用户名: 密码: 验证码:
变权模型在城市工程地质环境质量评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为城市工程地质环境质量评价引入了一种新的评价模型。由于地质环境对工程建设的敏感性目前难以做出定量预测,工程地质环境质量评价一般通过构建合理的评价指标体系和确定权重来实现。城市工程地质环境质量传统评价方法中,指标权重确定后,无论各指标值如何变化,指标权重值总是固定不变,无法反映各项指标内部差异性对城市工程地质环境质量的整体性影响,进而影响评价结果的客观公正性。为此,将变权原理引入城市工程地质环境质量评价中。
     城市工程地质环境质量变权综合评价主要包括以下几个步骤:(1)根据城市工程地质环境特点及评价精度要求,构建郑州市区工程地质环境质量评价指标体系,并对评价指标进行等级划分;(2)根据城市工程地质环境质量评价指标体系,求出基础权重,也称“常权权重”;(3)运用MAPGIS图形处理模块将收集的评价指标数据,进行矢量化处理,再经过信息提取、赋值、缓冲区分析和DTM等处理过程,获得评价所需的具有新空间特征和新属性关系的单项指标栅格数据图层,并对它们统一坐标系统和投影方式,统一研究区域边界,建立评估指标体系数据库,同时对指标数据进行标准化处理及网格化剖分;(4)根据城市工程地质环境特点及评价精度要求,通过构建强惩罚—激励型状态变权函数对常权权重进行重新分配,求出基本评价单元的变权权重;(5)以栅格点状单元和矢量面状单元相结合,利用MATLAB关联变权综合评价模型,求出基本评价单元的综合评价值,然后再运用MAPGIS将属于同一工程地质环境质量等级的相邻评价单元合并,得到城市工程地质环境质量综合评价分区图。
     将变权综合评价模型应用于郑州市区工程地质环境质量评价,取得了如下认识和进展:
     1.在深入分析研究区工程地质环境特点的基础上,选取地形地貌、水文条件、工程地质条件、工程地质环境问题、地质灾害及人类影响6个影响城市工程地质环境质量的因素作为该评价系统的一级评价指标。再分别选取地貌单元、坡度、地面标高、地下水埋深、距地表水体的距离、地基持力层厚度、地基岩土体的均匀性、地基承载力、黄土湿陷性、砂土液化、软土层厚度、距活动断层的距离、地质灾害、地下水漏斗沉降量及人类工程活动15个因素作为二级指标,建立研究区城市工程地质环境质量指标评价系统,并采用模糊数学划分指标评价等级,利用层次分析法获得基础权重。
     2.城市工程地质环境质量评价系统是个分层次多指标的综合评判系统,评价时不仅应考虑各项评价指标对城市工程地质环境质量的影响,还应考虑各项评价指标内部差异性对城市工程地质环境质量的影响。根据评价时只要有一个指标值特差,哪怕该指标的常权值很小,最终综合评价值将显著减小;但单项指标值特高却不一定能使最终评价值增加明显的特点,建立了强惩罚—激励型状态变权函数。该函数通过初级惩罚阶段、强惩罚阶段、特强惩罚阶段对指标的“差值”进行惩罚,通过强激励阶段对指标的“优秀值”予以激励,而对于指标的“合格值”既不惩罚也不激励。该函数对于定性指标权重从每项指标只有一个权重调整为五个权重,对于定量指标权重则随着指标数值变化而变化。
     3.本文中MAPGIS采用了点状栅格单元和面状矢量单元相结合,使指标数据载体与基本评价单元分开实现,便于利用外部软件进行辅助计算。本文利用MATLAB编程解决了目前MAPGIS和EXCEL难以实现的复杂运算。
     4.运用常权模型和变权模型分别对郑州市深度8~9m的工程地质环境质量进行评价,得出:变权综合评价值域比常权综合评价值域离散性更好,较易划分评价等级;变权法与常权法综合评价结果趋势性较为一致,不同等级工程地质环境质量综合评价面积从多到少依次均为:Ⅲ、Ⅱ、Ⅳ、Ⅴ、Ⅰ。两种评价方法不同等级综合评价面积有所不同,面积变化从大到小依次为:Ⅲ、Ⅰ、Ⅳ、Ⅱ、Ⅴ。通过评价结果分析和实地调查可知,变权综合评价模型提高了城市工程地质环境质量评价等级的可信度和可靠度高,在一定程度上避免了常权法在权重分配中的缺陷,充分体现了各项评价指标内部差异性对城市工程地质环境质量整体性的影响。
A new evaluation model was introduced to urban engineering geological environment quality. Geological environment is extremely sensitive to engineering construction, which cannot be predicted under present conditions. Quality evaluation of engineering geological environment is general implemented by constructing the reasonable assessment index system and determining these indexes'weights. Those traditional methods for quality evaluation of urban engineering geological environment can not reflect the effect of each index internal differences on urban engineering geological environment, which result in the final evaluation results lost their objectivities and justices. Once the index weights have been determined, they would never change with the index value variations. In this paper, the variable weight theory was introduced into the assessment system of urban engineering geological environment quality.
