用户名: 密码: 验证码:
胡杨油菜素内酯合成酶基因CPD (PeCPD)的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜素类固醇(brassinosteroids, BRs)是一类新发现的植物生长调节物质,被称为第六大类植物激素,在植物整个生长和发育中起重要的作用,其中包括细胞伸长与分裂、维管束分化、光形态建成、叶和根的发育、衰老、育性以及对逆境胁迫的响应等。BR生物合成途径及其遗传调节是当今植物生物学研究的热点问题。目前已经取得了重要进展,但主要集中在拟南芥、水稻、番茄和豌豆等这些一年生草本植物,而在多年生木本植物,尤其是林木中鲜有研究。CPD (constitutive photomorphogenesis and dwarf)是一个与BR合成相关的基因,最早鉴定于拟南芥,编码一种细胞色素单加氧化酶CYP90A1,在BR生物合成过程中催化22-OH-CR向22-OH-4-en-3-one转变。为探讨木本植物CPD基因的功能,本研究以极端耐旱、耐高温和耐盐碱的珍稀树种胡杨(Populus euphratica)和耐逆性相对较差的箭杆杨(P. nigra var. thevesitina)为对象,从中克隆到了与拟南芥CPD同源的cDNA全序列,构建了相应的植物表达载体,并将这些载体分别导入拟南芥cpd突变体(Atcpd)和野生型(Atwt),获得了多种转基因系。在此基础上,对这些转基因系的形态学、解剖学、遗传学、细胞学、生理学和分子生物学特征进行了详细的分析与比较。主要结果如下:
     一、采用电子克隆和3'RACE策略,从胡杨和箭杆杨中克隆出了与拟南芥CPD同源的cDNA全序列(命名为PeCPD和PnCPD);对PeCPD和PnPCD的生物信息学分析显示:
     1) PeCPD和PnCPD cDNA分别长1746bp和1553bp,二者总长不同,但ORF大小完全相同,都编码一个由476个氨基酸组成的蛋白质,氨基酸序列一致性为97%。
     2) PeCPD和PnCPD编码的蛋白与CYP90A蛋白家族具有67-92%的同源性,因此确定该蛋白属于CYP90A家族(分别命名为PeCYP90A和PnCYP90A)。
     3) PeCYP90A与PnCYP90A间的同源性显著高于PeCYP90A/PnCYP90A与毛果杨CYP90A之间的同源性。
     4) PeCYP90A/PnCYP90A与木本植物甜橙、番木瓜和山茶CYP90A的进化关系相反地小于PeCYP90A/PnCYP90A与草本植物豌豆和豇豆CYP90A的进化关系。
     5)不同CYP90A之间,根据信号肽序列预测的亚细胞定位也有所不同。
     二、采用Real-Time qRT-PCR法分析了不同派(section)杨树及胡杨不同组织(器官)之间PeCPD基因表达水平,结果显示:
     1)在青杨(P. cathayana,青杨派)、胡杨(P. euphratice,胡杨派)、箭杆杨(P. nigra var. thevesitina,黑杨派)、大叶杨(P. tomentosa,大叶杨派)和新疆杨(P. euphratice,白杨派)中的相对表达量分别为1.0,1.4,1.1,0.8和1.1,胡杨中的表达量最高,大叶杨中的表达量最低。
     2)在胡杨中,成熟叶中的表达量最高,中间叶次之,幼叶最低。PeCPD在根中完全不表达,在叶脉和枝形成层中低表达。
     三、将PeCPD cDNA插入植物表达载体pMDC43,构建了由花椰菜花叶病毒启动子(CaM35S)驱动的PeCPD表达载体35S::PeCPD,由CaM35S驱动的PeCPD-GFP融合表达载体35S::PeCPD-GFP,以及由拟南芥CPD基因启动子(AP)驱动的PeCPD表达载体AP::PeCPD.
