用户名: 密码: 验证码:
联合收割机负荷控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个农业大国,社会经济对粮食生产中的收获质量、效率有很高要求。目前,联合收割机在我国农业生产中已逐步普及,有效提高了工作效率、减少了谷物损失。但跨区机收作业中,联合收割机特性会因工况的差异而变化。如不能及时调整工作状态,将导致作业效率下降,故障率上升,机械损耗加剧,严重时可能损坏机器。联合收割机特性复杂,人工控制无法获得良好的控制效果,因此须设计收割机总体负荷自动控制装置,根据实际工况自动控制其收割速度,保证联合收割机总体负荷处于最佳状态。
     本课题来源于十一五国家科技支撑计划项口“多功能农业装备与设施研制”(2006BAD11A03),以设计制作联合收割机负荷控制系统为目标,对收割机特性、控制算法、控制器软硬件设计等相关领域进行研究,设计了负荷控制算法和装置,并进行大量试验。试验结果表明所设计的控制算法及控制器能根据联合收割机的不同工况及时调整控制参数,在保证高作业质量的前提下大幅度提高作业效率。主要内容围绕以下工作展开:
     1)为了研究联合收割机的特性,检验各类算法的控制效果,建立了联合收割机整机计算机仿真模型。选择具有代表性的碧浪4LZ2.0型履带式全喂入横置轴流滚筒联合收割机为研究对象,分析其重要部件如柴油发动机、HST、V型传动带、割台、作物输送器、脱粒滚筒、清选筛、输粮搅龙等的工作原理和特性,建立各部件的动力学模型和作物运动模型。根据收割机结构有机整合各子系统模型,构成联合收割机整机数学模型。在Simulink软件环境下设计了收割机计算机仿真模型,对收割机的各种稳态特性、扰动瞬态响应进行研究。结果表明,联合收割机的内部参数漂移和外部扰动对其工作状态有明显的影响,而且会随作业时间、作业对象的变化而变化,难以精确获取。总之,联合收割机系统存在着严重的非线性和时变性,不仅模型阶次高,而且是典型的大惯性、纯延迟系统。
     2)为加快研究进度,降低研发成本,克服实车试验所受的各种制约,研究、设计了联合收割机半实物仿真模型,用以模拟联合收割机的各种工况,实现对负荷控制器实物的试验测试。通过仿真适配器接收控制器实物发出的控制信号,模型计算机根据数学模型获得各环节的响应,再由仿真适配器输出,模拟传感器检测信号作为控制器反馈。利用相同信号控制联合收割机实车和半实物仿真模型进行对比试验,试验表明半实物仿真模型具有与实车相似的特性,可以在很大程度上模拟收割机的作业过程,实现对负荷控制器实物的实时仿真。
     3)针对收割机高阶非线性、参数漂移、特性复杂的问题,设计了基于RBF神经网络的自适应负荷控制器。利用RBF网络在线辨识收割机特性参数,以此为基础构成逆模型控制器对收割机进行控制。多种工况条件下的计算机仿真试验表明,控制器对系统参数漂移具有一定适应能力,在不同工况条件下获得较好的控制效果。
     4)为了解决收割机大惯性、存在纯延时环节等问题,同时基于对其外部扰动的研究,设计了负荷-车速串级控制器。分别利用单神经元PID技术和直接广义预测控制技术设计了车速控制器和负荷控制器。计算机仿真试验表明,引入车速副回路有效提高了系统工作频率,强化了对系统内部参数、外部扰动的适应能力,获得良好的控制效果。
     5)基于上述研究内容,设计了嵌入式联合收割机负荷控制器,并利用半实物仿真模型和4LZ2.0型联合收割机实车进行大量试验,试验结果表明控制器能够达到设计要求,可实现收割机总体负荷的自动控制,获得较好的作业质量和作业效率。
Agriculture occupies an important position in China. The social told the grain production a higher request in the high harvest quality and efficiency. With the popularity of combine, the efficiency is improved and the grain loss is reduced. But in the process of trans-regional harvest, the combine's characteristics will change because of the different conditions. If operators can not timely adjust the combine's state, working efficiency will drop, failure rate will rise and the mechanical consumption will aggravate. In severe cases, the combine will be damaged. Combine is a complex system. Artificial control can't get a good control effect. Therefore, overall load control device must be designed to control the harvest speed automatically and keep the best state of combine.