     Quality variable weight comprehensive evaluation for urban engineering geological mainly includes five steps:(1) Based on the characteristics of urban engineering geological environment and the evaluation requirements, the index system for quality evaluation of urban engineering geological environment was constructed, then classifications of the evaluation index was put forth.(2) According to the index system for quality evaluation of urban engineering geological environment, constant weights, also called "basic weights", were obtained.(3) According to the collected evaluation indexes data, those index images were obtained by vectorization processing of MAPGIS graphic processing module.The new spatial features and new relative attribute of grid date graph layer of every index was achieved by extracting information, assignment, buffer analysis and DTM process, while coordinate system, projection mode, study regional boundary were all unified. The database of evaluation index was established, and the data was standardized, then the index images were divided into many grids.(4) Based on the features of urban engineering geological environment and the evaluation precision requirements, the segmented strong penalty-incentive state variable weight function adjusted the constant weight, and the variable weights for every index of basic assessment unit were calculated.(5) Grid punctate units and vector surface units were coupled, the basic unit comprehension valuation values were calculated by association of MATLAB and the variable weight evaluation model. Merged the same quality grades of urban engineering geological environment, and then the comprehension evaluation zone map were finished.
     The variable weight comprehensive evaluation model applied to quality evaluation for urban engineering geological environment of Zhengzhou, and obtained the following knowledge and progress:
     1. Based on the analysis of engineering geological environment, topography and geomorphology, hydrogeology conditions, engineering geological problems, geological hazards and human influence were selected as the first level evaluation indexes of engineering geological environment quality. Topography, slope, ground elevation, groundwater depth, distance from surface water bodies, foundation bearing stratum thickness, foundation rock and soil uniformity, foundation bearing capacity, collapsible loess, liquefaction of sandy soil, mucky soil thickness, distance from activity fault, geological hazard, groundwater drawdown funnel and human engineering activity were selected as the second-level indexes, and then evaluation system for urban engineering geological environment quality was established. Classification of the evaluation index was adopted by fuzzy mathematics, and the constant weights were calculated by analytical hierarchy process.
     2. Urban engineering geological evaluation quality is a level-division and multiple index comprehensive evaluation system. Every index not only influences urban engineering geological environment quality, and every index internal different grades also impact its integrity. During the assessment process, the final comprehensive evaluation values reduce obviously, if one index value is worse, although its weight value is extremely low, but single index value is very high, the final evaluation values could not always increase obviously. Based on aforementioned characteristics, penalty-incentive state variable weight function was established. The function include three stages:primary penalty stage, intense penalty stage and ultra-intense stage, punished index worse values, inspired index excellent values, and index qualified values no punish no inspire. For qualitative indexes, the function adjusted its weight from one to five for each, while quantitative indexes, their weights changed with their values variations.
     3. Spotty unit and planar vector unit of MAPGIS were combined in this paper. Index data vector and basic evaluation unit were separated during quality evaluation process, easy to calculate. The complicated calculation was solved by using MATLAB programming, which MAPGIS and EXCEL hardly to implement under present conditions.
     4. The constant weight and the variable weight methods were respectively applied to assess urban engineering geological environment depth8-9m quality in main urban area of Zhengzhou. The analysis indicates that the discreteness of the variable weight comprehensive evaluation result is better than that of constant weight result, which easily distinguishes the quality grades of urban engineering geological environment. Two methods of evaluation result trends are consistent, different grades comprehensive evaluation areas of urban engineering geological environment quality from more to less in order are the third grade, the second grade, the fourth grade, the fifth grade, the first grade. Because index difference of urban engineering geological environment quality, the variable weight method using state variable function punished index worse values, inspired index excellent values, so evaluation areas of two methods are different. Different grade comprehensive evaluation changing areas of two methods from more to less orderly is the third grade, the first grade, the fourth grade, the second grade and the fifth grade. The analysis of two methods and field survey indicate the variable weight method significantly improves the reliability of quality evaluation grades urban engineering geological environment, therefore, the variable weight method avoids the defects of the constant weight distribution for urban engineering geological environment quality. More importantly, the variable weight method emphasizes punishing those indexes'worse values and encouraging those indexes'excellent values, no punishing and no encouraging qualified indexes, and this method fully reflects the influence of every index internal different grades on the comprehensive evaluation results of urban engineering geological environment quality.
