal manure and fertilizer application [J]. Biology and Fertility of Soils, 2002(36): 35-42.
    [56]林治安,谢承陶,张振山,等.石灰性土壤无机磷形态转化及其有效性研究[J].土壤通报,1997,28(6):274-276.
    [57]郑铁军.黑土长期施肥对土壤磷的影响[J].土壤肥料,1998,4(1):39-41.
    [58]刘建玲,李仁岗,张凤华..栗钙土中磷肥转化及效应的研究[J].植物营养与肥料学报,1996,2(3):206-211.
    [59]张漱茗,于淑芳,刘毅志.施肥对石灰性土壤磷素形态的影响[J].土壤,1992,24(2):68-70
    [60]杨丽娟,李天来,周崇峻.塑料大棚内长期施肥对菜田土壤磷素组成及其含量影响[J],水土保持学报,23(5):205-209.
    [61]徐明岗.土壤磷扩散规律及其能量特征I.水分、质地、温度及其相互作用对磷扩散的研究的影响[J].土壤学报,1996,33(2):148-157.
    [62]徐明岗.土壤磷扩散规律及其能量特征II.施磷肥及水肥相互作用对磷扩散的影响的研究[J].土壤学报,1998,35(1):62-64.
    [63] Groenenberg J E,Reinds G. , Breeuwsma A A. Simulation of Phosphate leaching inCatchments with Phosphate Saturated Soils in the Netherlands[R] .Ageningen DLO Win and Staring Centre ,1996 ,Report No.116.
    [64] Schwab A P, Kulyingyong S. Changes in Phosphate Activities and Availability Indexes with Depth after 40 Years of Fertilization [J]. Soil Science, 1989, 147(3): 179-186.
    [65]刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报,2000,6(2):179-186.
    [66]樊军,郝明德,党廷辉.长期定位施肥对黑庐土剖面养分分布特征的影响[J].植物营养与肥料学报,2001,7(3):249-254.
    [67] Hesketh N, Brookes P C. Development of an indicator for risk of phosphorus leaching [J].Journal of Environmental Quality 2000 29:105-110.
    [68]吕家珑,Fortune S , Brookes P C.土壤磷淋溶状况及其Olsen磷“突变点”研究[J].农业环境科学学报,2003, 22(2):142-146.
    [69]晏维金,尹澄清,孙濮,等.磷、氮在水田湿地中的迁移转化及径流流失过程[[J].应用生态学报,1999,10(3):312-316.
    [70]鲁如坤,时正元,赖庆旺.红壤长期施肥养分的下移特征[J].土壤,2000,32(1):27-29.
    [71]杨学云,李生秀,BrookesPC.灌溉与早作条件下长期施肥l塿土剖面磷的分布和移动[J].植物营养与肥料学报,2004,10(3):250-254.
    [72] Elrashidi M A, Alva A K, Huang Y F, et al. Accumulation and Downward Transport of Phosphorus in Florida Soils and Relationship to Water Quality [J] . Communications in Soil Science and Plant Analysis. 2001, 32(19/20):3099-3119.
    [73] Faruk Djodjic, Katarina B?rling, Lars Bergstr?m. Phosphorus Leaching in Relation to Soil Type and Soil Phosphorus Content [J]. Journal of Environmental Quality. 2004. 33(2): 678-684
    [74] H. A. Elliott, G. A. O'Connor and S. Brinton.Phosphorus Leaching from Biosolids-Amended Sandy Soils [J].J. Environ. Qual. 2002. 31 (2): 681-689
    [75] Rory O. Maguire and J. Thomas Sims. Soil Testing to Predict Phosphorus Leaching [J]. J. Environ. Qual. 2002. 31(5): 1601-1609
    [76] Sims J T, Ewards A C, Schoumans O F and Simard R R. Integrating soil phosphorus testing into environmentally based agricultural manage-ment practices [J]. J. Environ. Qual., 2000, 29(1): 60-71
    [77] Heckrath, G. 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment [J]. J. Environ. Qual. 24:904–910.