     四、将35S::PeCPD-GFP、35S::PeCPD和AP::PeCPD分别导入拟南芥cpd突变体(Atcpd),分别得到3(C35CG1/2/3)、2(C35C1/2)和3个(CAPC1/2/3)Atcpd-PeCPD转基因系。对以上各转基因系的形态学、遗传学、生理学和解剖学研究显示:
     1)T1代C35CG1/2/3、C35C1/2和CAPC1/2/3系与Atcpd(?)目比,莲座叶完全展开,植株个体增大,开花期提前,花茎高度和数目增加。与Atwt相比,C35CG和C35C系莲座叶长宽比减小,叶柄缩短,开花期延迟,株高降低;CAPC系叶长宽比减小,叶面积和茎直径增加。C35CG系雄性不育,人工自花授粉也不育。C35C1系早期花不育,后期花人工自花授粉可育。CAPC1/2早期花不育,后期花正常可育,而CAPC3系完全可育。T3代C35C1和CAPC1/2/3表型与T1代基本相同,表型相对恢复程度的大小依次为Atcpd     2)C35C1和CAPC1系早期花不育与花丝细胞伸长受阻,导致花丝缩短,花药无法与柱头接触有关。
     3)与Atcpd相比,C35C1、CAPC1和CAPC3系叶表皮细胞大小,细胞凸起(lobe)的数目与lobe长度增加,气孔密度降低。与Atwt相比,C35C1系叶表皮细胞大小,lobe数目与lobe长度减少(小),气孔密度增加;CAPC1和CAPC3系叶表皮细胞大小,lobe数目与lobe长度及气孔密度没有显著变化。
     4)CAPC1和CAPC3系莲座叶海绵组织细胞数目减少,叶维管束木质部细胞较Atcpd和Atwt明显增加,茎维管束数目,维管束木质部、原形成层细胞数目也显著多于Atcpd和Atwt。
     5)在黑暗和光照条件下C35C1、CAPC1和CAPC3系下胚轴伸长速率显著大于Atcpd,黑暗中子叶形状与野生型的相似,子叶不展开,呈钩状。
     五、将35S::PeCPD-GFP.35S::PeCPD和AP::PeCPD分别导入拟南芥野生型(Atwt),分别各获得10个(035CG),7个(035C)和7个(OAPC)Atwt-PeCPD转基因系。对其中各1个转基因系(035CG24、OAPC4和035C7)的形态学、生理学和解剖学观察显示:
     1)种子萌发期,035CG24、OAPC4和035C7系下胚轴和根伸长速率与Atwt相比显著增加,对盐的耐受力增强:营养生长期,035CG24系个体增大、叶面积增加、气孔密度减少;成熟期株高、果荚数、果荚长度和茎的直径也显著增加。OAPC4和035C7系无显著性变化。
     2)将各Atwt-PeCPD转基因系((?))与生长素应答因子拟南芥转基因系(DR5-GUS)((?))杂交,发现F1代植株根中GUS活性与根伸长的速率成正相关,即根伸长的速率越快,根中GUS活性越强。
     3)组织学观察发现,与Atwt相比,035CG24系叶片增厚,叶肉细胞变大,海绵组织细胞间的气腔增多,海绵细胞数目减少。茎维管束数目,维管束木质部和原形成层细胞数目增加。木质部细胞总数和原形成层细胞总数与茎的直径大小成正相关。
     六、Real-Time qRT-PCR分析以上各转基因系以及Atcpd和Atwt之间PeCPD和其它BR相关基因的转录水平,结果显示:
     1)C35C1、CAPC1和CAPC3系表型恢复程度大小与PeCPD和受BR正调节的BAS1的表达量成正相关,与BR负调节的DWF4和BR60X2的表达量成负相关;PeCPD的表达量与BAS1的表达量成正相关,与DWF4和BR60X2的表达量成负相关;外源BR正调节的TCH4和SAUR-AC1表达量与植株的恢复程度无明显关系。
     2)035CG24,035C7和OAPC4系表型超Atwt程度与PeCPD和BAS1表达量成正相关,PeCPD表达量与BAS1表达量成正相关;DWF4表达量稍高于野生型,BR60X2表达量低于野生型;TCH4和SAUR-AC1表达量与植株表型也无显著关系。
     七、采用ELISA方法分析了各Atcpd-PeCPD和Atwt-PeCPD转基因系内源BR的含量,结果显示,各转基因系及Atcpd和Atwt内源BR水平大小依次为O35CG24     八、采用双向电泳检测了CAPC3系和Atcpd之间蛋白表达谱的差异。ImageMaster2D Platinum Version5.0软件分析显示,CAPC3和Atcpd分别显示568和411个蛋白点,前者比后者多出157个蛋白点。其中可匹配的有236个(占41.5%),不匹配的有329个(57.9%)。在CAPC3中,有8个匹配点表达量显著上调,有3个匹配点表达量显著下调,另有19个非匹配点表达量甚高。对这19个非匹配点中最显著的7个点进行质谱鉴定发现,其中5个与光合作用有关,一个与植物抗逆性有关,另一个与叶绿体RNA的加工修饰有关。有文献报道,这几种蛋白均受BR正调节。
     九、用35S::PeCPD-GFP转化烟草表皮细胞发现,PeCPD-GFP信号主要分布在质膜和细胞质内的一些网状结构上。这种分布模式与已报道的内质网标记蛋白的分布模式相同,这表明PeCPD蛋白可能主要定位于内质网。根据以上结果,主要得出以下结论:
     1)胡杨CPD (PeCPD)基因与拟南芥CPD (AtCPD)基因的功能基本相似,都可能通过控制BL合成,调节植物的生长发育,因为异源PeCPD的表达明显地使Atcpd的表型得以恢复,并且导致其它BR合成相关基因的表达水平以及内源BR水平发生相应的变化。
     2) PeCPD可能还存在其它功能,因为PeCPD异源表达并不能使Atcpd的表型完全恢复。恢复后的植株在形态学、解剖学、育性、组织和细胞学方面与野生型相比仍存在明显的差异,即使在恢复程度最好转基因系中。
     3) PeCPD可能参与了叶和茎的发育,这一调节过程可能独立于BR信号通路,因为在BL水平并没有完全恢复的CAPC1系中,虽然株型大小与野生型一致,但叶变宽,茎分枝增多,茎增粗。
     4) PeCPD功能也可能与光合作用有关,因为Real-Time qRT-PCR分析表明,PeCPD在成熟胡杨叶中的表达量显著高于在中、幼年叶中的表达量。此外,蛋白组学分析显示,在CAPC3系中,在所鉴定的7个特异蛋白点中有5个与光合作用有关。
     5) PeCPD表达水平在杨树中具有种和组织器官的特异性。
     6)在Atwt-PeCPD转基因系中,CaM35S启动子的效率显著地高于拟南芥CPD自身启动子的效率,而在Atcpd-PeCPD转基因系中,CaM35S启动子的效率出乎意外地显著低于拟南芥CPD自身启动子的效率,原因可能与CaM35S启动子在Atcpd中受抑制有关。
     7) PeCPD异源表达可促进Atwt根的生长(伸长),这种促进作用可能是通过促进的生长素合成或分布实现的。
     8) PeCPD是一个优良的可用来转化其它林木或农作物的基因,因为在本研究中发现一些Atwt-PeCPD转基因系植株个体变大、株高增加、种子产量、茎的直径增加和抗逆性增强。