引文
[1]潘家华,牛凤瑞,魏后凯,等.中国城市发展报告(2009)[M].北京:社会科学文献出版社,2009,10-64.
    [2]刘长礼,侯宏冰,张云.等.全国主要城市环境地质调查评价成果梳理研究报告[R].中国地质科学院水文地质环境地质研究所,石家庄:2009.16-59.
    [3]胡天玉,李瑞玲.郑州市区三条主要断层的确定及其意义[J].河南地质,1988,6(3):25-28.
    [4]张天义,毛俊卿.魏也纳.郑州地区新构造运动的遥感地质特征[J].河南地质,1991,9(4):43-48.
    [5]Zhao Chengbin, Li Deqing, Zhao Jingyao. et al. A study on the tectonic characteristics of shallow faults in the east of Zhengzhou City [J]. Earthquake Research in China.2007.21(3):245-254.
    [6]赵成斌,李德庆,赵景尧等.郑州市东区浅部断层的构造特征研究[J].中国地震,2007,23(1):65-74.
    [7]李清林等.郑州市地热重磁电异常特征[J].河南地质.1996,14(1):51-56.
    [8]李清林.郑州市地热资源及成因探讨[J].河南地质.1999,17(1):30-36.
    [9]田东升,宋云力,朱洪生.郑州市地热资源热储特征分析[J].地下水,2007,29(5):76-77.
    [10]王荣彦,刘连仲,史效群.郑州市热储层的划分及开发利用研究[J].华北水利水电学院学报,1999,20(2):36-38.
    [11]古德宁.李立平,邢维芹.等.郑州市城市土壤重金属分布和土壤质量评价[J].土壤通报,2009,40(4):921-924.
    [12]魏秀琴.郑州东北郊污水灌区重金属元素对土壤的污染[J].河南地质,1998,16(3):228-232.
    [13]李立平.邢维芹,刘顺.郑州市城市土壤理化性质[J].城市环境与城市生态.2010,23(2):18-22.
    [14]贾小成.郑州市水土流失原因及防治措施[J].云南环境科学,2002,21(2):32-33.
    [15]刘晓蕙,庄东刚,朱静嫒.等.郑州市某地面水源水体富营养化现状调查及相关因素分析[J].河南预防医学杂志.2004,15(6):321-324.
    [16]庄东刚,刘晓蕙.朱静媛.等.郑州市市某生活饮用水水源水体富营养化状况分析[J].郑州大学学报(医学版).2007,42(2):258-260.
    [17]宋宏杰.马军霞.左其亭.郑州市环境承载力能力计算及调控对策[J].郑州大学学报(工学版).2005.26(1):103-107.
    [18]宋全香,左其亭.杨峰.水环境承载能力预测模型及其在郑州市的应用[J].水资源保护,2004,4:22-24.
    [19]陈传美.郑州市水资源承载力与可持续利用对策研究[J].水利经济,1999,2:15-24.
    [20]贾洪涛,左其亭.郑州市水资源开发利用评价及前景分析[J].河南科学,2007,25(3):432-435.
    [21]杨峰,宋全香.郑州市水资源承载能力的定性与定量研究[J].水利发展研究,2007,3,37-39.
    [22]徐建新,邹昱.物元模型在郑州市水资源开发利用综合评价中的应用[J].水利水电技术,2007,38(9):5-8.
    [23]樊勇,苗艳艳.郑州市中深层地下水开采引发的环境地质问题及对策研究[J].中国水运,2007,7(1):89-90.
    [24]邱东方,甄习春,宋家勇.郑州市中深层地下水动态浅析[J].地下水.2009,31(1):48-50.
    [25]李桂荣,王现国,郭有琴.等.郑州市中深层地下水集中开发研究[J].人民黄河,2005,27(5):44-46.
    [26]张毅丁.郑州市地下水环境综合评价研究[J].水利水电技术.2009,40(7):13-16.
    [27]邓晓颖,牛波.张晋.等.郑州市地下水环境现状分析[J].地下水,2007,29(5):69-71.
    [28]张心剑.郑州市区工程地质特征分析及建筑桩基础选型探讨[J].探矿工程.2001,S,35-37.
    [29]郑荣华,杜振川,周俊杰.郑州市区岩土体工程地质特征分区与评价[J].岩土工程技术,2006,20(6):300-302.