     This research originates from the project in the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period(2006BAD11A03). The final purpose of this paper is designing a combine load control system. For this reason, we extensive research the combine's characteristics, control algorithm, and the design of controller's software and hardware, etc. And we carried out a lot of test. Test shows that the control algorithm and the controller can adjust its control parameters according to conditions. The working efficiency is improved greatly based on the premise of keeping high working quality. Main contents focus in the work followed.
     1) In order to study the the combine's characteristics, inspect the control effect of algorithm, a computer simulation model of combines is designed. In the study, Bilang 4LZ2.0 combine, a crawler-type full-feeding transverse axial flow threshing cylinder harvester is choiced because of its representativeness. Each subsystem's working principle and characteristics are studied, such as the diesel engine, HST, transmission belt, header, crops conveyor, threshing cylinder, selected sieve, screw conveyor, etc. Their dynamical models and crop movement models are set up respectively. Furtherly, according to the combine's whole structure, all subsystem models are integrated judiciously, and the overall model of the combine is constituted. Based on this, a computer simulation model of combines is designed using Simulink. Kinds of steady characteristics and disturbance transient response of the combine are studied. Research shows that combined harvesters have serious nonlinear, and its model order is high, there are large inertia and pure delay links. Many parameters of the combine will change slowly. These parameters can't be identified accurately.
     2) In order to verify the effectiveness of the load control system, we have to carry out a lot of test under kinds of conditions. For the reason of speeding up the research progress and reducing the cost of research and development, a hardware-in-the-loop simulation model of combines is designed to simulate conditions in the test of load controller object. In the hardware-in-the-loop simulation, the emulation adapter receives control signals from the real controller. The mathematical model in the computer calculates the response of the combine. Then the emulation adapter outputs the response to the controller as feedback. A contrast test between the real combine and the hardware-in-the-loop simulation model is carryed out. A control signal is input to them. Test shows that the characteristics of the hardware-in-the-loop simulation model and the real combine are similar. The model can largely simulate the combine.
     3) To solve the problem of higher order, nonlinear, parameter drift, a load adaptive controller based on RBF neural network is designed. The characteristic parameters of combines are identified online by RBF network. An inverse model controller is constituted based on these parameters. The computer simulation test under different conditions showed that the controller can adapt to the parameter drift in a certain degree, and get a better control effect.
     4) In order to solve the large inertia, pure delay, and based on the research of external disturbances, a load-speed cascade controller is designed. A single neurons PID speed controller and a direct generalized predictive control load controller are designed to control the speed and the load respectively. The computer simulation test showed that the system frequency is improved by the speed controller. The controller can adapt the parameter drift and the disturbances, and get a very good control effect.
     5) An embedded combine load controller is designed based on the research above. The real-time simulation and field test on the 4LZ2.0 combine is carried out. The test showed that the controller can achieve the designed goals. It can control the overall load automatically, and achieve good working quality and working efficiency.
引文
[1]付亚平,王旭.浅谈我国水稻收获机械现状及推广前景[J].现代化农业.2005(1):34-35.
    [2]易中懿.2007年中国农业机械化年鉴[M].北京:中国农业科学技术出版社.2008.3.
    [3]Jun-ichi Sato, Kazuto Shigeta, Yoshisada Nagasaka. Automatic Operation of a Combined Harvester in a Rice Field[J]. Proceedings of the 1996 IEEE ISICEIRSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems.1996
    [4]李馨,田玉英,赵巍.我国水稻联合收获机械的现状及发展对策.农机化研究.2004(5):39-40.
    [5]工振成,工立盛,宋世雄.水稻联合收割机应用效益分析[J].农业科技与装备.2008(3):90-91.
    [6]易金根,王勇,江向阳.联合收割机的模糊综合评判[J].农业机械学报.2000,31(1):45-47.
    [7]韩建志,范淼,黄海.浅析联合收割机收获损失的影响因素[J].现代化农业.2006(7):34-35.
    [8]John V.Stafford. Implementing Precision Agriculture in the 21st Century[J]. J.agric.Engng Res.2000,76:267-275.
    [9]Wang Maohua. Possible adoption of precision agriculture for developing countries at the threshold of the new millennium[J]. Computer and Electronics in Agriculture. 2001,30:45-50.