Brassinosteroids (BRs) are new type of plant growth regulators, and are considered as the sixth class of phytohormone, which play critical roles in cell division and elongation, vascular differentiation, leaf and root development, photomorphogenesis, male fertility, senescence, and stress responsion. The mechanism underlying BR biosynthesis and its regulation are the "hot spot" among the current plant biological researches and many important progresses have been made. However, these studies mainly focused on the annual herbaceous plants, such as Arabidopsis, rice, tomato, pea, and so on, few is known in the perennial woody plants, such as trees. CPD (constitutive photomorphogenesis and dwarf) was initially isolated from an Arabidopsis cpd mutant. In BR biosynthesis pathway, CPD encodes a cytochrome P450enzyme functioning in the conversion of22-OH-CR to22OH-4-en-3-one. In present study, the homologous CPD genes were cloned from Populus euphratica Oliv with extremely high tolerance to drought, saline and alkaline and P. nigra var. thevesitina with relatively poor tolerance to stress. Then the corresponding expression vectors were constructed, with which the cpd mutant and wild type of Arabidopsis thaliana were transformed. Finally, the function of the CPD gene from P. euphratica was explored through morphology, genetics, physiology, anatomy and molecular biological analysis of the obtained transgenic lines. The main results are the follows:
     1. The full-length cDNA homologous with Arabidopsis CPD, were isolated from P. nigra var. thevesitina and P. euphratica oliv, named PeCPD and PnCPD respectively, by homologous cloning combined with in silico cloning. Bioinformatics regarding PeCPD and PnCPD were analyzed. The results were the follows:
     1) PeCPD and PnCPD contained equal length of coding regions, the proteins encoded by which shared97%amino acid (aa) homology.
     2) The proteins deduced from the PeCPD and PnCPD shared67~92%aa identity to CYP90A family, were named PnCYP90A and PnCYP90A, respectively.
     3) The phylogenctic relationship of PeCYP90A to PnCYP90A was closer than that of PeCYP90A/PnCYP90A to CYP90A6V1of P. trichocarpa.
     4) The phylogenetic relationship of PeCYP90A/PnCYP90A to the CYP90As of Citrus sinensis, Carica papaya and Camellia japonica, were less close than that of PeCYP90A/PnCYP90A to the CYP90As of Vigna radiata and Pisum sativum.
     5) The subcellular location predicted according to signal peptide sequences was also distinct from each other among the CYP90As from different plant species.
     2. The relative expression level of PeCPD in different poplar sections (species) and tissue/organ of P. euphratica were analyzed using Real-Time qRT-PCR.
     1) The expression levels of PeCPD gene in P. cathayana (Tacamahaca section), P. euphratice(Turanga section), P. nigra var. thevesitina (Aigeiros section), P. tomentosa (Leucoides section) and P. bolleana (Leuce section) were1.0,1.4,1.1,0.8and1.1, respectively. The transcription level was the highest in P. euphratica and the lowest in P. tomentosa among them.
     2) In P. euphratica, the transcription level of PeCPD in leaves was significantly higher than that in roots and stem cambium, and that in mature leaves was significantly higher than that in juvenile and intermediate leaves. In roots, PeCPD did not express.
     3. Using PeCPD cDNA and plasmid pMDC43, three different expression vectors35S::PeCPDGFP,35S::PeCPD and AP::PeCPD were constructed,35S and AP represent the promoter of CaM35S and Arabidopsis CPD gene, respectively.