    [30]王荣彦.郑州市区工程地质条件及问题探讨[J].岩土工程界,2006,12(9):71-73.
    [31]刘立兵.郑州市岩土工程特征及对策研究[D].中国海洋大学.2003,青岛.
    [32]刘广润.论城市环境地质研究[J].火山地质与矿产.2001.22(2):79-83.
    [33]张丽君.国际城市地质工作的主要态势[J].国土资源情报.2001,6:1-13.
    [34]张倬元.城市地质学形成的历史回顾与发展前景展望[J].大自然探索.1987,6(3):26-30.
    [35]Gonzaeza De Vallejo. L. Empresa Nacional ADARO.Serran. Engineering geology for urban planning and development with an example from Tenerife (Canary Islands) [J]. Bulletin of the International Association of engineering geology,1977, 15(1):37-43.
    [36]Gonzalez De Vallejo,L.I., Jimenez Salas. J.A, Leguey Jimenez. S. Engineering geology'of the tropical volcanic soils of La Laguna, Tenerife [J]. Engineering Geology.1981.17(1):1-17.
    [37]Malomo, S., Olorunniwo, M.A., Ogunsanwo, O. Engineering geological mapping in terrains of tropical weathering-an example from Abuja, Nigsria [J]. Engineering Geology,1983,19(2):133-148.
    [38]Carrara,A. Multivariate models for landslide hazard evaluation [J]. Int Assoc Math Geol 1983.15:403-426.
    [39]Lokin. P, Pavlovic. N, Bogdanovic. A, et al. Engineering geological problems in construction of underground structures in urban areas of Belgrade. Proc 5th Internation Congress Internation Association of Engineering Geology. Buenos Aires, 20-25 October 19861/3,1877-1885.
    [40]R.P. GUPTA, B.C. JOSH. Landslide hazard zoning using the G1S Approach-A case study from the Ramganga Catchment. Himalayas [J]. Engineering Geology,1990,28(1-2):119-131.
    [41]1. Hadzinakos, D. Yannacopoulos, C. Faltsetas, et al. Application of the MINORA decision support system to the evaluation of landslide favourability of in Greece [J]. European Journal of Operational Research,1991,50(1):61-75.
    [42]A. P. Wislocki, S. P. Bentley. An expert system for landslide hazard and risk assessment [J]. Computers& Structures. 1991.40(1):169-172
    [43]Mario Mejfa. Navarro, Ellen E. Wohl, Sherry D. Oaks. Geological hazards vulnerability and risk assessment usingGIS: model for Glenwood Springs, Colorado [J]. Geomorphology.1994.10(1-4):331-354.
    [44]Russell J. M aharaj. Engineering geological mapping of tropical soils for land-use planning and geotechnical purposes: A case study from Jamaica. West Indies [J]. Engineering Geology.1995.40(3-4):243-286.
    [45]Franck Lavigne. Lahar hazard micro-zonation and risk assessment in Yogyakarta city. Indonesia [J]. GeoJournal 1999, 49(2):173-183.
    [46]Fausto Guzzetti, Alberto Carrara, Mauro Cardinali. et al. Landslide hazard evaluation:a review of currentte chniques and their application in amultiscale study. Central Italy [J]. Geomorphology.1999.31:181-216.
    [47]Conor G. Smyth. StephenA.Royle. Urban landslide hazards:incidence and causative factors in Nitcroi, Riode Janeiro State. Brazil [J]. Applied Geography.2000.20(2):95-117.
    [48]S Kalogjrou. Expert systems and GIS:anapplication of land suitability evaluation [J]. Computer, Environment and Urban systems,2002.26(2-3):89-112.
    [49]N.Subba Rao, R.Prathap Reddy. Geo-environmental appraisal in a developing urban area [J]. Environmental Geology, 2004,47:20-29.
    [50]Yoon-Young Kim. Analysis of hydrochemical processes controlling the urban groundwater system in Seoul area, Korea [J]. Geosciences Journal. 2004.8(3):313-318.
    [51]PierreThierry, NicoleDebeblia, ArdnandBitri. Geophysical and geological characterisation of karst hazards in urban environments:application to Orleans (France) [J]. Bull Eng Geol Environ,2005,64(2):139-150.
    [52]E. Alparslan. F. Ince. B. Erkan, et al. A GIS model for settlement suitability regarding disaster mitigation, a cases tudy in Bolu Turkey [J]. Engineering Geology.2008,96(3-4):126-140.
    [53]Michael Fedeski. Julie Gwilliam. Urban sustainability in the presence of food and geological hazards:The development of a GIS-based vulnerability and risk assessment methodology [J]. Landscape and Urban Planning,2007,83:50-61.