    [78] Jennifer S. Butler and Frank J. Coale. Phosphorus Leaching in Manure-Amended Atlantic Coastal Plain Soils[J]. J. Environ. Qual. 2005. 34(1): 370-381
    [79] L. W. de Jonge, P. Moldrup, G. H. Rub?k, K. Schelde, J. Djurhuus. Particle Leaching and Particle-Facilitated Transport of Phosphorus at Field Scale [J]. Vadose Zone Journal. 2004, 3(2): 462-470.
    [80] Peter J. A. Kleinman, Brian A. Needelman, Andrew N. Sharpley, Richard W. McDowell.Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils[J].Journal of Environmental Quality. 2003. 67(1): 215-224
    [81] Catherine S M Ku, David R. Hershey. Growth response, nutrient leaching, and mass balance for potted poinsettia. II. Phosphorus [J]. J. Amer. Soc Hort. Sci, 122(3):459-464.
    [82] J. Liu, H. Aronsson, K. Blomb?ck, K. Persson, and L. Bergstr?m. Long-term measurements and model simulations of phosphorus leaching from a manured sandy soil [J]. Jornal of Soil and Water Conservation. 2012, 67(2): 101-110.
    [83]鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8.
    [84]张维理,武淑霞,冀宏杰,等.中国农业面源污染估计及控制对策Ⅰ21世纪初期中国农业面源污染的形式估计[J].中国农业科学,2004,37(7):1008-1017.
    [85] Sharpley A N, Foy B, Withers P. Practical and innovative measures for control of agricultural phosphorus losses to water: An overview [J]. J. Environ. Qual., 2000, 29(1): 1-9·
    [86]盛海君,夏小燕,杨丽琴,等.施磷对土壤有效磷含量及径流磷组成的影响[J].生态学报,2004,24(12):2837-2840.
    [87] Sims J T, Simard R R,Joem B C. Phosphorus loss in agricultural drainage: historical perspective and current research[J].Journal of Environmental Quality, 1998, 27: 277-293.
    [88] Haden V R, Ketterings QM, Kahabka J E. Factor’s affecting change in soil test phosphorusfollowingmanure and fertilizer application [J]. Soil Sci. Soc. Am. J., 2007, 71: 1225-1232·
    [89]杨胜天,程红光,步青松,等.全国土壤侵蚀量估算及其在吸附态氮磷流失量匡算中的应用[J].环境科学学报,2006,26(3):366-374.
    [90]晏维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报,2000,20(3):332-337.
    [91] Vadas P A, Kleinman P J A, Sharpley A N, Turner B L. Relating soil phosphorus to dissolved phosphorus in runoff: A single extraction coefficient forwater qualitymodeling [J]. J. Environ. Qual., 2005, 34(2): 572-580·
    [92] Cox F R, Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality [J]. J. Environ. Qual., 2000, 29 (5): 1582-1586.
    [93] Sharpley A N, Tunney H. Phosphorus research strategies tomeet agri-cultural and environmental challengesof 21st century [J]. J. Environ.Qual., 2000, 29(1): 176-181·
    [94] Kleinman P J A, Sharpley A N, Wolf A M et al.Measuring water-extractable phosphorus in manure as an indicator of phosphorus in runoff[J]. Soil Sci. Soc. Am. J., 2002, 66(6): 2009-2015.
    [95]张福锁等,协调作物高产与环境保护的养分资源综合管理技术研究与应用[M].北京:中国农业大学出版,2008.
    [96]河北省土壤普查办公室,河北省第二次土壤普查数据集,石家庄,1991.
    [97] **县农业局.**县耕地资源评价与利用[M].石家庄:河北人民出版社,2011.
    [98]顾益初.蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤.1990,22(2):101-102.