     4. Using35S::PeCPDGFP,35S::PeCPD and AP::PeCPD to transform Arabidopsis cpd mutant (Atcpd), the following three group of Atcpd-PeCPD transgenic lines, named C35CG (3lines), C35C (2) and CAPC (3), were obtained. The morphology, genetics, physiology and anatomy analysis of the Atcpd-PeCPD lines showed:
     1) Compared with Atcpd, the T1Atcpd-PeCPD lines showed expanded rosette leaves, increased plant size, ahead flowering as well as increased height, numbers and branches of stem. Compared with Arabidopsis wild type (Atwt), the ratio of leaf length to width, petiole length and plant height are significantly reduced in all of C35CG and C35C lines, but their flowering phase were delayed. In plant size and height as well as flowering phase, CAPC lines were similar with corresponding Atwt, but leave's width and area as well as stem's diameter significantly increased. C35CG1, C35CG2, C35CG3and C35C2lines were male sterile even in the case of illegitimate pollination. The early stage flowers of C35C1, CAPC1and CAPC2lines did not set seeds unless illegitimate pollination, but the late stage flowers normally set seeds. The CAPC3line was completely fertile. CAPC3, CAPC2, CAPC1and C35C1line of T3generation were basically similar with T1lines in phenotype. The degree of phenotypic restoration were Atcpd     2) The sterility of the early stage flowers of C35C1and CAPC1lines were related to the inhibited filament cell elongation, which made their anthers not touch with stigma.
     3) In C35C1and CAPC lines, the size of epidermic cells as well as the length and number of lobes were significantly increased, whereas stomatal density relatively decreased, compared with Atcpd. In comparison with Atwt, the size of epidermic cells as well as the length and number of lobes of C35C1line were decreased, but stomatal density were increased. CAPC lines did not show visible differences from Atwt.
     4) For the CAPC lines, the number of sponge cells was decreased, while air spaces increased. The number of xylem cell in leaf vascular bundle (VB) was greater than Atcpd and Atwt lines. And the numbers of stem VB, xylem and procambia cell in VB also increased relative to both Atcpd and Atwt.
     5) The rate of hypocotyls elongation of C35C1, CAPC1and CAPC3lines was significantly increased in the light and dark compared with Atcpd. Phenotype of their cotyledons was similar to that of Atwt in the dark.
     5. Using Vectors35S::PeCPDGFP,35S::PeCPD and AP::PeCPD to transform Atwt, the24Atwt-PeCPD transgenic lines, named O35CG (10),O35C (7) and OAPC (7), were obtained. From each group, one most promising line O35CG24, O35C7and OAPC4, was selected for further investigation. The results were as follows:
     1) Compared to Atwt, the rate of hypocotyls and root elongation of O35CG24, O35C7and OAPC4all increased. However, for the O35CG24line, their leaf area and leaf epidermal cells increased, and stoma density decreased during vegetative growth phase. In mature phase, their plant height, silique mummer and stem diameter were also significantly increased. O35C7and OAPC4lines showed no significant change compared to Atwt.
     2) For measurement of auxin activity, we crossed the Atwt-PeCPD lines with the transgenic plants expressing the DR5-GUS reporter. The result showed that highest GUS activity was detected in the O35CG24line with the longest root. The GUS activity was positively correlated to the root length.
     3) Histology research showed that the leaf thickens, mesophyll cell size and spongy air spaces of O35CG24line were increased significantly, whereas, the number of sponge cells decreased. The numbers of VB, xylem and procambia cell in stem were significantly greater than Atwt lines. The number of xylem cell and procambia cell along the base of VB ring were positively correlated to the diameter of stem.
     6. Real-Time qRT-PCR analysis of expression level of PeCPD and other BR-related genes in the transgenic lines revealed:
     1) The degree of phenotypic rescue of C35C1, CAPC1and CAPC3lines relative to Atcpd was positively correlated to the expression level of PeCPD and BAS1genes, and negatively to that of DWF4and BR6OX2gene. The expression level of PeCPD was positively correlated to that of BAS1and negatively to that of DWF4and BR6OX2. The expression level of TCH4and SAUR-AC1were not significantly associated with the degrees of their phenotypic rescue.
     2) Phenotypic change degree of O35CG24/O35C7/OAPC4lines relative to Atwt was positively correlated to the expression level of PeCPD and BAS1. The expression level of PeCPD was positively correlated to that of BAS1. The expression levels of DWF4in O35CG24/O35C7/OAPC4lines were higher than that in Atwt. The expression level of TCH4and SAUR-AC1were not related to with the phenotypic changes of O35CG24/O35C7/OAPC4lines.
     7. A analysis of total endogenous BR levels revealed that the endogenous BR level in the all transgenic lines, Atcpd and Atwt from lower to higher was O35CG24     8. Two-dimensional electrophoresis was used to analyze the protein difference between Atcpd and CAPC3lines. The result showed that there were568protein spots in CAPC3and411protein spots in Atcpd. In the CAPC3, there were eight significantly up-regulated proteins, three down-regulated proteins and nineteen new proteins compared to Atcpd. MALDI TOF/TOF-MS/MS identification of seven of the19new proteins found that five were involved in photosynthesis, one in RNA processing, and one in cell defense. It is reported that the7proteins all were positively regulated by BR.