    [54]Mario Floris. Francesca Bozzano. Evaluation of landslide reactivation:A modified rainfall threshold model based on historical records of rainfall and landslides [J]. Geomorphology.2008.94(1-2):40-57.
    [55]R. Brinkmann. M.Parise. D.Dye. Sinkhole distribution in a rapidly developing urban environment:Hillsborough County. Tampa Bay area, Florida [J]. Engineering Geology.2008.99(3-4):169-184.
    [56]GyozoJordan. Sustainable mineral resources management:from regional mineral resources exploration to spatial contamination risk assessment of mining[J]. Environ Geol.2009.58(1):153-169.
    [57]Mozafar Shari. Mosslem Hadidi. Elahe Vessali. et al. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran [J]. Waste Management.2009.29(10):2740-2758.
    [58]Danang Sri Hadmoko, Franck Lavigne, Junun Sartohadi. Landslide hazard and risk assessment and their application in risk management and land use planning in eastern flank of Menoreh Mountains, Yogyakarta Province. Indonesia [J]. Nat Hazards,2010,54(3):623-642.
    [59]A. Malinowska, R. Hejmanowski. Building damage risk assessment on mining terrains in Poland with GIS application [J]. Internationa Journal of Rock Mechan ics & Min ing Sciences,2010,47(2):238-245.
    [60]A. CamposCosta. M.L.Sousa, A. Carvalho, E.Coelho. Evaluation of seismic risk and mitigation strategies for the existing building stock:application of LNECloss to the metropolitan area of Lisbon [J]. Bull Earthquake Eng,2010.8(1): 119-134.
    [61]Ayman Hassaan Ahmed Mahmoud. Marwa Adel E1-Sayed. Development of sustainable urban green areas in Egyptian new cities:The case of E1Sadat City [J]. Landscape and Urban Planning,2011,101(2):157-170.
    [62]M. J. Aitkenhead. I. H. Aalders. Automating land cover mapping of Scotland using expert system and knowledge integration methods [J]. Remote Sensing of Environment.2011,115(5):1285-1295.
    [63]刘玉海.张俊.王书明.等编.延安城市工程地质[M].武汉:中国地质大学出版社.1988.1-205.
    [64]谭周地.城市工程地质环境质量评价与区划[J].长春地质学院学报,1987,17(3):311-316.
    [65]杜东菊.城市工程地质环境研究路线及综合评价方法[J].水文地质工程地质,1989.5:3-7.
    [66]张骏.杜东菊.彭建兵.环境工程地质质量多级模糊综合评判的基本思想与步骤[J].西安地质学院学报.1991.13(3):67-72.
    [67]Dai Fuchu. Liu Yuhai. Wang Sijing. Urban geology:a case study of Tongchuan city. Shaanxi Province. China [J]. Engineering Geology:1994.38(1-2):165-175.
    [68]黄光寿、余珍友.平顶山城市地质环境初步评价[J].河南地质,1994,16(2):153-157.
    [69]李湘然.烟台市区工程地质环境质量评价与分区[J].烟台大学学报(自然科学与工程版).1995.2:63-68.
    [70]倪万魁.刘玉海.城市地质环境系统分析与优化模型[J].西安地质学院学报,1996,18(3):36-42.
    [71]陈桂华.徐樵利.城市建设用地质量评价研究[J].自然资源,1997,5:22-30.
    [72]许嘉巍.刘惠清.长春市城市建设用地适宜性评价[J].经济地理,1999.19(6):101-104.
    [73]贾永刚.青岛城市地质环境工程适宜性系统分析[J].青岛建筑工程学院学报,1999,19(4):6-12.
    [74]方鸿琪.杨闽中.城市工程地质环境分析原理[M].北京:中国建筑工业出版社,1999.
    [75]李湘然.郭金桥.宗学刚.等.城市工程地质环境质量评价理论与方法研究[J].宁夏工程技术与开发,2002.4(1):352-355.
    [76]张伯祉.西安城市地质环境质量综合评价[J].陕西师范大学学报.1988,16(4):51-57.
    [77]郜洪强.刘志刚.模糊数学综合评判法在区域地质环境质量评价中的应用—以冀西北地区为例[J].水文地质与工程地质.1995,(6):44-47.
    [78]贾永刚.刘红军.青岛城市地质环境系统研究[J].海岸工程,1998,17(3):28-35.
    [79]闫满存.王光谦.李保生.等.基于模糊数学的广东沿海陆地地质环境区划[J].地理学与国土研究.2000,16(4):41-48.