    [99]贾银锁,谢俊良主编.河北玉米[M].北京:中国农业科学技术出版社,2008.
    [100]王振华,张喜英,陈素英,等.不同年代冬小麦品种产量性状和生理生态指标差异分析[J].中国生态农业学报,2007,15(3):75-80.
    [101]中国农科院土肥所化肥网组.我国氮磷钾化肥的肥效演变和提高增产效益的主要途径[J].1986,土壤肥料,1:1-8.
    [102]林葆,林继雄,艾卫,等.有机肥与化肥配合施用的定位试验研究[J].土壤肥料,1985,5:22-27.
    [103]刘宜生,雷文,白纲义,等.大白菜配方施肥的技术方法及其应用效果[J].中国蔬菜,1986,3:18-21.
    [104]刘宗衡.关于氮磷钾化肥分配施用问题的探讨[J].河北农学报,1981,4:30-33.
    [105]金维续.有机-无机肥料配合施用研究的进展[J].土壤肥料,1984,2:8-10.
    [106]陈阜.吨粮田开发刍议[J].作物学杂志,1991,4:5-6.
    [107]陈国平.1991夏玉米简化栽培技术的研究[J].华北农学报,1991,6:3.
    [108]李丙申,丁春国,王英霄.小麦高产施肥技术指标和参数的研究[J].土壤肥料,1992,3:17-19.
    [109]李纯忠.1993吨粮田地力建设和施肥效益[J].土壤肥料,1993,1:1-4.
    [110]张文英,张庆江.冬小麦高产稳产的适宜氮磷营养基础与合理施肥技术[J].华北农学报,1993,8(3):76-81.
    [111]张玲敏.河北省施肥现状的评价[D].保定:河北农业大学,2002.
    [112]郑磊,杜森,马文奇,等.河北冬小麦和夏玉米施用化肥品种结构分析[J].磷肥与复肥,2005,20(2):15-18.
    [113]高利伟,马林,张卫峰,等.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009,25(7):173-179.
    [114]河北省秸秆综合利用率居全国前列[EB],2008-06-27,http://www.hebei.gov.cn/article/20080627/1009424.htm,2008-06-27.
    [115]马文奇.山东省作物施肥现状、问题与对策[D].北京:中国农业大学,1999.
    [116]赵久然,郭强,郭景伦,等.北京郊区粮田化肥投入和产量现状的调查分析[J].北京农业科学,2007,15(2):36-38.
    [117]陈新平,冀宏杰,张福锁.过量施用氮肥对北京市蔬菜硝酸盐含量影响的综合评价[A].李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[C].北京:中国农业大学出版社,2000,270-278.
    [118]王圣瑞,陈新平,高祥照,等.“3414”肥料试验模型拟合的探讨[J].植物营养与肥料学报,2002,8(4):409-413.
    [119]孙旭霞.廊坊市施肥状况的评价与对策研究[D].北京:中国农业大学,2005.
    [120]杨俊刚,贺建德,陈新平.北京市作物施肥现状调查与测土配方施肥建议[J].北京农业,2007,1:16-19.
    [121]宋海燕,叶优良,曲日涛.山东省粮食生产与化肥施用状况研究[J].中国农学通报,2005,21(9):38-41.
    [122]初明光,王激清,马文奇,等.山东省粮食作物的化肥施用状况分析[J].土壤肥料,2006,2:35-38.
    [123]马文奇.化肥产业关乎我国资源与可持续发展[J].中国农资.2006,9:16-17.
    [124]李家康,陈培森,沈桂琴,等.几种蔬菜的养分需求与钾素增产效果[J].土壤肥料,1997,3:3-7.
    [125]白纲义.京郊菜队土壤施肥特点[J].土壤肥料,1984,3:17-19.
    [126]王静绯,鞠建峰.地膜辣椒不同施肥方法与增产效应试验[J].北方园艺,1990,11:12.