    [10]D.L.Schmoldt. Precision agriculture and information technology[J]. Computers and Electronics in Agriculture.2001,30:5-7.
    [11]Zhang Naiqian, Wang Maohua, Wang Ning. Precision agriculture—a worldwide overview[J]. Computers and Electronics in Agriculture.2002,36:113-132.
    [12]邝朴生,刘刚,邝继双.精细农业技术体系初探[J].农业工程学报.1999,19(3):1-4.
    [13]Mikko Miettinen, Matti Ohman, Arto Visala, et al. Simultaneous Localization and Mapping for Forest Harvesters[J].2007 IEEE International Conference on Robotics and Automation.2007
    [14]贾科利,常庆瑞,张俊华,等.信息农业现状与发展趋势[J].西北农林科技大学学报(社会科学版).2003,6(3):13-17.
    [15]张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J].农业机械学报.2002,33(6):125-128.
    [16]Yoshisada Nagasaka, Katsuhiko Tamaki, Kentaro Nishiwaki, et al. Autonomous rice field operation project in NARO[J]. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation.2011.
    [17]P.Reitz, H.D.Kutzbach. Investigations on a particular yield mapping system for combine harvesters[J]. Computers and Electronics in Agriculture.1996(14):137-150.
    [18]Wang Ning, Zhang Naiqiang, Wang Maohua. Wireless sensors in agriculture and food industry—Recent development and future perspective [J]. Computer and Electronics in Agriculture.2006,50:1-14.
    [19]P.Reyns, B.Missotten, H.Ramon, et al. A Review of Combine Sensors for Precision Farming[J]. Precision Agriculture,2002(3):169-182.
    [20]Nobutaka Ito. Agricultural Robots in Japan[J]. IEEE International Workshop on Intelligent Robots and Systems. IROS'90.
    [21]Yang Mingjin, Yang Ling, Li Qingdong, et al. Agricultural mechanization system of rice production of Japan and proposal for China[J]. Transactions of the CSAE. 2003,19(5):77-82.
    [22]张认成,桑正中,张际先.联合收割机自动控制研究现状与展望[J].江苏理工大学学报.1998,19(2):11-15.
    [23]陈进.基于多传感器信息融合技术的联合收割机测控系统[D].江苏:江苏大学.2005.4.
    [24]王琦.谷物联合收割机测产系统智能监视器研究[D].北京:中国农业大学.2005.6.
    [25]刘寒冰,漆东勇,马少华,等.收割机液压系统状态监测及故障诊断装置的研制[J].农业工程学报.1999,15(3):156-160.
    [26]介战,刘红俊,侯凤云.中国精准农业联合收割机研究现状与前景展望[J].农业工程学报.2005,21(2):179-182.
    [27]裘正军.基于GPS. GIS及虚拟仪器的精细农业信息采集与处理技术的研究[D].浙江:浙江大学.2003.5.
    [28]魏新华,李耀明,陈进,等.联合收割机工作过程智能监控装置的系统集成[J].农业工程学报.2009,25(增刊2):56-60.
    [29]T. Coen, A. Vanrenterghem, W. Saeys, et al. Autopilot for a combine harvester[J]. computers and electronics in agriculture.2008(63):57-64.
    [30]介战,貌建华,万庆,等.联合收割机喂入量自适应控制液压系统[J].中国农机化.2002(1):38-39.
    [31]Qiu Ying, Liu Hui, Song Zhenghe, et al. design of agricultural equipment CAB based on virtual reality[J]. International Conference on Advanced Technology of Design and Manufacture 2010.2010.
    [32]王站兴,吴利谦.收获机械电子监控装置的研制[J].拖拉机与农用运输车2003(3):44-45.
    [33]高巍,陈进,李耀明.作物高度自动测量装置的研制[J].农机化研究.2004(7):114-116.
    [34]李庆中,高玉根,张道林,等.谷物含水率在线测试系统的研究[J].农业机械学报.1995,26(3):80-84.
    [35]Zhou Yuan, Liu Mingshan, Zhang Zida, et al. Research on Application of Fuzzy Neural Network in Combine Harvester [J]. Fifth International Conference on Fuzzy Systems and Knowledge Discovery.2008
    [36]张淑红,陈进.联合收割机自动报警系统的设计[J].农机化研究.2002(3):72-74.