    [80]李亚兰.陈志新.王佳运.多级模糊模式识别模型在地质环境质量评价中的应用[J].地球科学与环境学报.2004,26(4):90-93.
    [81]张长生.张伯友.王连元,等.天津市滨海新区工程地质适宜性研究[J].中山大学学报(自然科学版),2004,43(Suppl):212-216.
    [82]卢玉东.张骏.李茂松.基于GIS的城市环境工程地质质量模糊评价—以陕西略阳城区为例[J].自然灾害学报.2005,14(2):93-98.
    [83]苗壮.赵法锁.基于GIS的西安城市地质环境评价研究[J].工程地质学报,2006,14(suppl.):573-576.
    [84]蔡斌.胡卸文.模糊综合评判在绵阳市环境地质风险性分区评价中的应用[J].水文地质工程地质.2006,(2):67-74.
    [85]谷天峰.王家鼎.王煜,等.咸阳市城市地质环境综合评价研究[J].水土保持通报,2007,27(3):69-74.
    [86]张永平,王启胜,王荣鲁.等.城市工程地质环境质量的AHP-FUZZY评价方法及应用[J].青岛理工大学学报,2008,29(1):19-23.
    [87]吴尚,梁合成,周爱国.等.基于地质环境评价的九江市区不同功能用地优化布局[J].安全与环境工程,2009,16(2):18-22.
    [88]徐志平,韩秀丽,宋泽华.基于GIS的唐山地区工程地质环境评价[J].河北理工大学学报(自然科学版),2009,31(2):123-126.
    [89]戴福初,李军,张晓晖.城市建设用地与地质环境协调性评价的GIS方法及其应用[J].地球科学,2000,25(2):209-213.
    [90]F.C. Dai, C.F. Lee, X.H. Zhang. GIS-based geo-en\iron ment evaluation for urban land-use planning:a case study [J]. Engineering Geo logy,2001,61 (4):257-271.
    [91]武健强,余勤,陈福春,等.基于GIS的苏锡常地区地质环境现状评价[J].水文地质工程地质,,2002(3):63-65.
    [92]戴英,张晓辉.基于GIS的城市地质环境敏感性评价—以兰州市为例[J].地球物理学进展,2003,18(2):353-356.
    [93]谷天峰,王家鼎.GIs在咸阳城市土地工程能力评价中的应用[J].西北大学学报(自然科学版),2004,34(4):473-476.
    [94]王全.徐建刚.徐闻闻.基于GIS的城市用地适宜性评价[J].地球物理学进展,2005,20(3):877-880.
    [95]苏惠敏,张学宝.薛亮.基于GIS的西安市工程地质环境评价研究[J].干旱区资源与环境,2006,20(3):43-47.
    [96]YongLiu, Xiaojian Lv, XiaoshengQin, et al. An integrated GIS-based analysis system for land-use management of lake areas in urban fringe [J]. Landscape and Urban Planning.2007.82(4):233-246.
    [97]金志丰,赵海霞,陈雯.海门沿江地区开发适宜性分区研究[J].长江流域资源与环境,2008,17(1):18-21.
    [98]罗婧,姚亦锋.盛鸣,等.基于GIS的陇南灾区建设用地适宜性评价[J].长江流域资源与环境,2009,18(6):540-544.
    [99]程雨.朱庆杰.党旭光,等.基于GIS城镇土地利用防灾适宜性评价方法分析[J].岩土力学,2009,30(2S):505-508.
    [100]娄新刚,孙艳荣,邹孔业.基于GIS的海城市地质环境质量评价[J].中国矿业,2010,19(2):82-85.
    [101]王志强,蒋晓冬,赵增敏,等.基于与技术的中新天津生态城地质环境适宜性评价[J].河北工业大学学报,2010,39(6):87-91.
    [102]李铁锋.潘懋,孙卫东.三峡工程库区迁建城镇新址地质环境质量综合评价与对比[J].高校地质学报,1999,5(3):290-297.
    [103]李相然,权惠庆.曹振斌.等.BP神经网络及其在城市环境工程地质研究中的应用[J].中国环境监测,2001.17(1):15-17.
    [104]陈佩佩.武强.基于人工神经网络的地裂缝危险性评价系统[J].煤田地质与勘探,2001,29(3):44-47.
    [105]李智毅,江顺先.地质灾害及其在山区城市工程地质环境质量评价中的贡献[J].地球科学.1989,14(2):155-163.
    [106]李显忠.方鸿琪.南京市土地利用定量分析[J].工程勘察,1991,1:5-11.