     9. The PeCPD-GFP fused protein were transient expression by agroinfiltration in Nicotiana benthamiana leaves. The result showed that the PeCPD-GFP protein mainly distributed on cytomembrane and cytoplasm with typical reticulate structure, which is similar to that of the marker protein for endoplasmic reticulum (ER), suggesting that PeCPD protein is possibly located in ER.
     Based on the above results, the following conclusions are drawn:
     1) P. euphratica CPD (PeCPD) and Arabidopsis CPD (AtCPD) possibly share similar function in BR biosynthesis, because the heterogeneous expression of PeCPD could apparently made the phenotype of Atcpd mutants to be recovered, and alter the level of BR-related genes expression and endogenous BR.
     2) PeCPD may have other functions in the growth and development of plant, since the phenotype of Atcpd could not be completely restored by heterogeneous expression of PeCPD.
     3) PeCPD may regulate BR-independent the leaf and stem development, because the CAPC1lines that has relative low BL level to Atwt showed broad leaves, much branched stem, increased stem diameter.
     4) PeCPD possibly regulates photosynthesis because the transcripts of PeCPD in mature leaves of P. euphratica are significantly higher than that in juvenile and intermediate leaves. Moreover, proteomics analysis showed that five proteins were involved in photosynthesis in seven proteins identified by MALDI TOF/TOF-MS/MS.
     5) The level of PeCPD expression was distinctively different in different poplar sections and tissues/organs of P. euphratice.
     6) In the Atcpd-PeCPD transgenic lines, the efficiency of CaM35S promoter was significantly less than that of the promoter of AtCPD gene, while in the Atwt-PeCPD line, the efficiency of CaM35S promoter was significantly higher than that of the promoter of AtCPD gene, suggesting that the function of CaM35S promoter might be partly suppressed in Atcpd.
     7) The phenomenon that rate of root elongation is enhanced in the Atwt-PeCPD transgenic lines indicated that PeCPD regulates the root growth possibly though improving the biosynthesis or distribution of auxin.
     8) PeCPD is a promising gene that can be used to transform other crop or tree, since plant height, seed yield, stem diameter and resistance to salt are significantly increased in O35CG24lines due to heterogeneous expression of PeCPD.
引文
Allahverdiyeva Y, Mamedov F, Holmstrom M, Nurmi M, Lundin B, Styring S, Spetea C, Aro EM (2009) Comparison of the electron transport properties of the psbol and psbo2 mutants of Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1787 (10):1230-1237
    Andrzej B (2007) Metabolism of brassinosteroids in plants. Plant Physiology and Biochemistry 45 (2):95-107
    Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences 104 (34):13839-13844
    Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiol 130:504-513
    Bancos S, Szatmari AM, Castle J, Kozma-Bognar L, Shibata K, Yokota T, Bishop GJ, Nagy F, Szekeres M (2006) Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in arabidopsis. Plant Physiology 141 (1):299-309
    Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology 135 (3):1864-1864
    Bauer D, Viczian A, Kircher S, Nobis T, Nitschke R, Kunkel T, Kishore CS, Eva Adam P, Fejes E, Schafer E, Nagy F (2004) Constitutive Photomorphogenesis 1 and Multiple Photoreceptors Control Degradation of Phytochrome Interacting Factor 3, a Transcription Factor Required for Light Signaling in Arabidopsis. Plant Cell 16:1433-1445
    Benfey PN, Chua NH (1989) Regulated genes in transgenic plants. Science 244:174-181
    Bishop GJ, Harrison K, Jones J (1996) The Tomato Dwarf Gene Isolated by Heterologous Transposon Tagging Encodes the First Member of a New Cytochrome P450 Family. Plant Cell 8 (6):959-969
    Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131 (21):5341-5351
    Castle J, Szekeres M, Jenkins G, Bishop GJ (2005) Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology 57 (1):129-140
    Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22a-Hydroxylation Steps in Brassinosteroid Biosynthesis. Plant cell 10 (2):231-244
    Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal 26 (6):573-582
    Chou KC, Shen HB (2007) Large-scale plant protein subcellular location prediction. J Cell Biochem 100 (3):665-678
    Chou KC, Shen HB (2008) Cell-PLoc:a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protocols 3 (2):153-162
    Clough SJ, Bent AF (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743
    Clouse SD, Langford M, McMorris TC (1996) A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development. Plant Physiol 111 (3):671-678
    Clouse SD, Sasse JM (1998) Brassinosteroids:Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49 (1):427-451
    Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York
    Divi UK, Krishna P (2010) Brassinosteroids Confer Stress Tolerance. In:Plant Stress Biology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 119-135
    Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134 (15):2841-2850
    Eckenwalder JE (1996) Systematics and evolution of Populus. In:Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of populus and its implications for management and conservation. NRC Research, Ottawa, ON, Canada, pp 7-32
    Fujioka S, Choi YH, Takatsuto S, Yokota T, Li J, Chory J, Sakurai A (1996) Identification of castasterone,6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana. Plant Cell Physiol 37 (8):1201-1203