    [127]孙秀廷,蒋佩弦,曾璧容,等.茄果类蔬菜的吸肥特性和施肥参数的研究[A].谢建昌,陈际型,等,编著.菜园土壤肥力与蔬菜合理施肥论文集[C],南京:河海大学出版社,1997,113-122.
    [128]贾继文,李文庆,陈宝成.山东省蔬菜大棚土壤养分状况及施肥现状的调查研究[A].谢建昌,陈际型,等,编著.菜园土壤肥力与蔬菜合理施肥论文集[C],南京:河海大学出版社,1997,73-76.
    [129]陈新平,张福锁.北京地区蔬菜施肥的问题与对策[J].中国农业大学学报,1996,1(5):63-66.
    [130]李凤溪,李春生,郝素霞,等.唐山市蔬菜施用钾肥的效果[A].谢建昌,陈际型,等,编著.菜园土壤肥力与蔬菜合理施肥论文集[C],南京:河海大学出版社,1997,191-195.
    [131]何英.蔬菜种植区农用化学品的投入及地下水的硝酸盐污染—以河北曲周为例[D].北京:中国农业大学,2003.
    [132]贾文竹,马利民,卢树昌,等编.河北省菜地、果园土壤养分状况与调控技术[M].北京:中国农业出版社,2007.
    [133]张真和,李建伟.我国蔬菜设施园艺的现状及可持续发展对策探讨[A].李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[C].北京:中国农业大学出版社,2000,1-7.
    [134]河北省农科院果树研究所.40亩苹果高额稳产的经验[J].河北农业,1960,1:23.
    [135]高竹林.参观山东省几处苹果高产园的几点收获[J].河北农业,1956,8:47-48.
    [136]中国农业全书(河北卷)[M].中国农业出版社,北京,1997年.
    [137]刁风贵,李波编.落叶果树营养与施肥[M].北京:农业出版社,1993.
    [138]姜远茂,张宏彦,张福锁主编.北方落叶果树养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    [139]刘侯俊.陕西省和北京市主要作物施肥现状与评价[R].北京:中国农业大学,2001.
    [140]任丘市果园低产园技术改造取得成效[J].河北果树.1990,2:5-6.
    [141]苹果6-10年生熟亩产两千公斤规范化栽培技术[J].河北果树,1994,2:8-11.
    [142]辽宁果树研究所编.果园土壤管理与施肥技术[M].沈阳:辽宁科学出版社,1991.
    [143]张四代,张卫峰,王利,等.我国黄淮海地区省市化肥供需状况及其调控策略[J].磷肥与复肥,2008,23(2):8-11.
    [144]孟月华.平谷桃园养分投入特点及其推荐施肥系统的建立[D].北京:中国农业大学,2006.
    [145]刘子龙,张广军,赵政阳,等.陕西苹果主产区丰产果园土壤养分状况的调查[J].西北林学院学报,2006,21(2):50-53.
    [146]鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1):4-8.
    [147] Eriksson, J., A. Andersson, and R. Andersson. 1997. Current status of Swedish arable soils[R] (In Swedish.) Rep. 4778. Swedish Environ. Protection Agency, Stockholm
    [148] K. Y. Chan, C. G. Dorahy, S. Tyler, A. T. Wells, P. P. Milham, I. Barchia.Phosphorus accumulation and other changes in soil properties as a consequence of vegetable production, Sydney region, Australia[J]. Soil Research 2007, 45(2) :139–146
    [149] Yibing Ma, Jumei Li, Xiuying Li, Xu Tang,Yongchao Liang, Shaomin Huang, Boren Wang,Hua Liu, Xueyun Yang. Phosphorus accumulation and depletion in soils in wheat–maize cropping systems: Modeling and validation [J]. Field Crops Research. 2009, 110(3): 207–212
    [150] Xu Tang, Jumei Li, Yibing Ma, Xiying Hao, Xiuying Li.Phosphorus efficiency in long-term (15 years) wheat–maize cropping systems with various soil and climate conditions [J]. Field Crops Research.2008. 108(3), 231–237.