    [107]李显忠,方鸿琪.唐山市土地利用定量分析[J].工程勘察,1993,4:1-7.
    [108]彭拙补,窦贻俭,张燕.用动态的观点进行地质环境综合评价[J].中国环境科学,1996,16(1):17-19.
    [109]蔡鹤生,周爱国,唐朝辉.地质环境质量评价中的专家—层次分析定权法[J].中国地质大学学报,1998,23(3):299-302.
    [110]黄建军.李雪梅.宝鸡城市地质环境质量评价研究[J].西安工程学院学报.2001.23(1):50-53.
    [111]苏英,杜忠潮,刘俊峰.黄土地区城市建设用地影响因素分析及评价方法研究[J].水土保持研究,2004,185-188.
    [112]娄本军,田大勇,孔庆轩.等.运用综合指数方法对黑河市地质环境质量的初步评价[J].水文地质工程地质,2007.5:77-80.
    [113]X.D. Wang. X.H. Zhong, S.Z. Liu, et al. Regional assessment of environmental vulnerability in theTibetan Plateau: Development and application of a new method [J]. Journal of Arid Environments,2008.72(10):1929-1939.
    [114]Zhen DongCui,Yi Qun Tang,Xue Xin Yan, et al. Evaluation of the geology-environmental capacity of buildings based on the ANF1S model of the floorarea ratio [J]. Bull Eng Geol Environ.2010.69(1):111-118.
    [115]Kai Xu, Chunfang Kong, Jiangfeng Li. et al. Suitability evaluation of urban construction land based on geo-environmental factors of Hangzhou, China[J]. Computers & Geosciences.2011.6(3):1-10.
    [116]Jia Yu, Yun Chen, Jianping Wu. Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment [J]. Computers, Environmen tand Urban Systems,2011,35(4): 308-319.
    [117]李湘然.姚志祥.城市岩土地基工程地质[M].北京:中国建材工业出版.1989.
    [118]周爱国,周建伟,梁合成,等.地质环境评价[M].武汉:中国地质大学出社.2008.
    [119]梁合成.周爱国,唐朝晖.城市建设用地地质环境评价与区划.武汉:中国地质大学出社.2010.
    [120]刘长礼.城市地质环境风险经济学评价[M].北京:地质出版社,2010.
    [121]杨建军,谢振乾,郑宁平.模糊聚类分析在西安市区域地壳稳定性评价中的应用[J].地质力学学报,2004,10(1):57-63.
    [122]熊晶璇.倪师军,张成江.城市地质环境风险性分区评价GIS软件的设计与实现[J].沉积与特提斯地质,2006,26(2):106-109.
    [123]夏玉成.唐利君,张海龙.地质环境抗扰动能力的可拓学评价[J].煤炭地质与勘探.2009.37(1):48-51.
    [124]沈莽庭.刘红樱,梁合诚,等.九江市城市建设用地地质环境质量评价.吉林大学学报(地球科学版).2006,36(Sup):90-94.
    [125]汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社,1985.
    [126]赵成斌,李德庆,赵景尧.郑州市东区浅部断层的构造特征研究[J].中国地震,2007,23(1),65-74.
    [127]侯清卫.吴怡.老鸦陈断层的地质特征及活动性[J].华南地震,2000,20(3):71-75.
    [128]魏文恭.郑州市地震小区划工作区区域地震地质特征[J].郑州市地震小区划研究文集.1992.35-41.
    [129]魏文恭.郑州市区及周围地震地质特征[J].北京:地震出版社,郑州市地震小区划研究文集,1992,51-55.
    [130]朱嘉伟.赵云章,王晓青,等.郑州—兰考区域性隐伏断裂的发现及其意义[J].国土资源遥感,2005,64(2):55-59.
    [131]河南省地震局.河北省地质博物馆,河南地震历史资料.郑州:河南人民出版社,1980.
    [132]河南省地震台网[EB/OL],http://img.eqh a. gov.cn/OuakeMenu/index.shtml
    [133]国家地震局.中国地震烈度区划图(1:400万)[M].北京:地震出版社,1990.
    [134]河南省地矿局.河南省区域地质志[M].北京:地质出版社,1989.
    [135]河南省地矿局水文地质二队.郑州北郊水源地报告[R],1989.
    [136]滑坡崩塌泥石流灾害详细调查规范(1:50000)[S].北京:中国地质调查局,2006.
    [137]Lu Li. Zhi-Hua Shi. Wei Yin. et al. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China [J]. Ecological Modellin.2009,220(23):3439-3447.