    Fujioka S, Noguchi T, Takatsuto S, Yoshida S (1998) Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry 49 (7):1841-1848
    Fujioka S, Takatsuto S, Yoshida S (2002) An Early C-22 Oxidation Branch in the Brassinosteroid Biosynthetic Pathway. Plant Physiology 130 (2):930-939
    Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M (2006) Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. The Plant Journal 45:765-774
    Fukuda H (1997) Tracheary Element Differentiation Plant Cell 9:1147-1156
    Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the Auxin-Inducible SAUR-AC1 Gene for Use as a Molecular Genetic Tool in Arabidopsis. Plant Physiology 104 (2):777-784
    Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray Analysis of Brassinosteroid-Regulated Genes in Arabidopsis. Plant Physiology 130 (3):1319-1334
    Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano- Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138 (5):849-859
    Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281 (5728):216-217
    Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138 (5):839-848
    Han KS, Ko KW, Nam SJ, Park SH, Kim SK (1997) Optimization of a rice lamina inclination assay for detection of brassinosteroids:Ⅰ. effect of phytohormones on the inclination activity. Journal of Plant Biology 40 (4):240-244
    Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes to Cells 11 (12):1381-1392
    He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science 307 (5715):1634-1638
    He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell Death Pathways. Current Biology 17 (13):1109-1115
    He YJ, Xu RJ, Zhao YJ (1996) Enhancement of Senescence by Epibrassinolide in Leaves of Mung bean seedling. Acta Phytophysiol Sin 22:58-56
    Hewitt F, Hough T, O'Neill P, Sasse J, Williams E, Rowan K (1985) Effect of Brassinolide and other Growth Regulators on the Germination and Growth of Pollen Tubes of Prunus avium using a Multiple Hanging-drop Assay. Functional Plant Biology 12 (2):201-211
    Hird DL, Worrall D, Hodge R, Smartt S, Paul W, Scott R (1993) The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to (3-1,3-glucanases. The Plant Journal 4 (6):1023-1033
    Hola D (2011) Brassniosteroid and photosynthesis. Brassinosteroids:A Class of Plant Hormone. Springer Science+Business Media B.V. doi:DOI 10.1007/978-94-007-0189-2_6
    Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243-2254
    Hong Z, Ueguchi-Tanaka M, Matsuoka M (2004) Brassinosteroids and Rice Architecture. Journal of Pesticide Science 29 (3):184-188
    Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal 32 (4):495-508
    Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A Rice Brassinosteroid-Deficient Mutant, ebisu dwarf (d2), Is Caused by a Loss of Function of a New Member of Cytochrome P450. The Plant Cell 15 (12):2900-2910
    Howell WM, Keller III GE, Kirkpatrick JD, Jenkins RL, Hunsinger RN, McLaughlin EW (2007) Effects of the plant steroidal hormone,24-epibrassinolide, on the mitotic index and growth of onion(Allium cepa) root tips Genet Mol Res 6 (1):50-68
    Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. The Plant Journal 24 (5):693-701
    Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17 (8):721-728
    Huang B, Chu CH, Chen SL, Juan HF, Chen YM (2006) A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cellular & Molecular Biology Letters 11 (2):264-278
    Ibanes M, Fabregas N, Chory J, Cano-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proceedings of the National Academy of Sciences 106 (32):13630-13635
    Iwasaki T, Shibaoka H (1991) Brassinosteroids Act as Regulators of Tracheary-Element Differentiation in Isolated Zinnia Mesophyll Cells. Plant and Cell Physiology 32 (7):1007-1014
    Jager CE, Symons GM, Nomura T, Yamada Y, Smith JJ, Yamaguchi S, Kamiya Y, Weller JL, Yokota T, Reid JB (2007a) Characterization of Two Brassinosteroid C-6 Oxidase Genes in Pea. Plant Physiology 143 (4):1894-1904
    Jager CE, Symons GM, Nomura T, Yamada Y, Smith JJ, Yamaguchi S, Kamiya Y, Weller JL, Yokota T, Reid JB (2007b) Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiol 143 (4):1894-1904
    Jain PK, Kochhar A, Khurana JP, Tyagi AK (1998) The psbO Gene for 33-kDa Precursor Polypeptide of the Oxygen-Evolving Complex in Arabidopsis thaliana-Nucleotide Sequence and Control of its Expression. DNA Research 5 (4):221-228
    Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. The Plant Journal 9 (5):701-713
    Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005a) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal 41 (5):710-721
    Kim GT, Tsukaya H, Saito Y, Uchimiya H (1999) Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. PNAS 96 (16):9433-9437
    Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leafcells. Genes Dev 12 (15):2381-2391
    Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The Regulation of DWARF4 Expression Is Likely a Critical Mechanism in Maintaining the Homeostasis of Bioactive Brassinosteroids in Arabidopsis. Plant Physiol 140 (2):548-557
    Kim S-K, Abe H, Little CHA, Pharis RP (1990) Identification of two brassinosteroids from the cambial region of scots pine (Pinus silverstris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. plant Physiol 94:1709-1713
    Kim SY, Kim BH, Nam KH (2010) Reduced expression of the genes encoding chloroplast-localized proteins in a cold-resistant bril (brassinosteroid-Insensitive 1) mutant. Plant Signaling & Behavior 5 (4):458-463