    [37]Yangmin Xie, Andrew GAlleyne. Fundamental Limits in Combine Harvester Header Height Control[J].2011 American Control Conference.2011.
    [38]陈进,张淑红,李耀明,等.梳脱台高度自动控制系统建模与计算机仿真[J].农业工程学报.2003,19(6):110-113.
    [39]陈进,张淑红,李耀明.联合收获机梳脱台高度自动控制系统的设计[J].农 业机械学报.2003,34(6):65-67.
    [40]陈进,李智文,李耀明.梳脱式联合收割机脱粒与输送装置模糊控制系统[J].农机化研究.2003(4):60-62.
    [41]李耀明,丁为民,陈进.梳脱式联合收获机脱粒输送装置自动控制系统[J].农业机械学报.2004,35(5):86-89.
    [42]Geert Cracssaerts, Josse de Baerdemaeker, Bart Missotten, et al. Fuzzy control of the cleaning process on a combine harvester[J]. biosystems engineering.2010(1):1-9.
    [43]G.T.Lopes, P.S.G.Magalhaes, E.G.O.Nobrega. Optimal Header Height Control System for Combine Harvesters[J]. Biosystems Engineering.2002,81(3):261-272.
    [44]T. Coena, W. Saeysa, B. Missottenb, et al. Cruise control on a combine harvester using model-based predictive control[J]. BIOSYSTEMS ENGINEERING. 2008(99):47-55.
    [45]黄荣镰.模糊神经网络在联合收割机脱粒滚筒角速度控制中的应用[D].吉林:吉林大学.2007.4.
    [46]季彬彬.基于模糊神经网络的联合收割机喂入量预测系统研究[D].江苏:江苏大学.2005.6.
    [47]汤碧翔.基于ARM9嵌入式系统的联合收割机负荷反馈控制系统的研究[D].江苏:江苏大学.2009.6.
    [48]张恬.基于ARM-Linux嵌入式系统的联合收割机负荷反馈控制平台的设计[D].江苏:江苏大学.2009.6.
    [49]赵建波.智能联合收割机负荷反馈控制系统的研究[D].江苏:江苏大学.2010.6.
    [50]Jim Kruse. Computer Controls for the Combine[J]. Agricultural Engineering. 1983,64(2):7-9.
    [51]M.J.Leflufy, GT Stone. Speed Control of A Combine Harvester to Maintain a Specific Level of Measured Threshing Loss[J]. Agricultural Engineering Research. 1983,28(6):537-543.
    [52]M.B.Mcgechan. The Benefit of Different Speed Control System for Combine Harvesters[J]. Agricultural Engineering Research.1982,27(2):163-174.
    [53]李国栋,李勇智,张际先,等.联合收割机脱粒滚筒的PID恒速控制[J].农业机械学报.2000,31(1):48-50.
    [54]Chen Jin, Zheng Shiyu, Lv Shijie, et al. Research of Predictive System for Feed Quantity of Combine Based on Fuzzy Neural Network [J].2011 Eighth International Conference on FSKD.2011
    [55]袁文胜,师帅兵,杨忠平,等.联合收割机行走速度自动控制系统的设计[J].农机化研究.2006(7):107-109.
    [56]介战,朱永宁,李建朝,等.谷物联合收割机喂入量测试装置[J].农牧与食品机械.1994(6):12-14.
    [57]W.H.Kotyk, T.G.Kirk, N.D.Klassen, et al. Control system for combine harvesters[J]. WESCAN.1991:96-102.
    [58]陈进,李耀明,季彬彬.联合收获机喂入量测量方法[J].农业机械学报.2006,37(12):76-78.
    [59]介战,周学健.喂入量传感器测试模型研究[J].农业机械学报.2001,32(5):53-55.
    [60]卢文涛,张东兴,邓志刚.联合收获机脱粒滚筒的PID恒负荷控制[J].农业机械学报.2008,39(5):49-51.
    [61]潘静,邵陆寿,王轲.水稻联合收割机喂入密度检测方法[J].农业工程学报.2010,26(8):113-116.
    [62]张晓东,毛罕平,倪军,等.作物生长多传感信息检测系统设计与应用[J].农业机械学报.2009,40(9):164-170.