    [138]Xiong Yinga. Zeng GuangMinga. Chen GuiQiua, et al. Combining AHP with GIS in synthetic evaluation of co-environment quality:A case study of Hunan Province. China [J]. Ecological modeling.2007,209:97-109.
    [139]Biswajeet Pradhan. Saro Lee. Manfred F.A. GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyse [J]. Computer, Environment and Urban Systems,2010, 34(3):216-235.
    [140]Mohammad H.Vahidnia. AliA.Alesheikh, Abbas Alimohammadi, ea al. A GIS-based neuro-fuzzy procedure for integrating knowledge and datainl and slidesus ceptibility maping [J]. Computers & Geosciences,2010,36:1101-1114
    [141]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [142]王莲芬.许树柏.层次分析法引论[M].北京:中国人民大学出版社,1989.
    [143]洪志国,李焱,范植华,等.层次分析法中高阶平均随机一致性指标(R1)的计算.计算机工程与应用,2002,12:45-47.
    [144]李洪兴.因素空间理论与知识表示的数学框架—变权综合原理[J].模糊系统与数学,1995,93:1-9
    [145]李洪兴.因素空间理论与知识表示的数学框架—均衡函数的构造和Weber Fechner[J].模糊系统与数学,1996,103:12-19.
    [146]Li Hongxing. Fuzzy decision making based on variable weights [J]. Mathematical and Computer Modeling,2004. 39(23):163-179.
    [147]刘文奇.变权综合中的惩罚—激励效用[J].系统工程理论与实践,1998,18(4):41-47.
    [148]刘文奇.变权综合的激励策略及其解法[J].系统工程理论与实践,1998,18(12):40-43.
    [149]姚炳学,李洪兴.局部变权的公理体系[J].系统工程理论与实践.2000,1:106-112.
    [150]刘文奇.均衡函数及其在变权综合中的应用[J].系统工程理论与实践,1997,17(4):58-74.
    [151]朱勇珍,李洪兴.状态变权的公理化体系和均衡函数的构造[J].系统工程理论与实践,1999.7:116-118.
    [152]李德清,郝飞龙.状态变权向量的变权效果[J].系统工程理论与实践,2009,29(6):129-131.
    [153]蔡前凤,李洪兴.均衡度与变权[J].系统工程理论与实践,2001.10:83-86.
    [154]李德清,李洪兴.状态变权向量的性质与构造[J].北京师范大学学报(自然科学版),2002.38(4):455-461.
    [155]段树桥.电力企业安全管理变权综合评价方法[J].数学的实践与认识,2003,33(8):17-22.
    [156]中华人民共和国建设部.城市规划工程地质勘察规范(CJJ57-94)[S].
    [157]陕西省计划委员会.湿陷性黄土地区建筑规范(GB 50025-2004)[S].
    [158]中华人民共和国住房和城乡建设部.中国地震局.建筑设计抗震规范(GB 50011-2010)[S].
    [159]宫继昌,王宁.葛明明.等.砂土液化判别的研究现状及存在问题[J].吉林建筑工程学院学报,2010,27(3):3-16.
    [160]徐锡伟,于贵华,马文涛.等.活断层地震地表破裂“避让带”宽度确定的依据与方法[J].地震地质,2002,24(4):470-483.
    [161]周庆.徐锡伟.于贵华等.汶川8.0级地震地表破裂带宽度调查[J].地震地质,2008,30(3):778-788.
    [162]陈桂华.徐锡伟.郑荣章.等.2008汶川M S8.0地震地表破裂变形定量分析[J].地震地质.2008,30(3):723-738.
    [163]韩竹军,冉勇康,徐锡伟.隐伏活断层未来地表破裂带宽度与位错量初步研究[J].地震地质,2002,24(4):484-492.
    [164]郭新华,李建新.开展郑州市地面沉降监测工作的必要性[J].中国地质灾害防治学报.2007,18(1):147-148.
    [165]赵晓丽.刘斌,易玲,等.郑州城市空间扩展特征及其驱动因素分析.国土资源遥感,2009,82(4):90-95.
    [166]常建娥,蒋太立.层次分析法确定权重.武汉理工大学学报.信息与管理工程版.2007,29(1):153-155.
    [167]戴明新,胡焱弟,彭士涛AHP-Fuzzy在港口环境承载力综合评价中的应用.安全与环境学报.2008,8(5):109-112.
    [168]周成虎,裴韬等.地理信息系统空间分析原理[M].北京:科学出版社.2011.
    [169]郑伟峰.郑先昌.基于矢量评估单元的模糊综合评价在G1S中的实现.测绘科学.2010,35(6):183-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700