    [151] Lijuan Yang, Tianlai Li, Fusheng Li & Jorge Hugo Lemcoff.Long-Term Fertilization Effect on Fraction and Distribution of Soil Phosphorus in a Plastic-Film House in China[J]. Communications in Soil Science and Plant Analysis. 2010. 42(1), 1-12
    [152] Hochmuth, G.J., E. Hanlon, B. Hochmuth, G. Kidder, and D. Hensel. 1993b. Field fertility research with P and K for vegetable interpretations and recommendations [J]. Soil Crop Sci. Soc. Fla. Proc. 52:95–101.
    [153] Hochmuth, G.J., E.A. Hanlon, and J. Cornell. 1993a. Watermelon phosphorus requirements in soils with low Mehlich-1 extractable phosphorus [J]. HortScience 28:630–632.
    [154] Locascio, S.J., A.G. Smajstrla, and M.R. Alligood. 1996. Nitrogen requirements of drip-irrigated tomato [J]. Proc. Fla. State Hort. Soc. 109:146–149.
    [155] Brent K. Harbaugh, David A. DeVoll, R. Zalewski. Phosphorus Fertilization for Caladium Tuber Production on Organic Soil [J]. HortTechnology. 2000 10(1): 169-171.
    [156] Rhoads, F.M., E.A. Hanlon, S.M. Olson, and G.J. Hochmuth. 1990. Response of snapbean to N rates and soil-test P and K[J]. Soil Crop Sci. Soc. Florida. Proc. 49:10–13.
    [157] Rhue, R.D. and P.H. Everett. 1987. Response of tomatoes to lime and phosphorus on a sandy soil[J]. Agron. J. 79:71–77.
    [158] Shuler, K. and G. Hochmuth. 1995. Field tests of phosphorus fertilization of tomato growing in high P soils in Palm Beach County, Florida [J]. Proc. Fla. State Hort. Soc. 108:227–232.
    [159] Staphanie C Hamel, Joseph R Heckman. 2006. Predicting Need for Phosphorus Fertilizer by Soil Testing During Seeding of Cool Season Grasses [J]. HortScience, 41(7):1690-1697.
    [160] Osmar Alves Carrijo, George Hochmuth Tomato Responses to Preplantincorporated or Fertigated Phosphorus on Soils Varying in Mehlich-1 Extractable Phosphorus [J]. HortScience, 35(1):67–72. 2000
    [161] H. Li, G. Huang, Q. Meng, L. Ma, L. Yuan, F. Wang, W. Zhang, Z. Cui, J. Shen and X. Chen, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review [J]. Plant and Soil. 349(1-2): 157-167,
    [162] Xiying Hao, Frauke Godlinski and Chi Chang.Distribution of Phosphorus Forms in Soil Following Long-term Continuous and Discontinuous Cattle Manure Applications[J]. Soil Science Society of America Journal.2006, 72 No. 1, p. 90-97.
    [163]张作新,廖文华,刘建玲,等.过量施用磷肥和有机肥对土壤磷渗漏的影响[J].华北农学报,2008,23(6):189-194.
    [164]张作新,刘建玲,廖文华,等.磷肥和有机肥对不同磷水平土壤磷渗漏影响研究[J].农业环境科学学报.2009,28(4):729-735.
    [165]张海涛,刘建玲,廖文华.磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响[J].植物营养与肥料学报,2008,7(2):284-290.
    [166]王道涵,梁成华,孙铁衍,等.磷素在土壤中的垂直迁移潜力研究[J].农业环境科学学报.2005,24(6):1157-1160.
    [167]连纲,王德建,静慧,等.太湖地区稻田土壤养分淋洗特征闭[J].应用生态学报,2003,14(11):1879-1883..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700