    [63]张认成,桑正中.轴流脱粒滚筒模糊控制仿真[J].农业机械学报.2001,32(2):45-48.
    [64]李国栋,韩金仓,桑正中.联合收割机脱粒滚筒恒速智能控制器设计[J].控制工程.2007,14(2):154-156.
    [65]姬江涛,王荣先,符丽君.联合收获机喂入量灰色预测模糊PID控制[J].农业机械学报.2008,39(3):63-66.
    [66]倪军,毛罕平,程秀花.基于FPGA的联合收获机脱粒滚筒模糊控制系统[J].农业机械学报.2009,40(7):83-87.
    [67]介战,陈家新,刘红俊.GPS联合收获机随机喂入量模糊控制技术[J].农业机械学报.2006,37(1):55-58.
    [68]Tom Coen, Johan Paduart, Jan Anthonis, et al. Nonlinear system identification on a combine harvester[J]. Proceedings of the 2006 American Control Conference.2006.
    [69]潘兴文,邱白晶,王光亮.联合收割机的模糊控制探讨[J].江苏理工大学学报(自然科学版).1999,20(4):25-27.
    [70]孟繁昌,庞风斌,叶耘,等.联合收获机水稻收获性能对比试验[J].农业机械学报.2005,36(5):141-143.
    [71]介战.喂入量智能监控系统田间装机试验[J].农业系统科学与综合研究.2002,18(1):38-40.
    [72]M.A.Neale, R.N.Hobson, J.S.Price, et al. Effectiveness of Three Types of Grain Separator for Crop Matter harvested with a Stripping Header[J]. Biosystems Engineering.2003,84(2):177-191.
    [73]D.C.Baruah, B.S.Panesar. Energy Requirement Model for a Combine Harvester, Part Ⅰ:Development of Component Models[J]. Biosystems Engineering. 2005,90(1):9-25.
    [74]D.C.Baruah, B.S.Panesar. Energy Requirement Model for Combine Harvester, Part 2:Integration of Component Models[J]. Biosystems Engineering. 2005,90(2):161-171.
    [75]卡那沃依斯基Cz.收获机械[M].曹崇文等译.北京:中国农业机械出版社.1983.
    [76]赵匀.试论联合收割机的脱粒滚筒的动力平衡问题[J].农业机械学报.1984(4):34-45.
    [77]Petre I.Miu, Heinz-Dieter Kutzbach. Mathematical model of material kinematics in an axial threshing unit[J]. Computers and Electronics in Agriculture. 2007,58:93-99.
    [78]张认成,桑正中.轴流脱粒滚筒功耗模型的研究[J].农业工程学报.1999,15(4):121-125.
    [79]李杰,阎楚良,杨方飞.纵向轴流脱粒装置的理论模型与仿真[J].江苏大学 学报(自然科学版).2006,27(4):299-302.
    [80]杨方飞,阎楚良.谷物在纵向轴流滚筒脱粒空间中的运动状态分析[J].农业机械学报.2008,39(11):48-50.
    [81]张认成,张英堂,桑正中.联合收割机智能控制仿真器设计[J].农机化研究.2001(2):49-52.
    [82]K.Maertens, J.De Baerdemaeker, H.Ramon, et al. An Analytical Grain Flow Model for a Combine Harvester,Part Ⅰ:Design of the Model[J]. J. agric. Engng Res. 2001,79(1):55-63.
    [83]K.Maertens, J.De Baerdemaeker, H.Ramon, et al. An Analytical Grain Flow Model for a Combine Harvester,Part Ⅱ:Analysis and Application of the Model[J]. J. agric. Engng Res.2001,79(2):187-193.
    [84]X.Shao, A.M.Reinhorn. Development of a Controller Platform for Force-Based Real-Time Hybrid Simulation[J]. Journal of Earthquake Engineering. 2012,16(2):274-295.
    [85]谢宗武,孙奎,魏然,等.空间机器人半实物仿真系统的研究[J].系统仿真学报.2009,21(11):3277-3279.
    [86]王刚,黄飞,乔纯捷,等.基于以太网的鱼雷声自导电信号半实物仿真系统[J].兵工学报.2009,30(5):567-571.
    [87]冯杰,费元春,曹俊,等.导弹无线电引信半实物仿真系统设计[J].系统仿真学报.2008,20(14):3692-3965.
    [88]刘波,张王己,罗飞路,等.汽车防抱制动系统自适应滑模控制算法的研究和半实物仿真[J].国防科技大学学报.2008,30(5):125-130.
    [89]汤健,柴天佑,片锦香,等.工业过程智能优化控制半实物仿真实验平台[J].东北大学学报(自然科学版).2009,30(11):1150-1153.
    [90]徐立章,李耀明,张立功,等.轴流式脱粒-清选装置试验台的设计[J].农业机械学报.2007,38(12):85-88.
    [91]K.Maertens, J.De Baerdemaeker. Design of a virtual combine harvester[J]. Mathematics and Computers in Simulation.2004(65):49-57.
    [92]耿端阳,张铁中,罗辉,等.我国农业机械发展趋势分析[J].农业机械学报.2004(4):208-210.
    [93]华南农学院农机教研室.水稻联合收割机原理与设计[M].北京:中国农业机械出版社.1968.5.
    [94]朱仙鼎.中国内燃机工程师手册[M].上海:上海科学技术出版社.2000.9.
    [95]膝万庆.柴油机调速新技术[M].黑龙江:哈尔滨工程大学出版社.2000.3.
    [96]朱辉,王丽清,程昌圻.用于控制分析的柴油机动态模型[J].内燃机学报.1999,17(3):211-218.
    [97]孙成通.液压传动[M].北京:化学工业出版社.2005.8.
    [98]Xu Liyou, Zhou Zhili, Cao Qingmei, et al. Study on Matching Strategies and Simulation of Hydro-mechanical Continuously Variable Transmission System of Tractor [J]. ICICTA 2010.2010.
    [99]张永建,周孔亢.拖拉机用HST的传动特性分析[J].拖拉机与农用运输车.2003(2):11-13.
    [100]Zhang Mingzhu, Zhou Zhili, Xu Liyou. Efficiency analysis of an innovative multi-range hydro-mechanical continuously variable transmission[J]. ICAL'09.2009.
    [101]田晋跃,于英.车辆静液压传动特性研究[J].农业机械学报.2002,33(4):32-34.
    [102]杜玖玉,苑士华,邹云飞.车用液压机械基本传动形式及特性研究[J].机床与液压.2008,36(9):214-216.
    [103]胡纪滨,苑士华.液压机械无级传动的特性研究[J].机械设计.2000(4):28-30.
    [104]张明柱,周志立,徐立友,等.拖拉机多段液压机械无级变速器的动力学建模及仿真[J].西安理工大学学报.2006,22(3):269-273.
    [105]Saber Abd Rabbo, Tarek Tutunji. Identification and analysis of hydrostatic transmission system[J]. Int J Adv Manuf Technol,2008(37):221-229.
    [106]K.Sanada. A Study on a Full-electric Control System of a Hydro Static Transmission for Construction Machines[J]. SICE Annual Conference in Sapporo, 2004(8):561-565.
    [107]苑士华,魏超,胡纪滨.排量伺服系统对液压机械无级变速器动态特性的影响[J].农业机械学报.2008,39(7):27-31.
    [108]蒋丽敏.机械传动[M].北京:中国农业机械出版社.1983.1.
    [109]华中农学院.拖拉机汽车学第四册拖拉机理论[M].北京:农业出版社1964.3.
    [10]周汉林,黄雄辉,邹诗洋,等.履带式联合收割机行走装置的研究[J].现代农业装备.2006(5):47-19.
    [111]张认成,桑正中.联合收割机轴流脱粒过程的动力学仿真[J].农业机械学报.2001,32(3):58-60.
    [112]张认成,桑正中.轴流脱粒空间谷物运动仿真研究[J].农业机械学报.2000,31(1):55-57.
    [113]张认成,桑正中.轴流脱粒过程的动力学仿真研究[J].农业现代化研究.2001,22(2):111-114.
    [114]张认成,桑正中.轴流脱粒空间谷物动力学仿真[J].农机化研究.2000(4):36-40.
    [115]李林,郭晓剑,夏国英.新疆-4联合收割机卸粮搅龙的设计[J].新疆农机化.2006(2):18-19.
    [116]王继伟,于文娟,姜元志,等.螺旋输送器的类型及输送机理分析[J].粮油加工.2010(7):158-160.
    [117]胡勇克,戴莉莉,皮亚南.螺旋输送器的原理与设计[J].南昌大学学报(工科版).2000,22(4):29-33.
    [118]秦云,赵德安,张超,等.联合收割机负荷控制半实物仿真平台的设计[J].农业工程学报.2011,27(1):142-147.
    [119]苑士华,魏超,张银彩.液压机械无级变速器动态特性的影响因素研究[J].农业工程学报.2008,24(2):33-37.
    [120]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社.2009.1.
    [121]肖卫国,尔联洁.非线性控制系统半实物仿真技术研究[J].系统仿真学报.2003,15(1):93-95.
    [122]刘金琨.智能控制[M].北京:电子工业出版社.2005.5.
    [123]姬晓飞,中东日,陈义俊.基于改进的RBF神经网络在线辨识算法及其应用[J].计算机仿真.2003,20(11):61-63.
    [124]王德文,李智录,卢瑞章.RBF神经网络在线学习方式及其在大坝位移监 测中的应用[J].西北农林科技大学学报(自然科学版).2006,34(12):226-230.
    [125]黄红梅,胡寿松.基于在线学习RBF神经网络的故障预报[J].南京航空航天大学学报.2007,39(2):249-252.
    [126]徐庆宏,戴先中.基于在线学习RBF神经网络的汽门开度自适应补偿控制方法[J].电机与控制学报.2010,14(2):13-19.
    [127]郑夕健,张国忠,谢正义.一种RBF神经网络高精度算法研究及应用[J].东北大学学报(自然科学版).2009,30(9):1314-1317.
    [128]潘磊,王伟智.基于免疫的RBF网络在线学习算法研究[J].福州大学学报(自然科学版).2008,39(增刊):27-30.
    [129]W.E Wong, V.Debroy, R.Golden, et al. Effective Software Fault Localization Using an RBF Neural Network [J]. IEEE Transactions on Reliability. 2012,61(1):149-169.
    [130]秦云,赵德安,李发忠,等.基于RBF网络的联合收割机脱粒滚筒恒速控制[J].农业机械学报.2009,40(11):59-63.
    [131]张静,裴雪红.基于RBF在线辨识的PID整定[J].电机与控制学报.2009,13(增刊1):157-160.
    [132]何衍庆,俞金寿,蒋慰孙.工业生产过程控制[M].北京:化学工业出版社.2004.3.
    [133]秦云,赵德安,张军.联合收割机双闭环负荷控制系统的设计[J].机械工程学报.2012,48(1):165-172.
    [134]Qin Yun, Zhao Dean, Ji Wei. Combines speed servocontrol based on gray generalized predictive algorithm[J]. CMCE2010.21-24.
    [135]Qin Yun, Zhao Dean, Ji Wei. Combines speed servocontrol based on RBF[J]. ACAM2011.225-226.
    [136]Qi Shufen, Wang Guodong. PID Controll of Single Neuron for Switched Reluctance Motors Based on RBF Neural Network[J]. Advanced Materials Research. 2011,389(11):6948-6952.
    [137]高永琪,安士杰,孔德永.基于单神经元自适应PID控制的共轨压力控制研究[J].武汉理工大学学报(交通科学与工程版).2007,31(5):804-806.
    [138]王洪瑞,陈志旺,李建雄.非线性系统参数自适应直接广义预测控制[J].自动化学报.2007,33(10):1110-1114.
    [139]张龙,陈志兴,张绍鹏.参数未知系统直接广义预测控制[J].计算机仿真.2008,25(7):90-93.
    [140]郭振凯,宋召青,毛剑琴.基于最小二乘支持向量机的非线性广义预测控制[J].控制与决策.2009,24(4):520-525.
    [141]Fabian A.Lara-Molina, Joao M.Rosario, Didier Dumur. Generalized Predictive Control of Parallel Robots[J]. Robot Motion and Control 2011.2011.
    [142]Lee Y I, Kouvaritakis B, Canon M. Constrained receding horizon predictive control for nonlinear systems[J]. Automatica.2002,38(11):2093-2102.
    [143]孙天泽,袁文菊,张海峰.嵌入式设计及Linux驱动开发指南—基于ARM9处理器[M].北京:电子工业出版杜.2005.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700