    Kim TW, Hwang JY, Kim Y-S, Joo SH, Chang SC, Lee JS, Takatsuto S, Kim S-K (2005b) Arabidopsis CYP85A2, a cytochrome P450, mediates the baeyer-villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17 (8):2397-2412
    Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature doi:10.1038
    Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, Yoshida S, Chua NH (1998) The Arabidopsis DIMINUTO/DWARF1 Gene Encodes a Protein Involved in Steroid Synthesis. The Plant Cell 10 (10):1677-1690
    Kobza J, Seemann JR (1989) Regulation of Ribulose-1,5-Bisphosphate Carboxylase Activity in Response to Diurnal Changes in Irradiance Plant Physiol 89 (3):918-924
    Koh S, Lee SC, Kim M-K, Koh J, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses Plant Molecular Biology 65 (4):453-466
    Krishna P (2003) Brassinosteroid-Mediated Stress Responses. J Plant Growth Regul 22 (4):289-297
    Larson PR, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J Forest Res 1:1-11
    Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213 (5):758-763
    Li F, Asami T, Wu X, Tsang EW, Cutler AJ (2007) A Putative Hydroxysteroid Dehydrogenase Involved in Regulating Plant Growth and Development. Plant Physiol 145 (l):87-97
    Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A Role for Brassinosteroids in Light-Dependent Development of Arabidopsis. Science 272 (5260):398-401
    Lisso J, Steinhauser D, Altmann T, Kopka J, Mussig C (2005) Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Research 33 (8):2685-2696
    Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, Wang G (2007) Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.) Plant Cell Reports 26 (12):2091-2099
    Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y (2007) GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal 51 (3):419-430
    Mussig C, Shin GH, Altmann T (2003a) Brassinosteroids Promote Root Growth in Arabidopsis Plant Physiol 133 (1261):1271
    Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, Nagy F, Maas C, Schell J, Koncz C, Szekeres M (1998) Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14 (5):593-602
    McCarty RE, Evron Y, Johnson EA (2000) The chloroplast atp synthase:A Rotary Enzyme? Annual Review of Plant Physiology and Plant Molecular Biology 51 (1):83-109
    Meudt WJ (1987) Investigations on the mechanism of the brassinosteroid response:VI. Effect of brassinolide on gravitropism of bean hypocotyls. Plant Physiol 83:195-198
    Miyazawa Y, Nakajima N, Abe T, Sakai A, Fujioka S, Kawano S, Kuroiwa T, Yoshida S (2003) Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. Journal of Experimental Botany 54 (393):2669-2678
    Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rew plant 61:291-315
    Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Archi Biochem Biophys 507 (1):194-203
    Moran PJ, Thompson GA (2001) Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiology 125 (2):1074-1085
    Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212 (2):199-204
    Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443 (7110):458-461
    Mussig C (2005) Brassinosteriod promoted growth. Plant Biol 7:110-117
    Mussig C, Fischer S, Altmann T (2002) Brassinosteroid-Regulated Gene Expression. Plant Physiology 129 (3):1241-1251
    Nakajima N, Shida A, Toyama S (1996) Effects of brassinosteroid on cell division and colony formation of Chinese cabbage mesophyll protoplasts. Jpn J Crop Sci 65:114-118
    Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide Induces IAA5, IAA19, and DR5, a Synthetic Auxin Response Element in Arabidopsis, Implying a Cross Talk Point of Brassinosteroid and Auxin Signaling. Plant Physiol 133:1843-1583
    Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids Control the Proliferation of Leaf Cells of Arabidopsis thaliana. Plant and Cell Physiology 43 (2):239-244
    Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1:A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Sciences 96 (26):15316-15323
    Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66 (1):194-211
    Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biol 2 (9):1460-1471
    Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in arabidopsis. J Biol Chem 280:17873-17879
    Nomura T, Nakayama, Reid MJB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113 (1):31-37
    Nomura T, Ueno M, Yamada Y, Takatsuto S, Takeuchi Y, Yokota T (2007) Roles of Brassinosteroids and Related mRNAs in Pea Seed Growth and Germination. Plant Physiol 143:1680-1688
    Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313 (810-812)
    Ohnishi T, Szatmari A-M, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006a) C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis. Plant Cell 18 (11):3275-3288
    Ohnishi T, Watanabe B, Sakata K, Mizutani M (2006b) CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Bioscience, Biotechnology, and Biochemistry 70:2070-2080
    Ohnishi T, Yokota T, Mizutani M (2009) Insights into the function and evolution of P450s in plant steroid metabolism. Phytochemistry 70:1918-1929
    Pasentsis K, Falara V, Pateraki I, Gerasopoulos D, Kanellis AK (2007) Identification and expression profiling of low oxygen regulated genes from Citrus flavedo tissues using RT-PCR differential display. J Exp Bot 58 (8):2203-2216
    Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004) The Cauliflower Mosaic Virus 35S Promoter Extends into the Transcribed Region. Journal of Virology 78 (22):12120-12128
    Pien S, Wyrzykowska J, Fleming AJ (2001) Novel marker genes for early leaf development indicate spatial regulation of carbohydrate metabolism within the apical meristem. The Plant Journal 25 (6):663-674
    Qin GH, Jiang YZ (2006) Genetic resources of poplar(Populus L.) of both native and exotic origins in China. J Shandong Forestry Sci Technol 6:60-63
    Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A, Parker JE, Teige M, Scherer GFE (2010) Roles of Arabidopsis Patatin-Related Phospholipases A in Root Development Are Related to Auxin Responses and Phosphate Deficiency. Molecular Plant 3 (3):524-538
    Ruonala R, Rinne PLH, Kangasjarvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20(1):59-74
    Sachs T (2000) Integrating Cellular and Organismic Aspects of Vascular Differentiation. Plant and Cell Physiology 41 (6):649-656
    Sakamoto T, Matsuoka M (2006) Characterization of constitutive photomorphogenesis and dwarfism homologs in rice (Oryza sativa L). J Plant Growth Regul 25 (3):245-251
    Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24:105-109
    Sasse J (2003) Physiological actions of brassinosteroids:an update. J Plant Growth Regul 22 (4):276-288
    Sax CM, Kays WT, Salamon C, Chervenak MM, Xu YS, Piatigorsky J (2000) Transketolase Gene Expression in the Cornea Is Influenced by Environmental Factors and Developmentally Controlled Events. Cornea 19 (6):833-841
    Scacchi E, Osmont KS, Beuchat J, Salinas P, Navarrete-Gomez M, Trigueros M, Ferrandiz C, Hardtke CS (2009) Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX. Development 136 (12):2059-2067
    Schluter U, Kopke D, Altmann T, Mussig C (2002) Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient cbbl mutant. Plant, Cell & Environment 25 (6):783-791
    Schuler MA (2011) P450s in plant-insect interactions. Biochimica et Biophysica Acta 1814 (1):36-45
    Schulera MA (1996) Plant Cytochrome P450 Monooxygenases. Critical Reviews in Plant Sciences 15 (3):235-284
    Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18 (3):651-664
    Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid 6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126 (2):770-779
    Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131 (1):287-297
    Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protocols 1 (4):2019-2025
    Sun Y, Fokar M, Asami T, Yoshida S, Allen R (2004) Characterization of the Brassinosteroid Insensitive 1 Genes of Cotton. Plant Molecular Biology 54 (2):221-232
    Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD (2005) Brassinosteroid Regulates Fiber Development on Cultured Cotton Ovules. Plant and Cell Physiology 46 (8):1384-1391
    Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Molecular Biology 50 (3):463-479
    Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. Journal of Experimental Botany 59 (1):17-24
    Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85 (2):171-182
    Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of Fructose-1,6-bisphosphatase and Sedoheptulose-l,7-bisphosphatase to the Photosynthetic Rate and Carbon Flow in the Calvin Cycle in Transgenic Plants. Plant and Cell Physiology 47 (3):380-390
    Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis:brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation Journal of Plant Growth Regulation 22 (3):259-271
    Terada R, Shimamoto K (1990) Expression of CaMV 35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389-392
    Tillich M, Hardel SL, Kupsch C, Armbruster U, Delannoy E, Gualberto JM, Lehwark P, Leister D, Small ID, Schmitz-Linneweber C (2009) Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. PNAS 106 (14):6002-6007
    Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM. (2003) CYP72B1 Inactivates Brassinosteroid Hormones:An Intersection between Photomorphogenesis and Plant Steroid Signal Transduction. Plant Physiol 133 (4):1643-1653
    Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired Resistance in Arabidopsis. Plant Cell 4 (6):645-656
    Wang TW, Cosgrove DJ, Arteca RN (1993) Brassinosteroid Stimulation of Hypocotyl Elongation and Wall Relaxation in Pakchoi (Brassica chinensis cv Lei-Choi). Plant Physiology 101 (3):965-968
    Wang XY, Wang CY, Olsson O (2005) Cloning and molecular characterisation of a gene encoding cytochrome P450 C-23 steroid hydroxylase (CYP90) from aspen. Acta Genet Sinica 32(4):384-392
    Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410 (6826):380-383
    Wilkinson JE, Twell D, Lindsey K (1996) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. Journal of Experimental Botany 48:265-275
    Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids Regulate Grain Filling in Rice. Plant Cell 20:2130-2145
    Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230 (6):1185-1196
    Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, Regulated by Hormones and the Environment, Encodes a Xyloglucan Endotransglycosylase. The Plant Cell 7 (10):1555-1567
    Yamamoto R, Fujioka S, Demura T, Takatsuto S (2001) Brassinosteroid Levels Increase Drastically Prior to Morphogenesis of Tracheary Elements. Plant Physiol 125:556-563
    Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007) Co-Regulation of Brassinosteroid Biosynthesis-Related Genes During Xylem Cell Differentiation. Plant and Cell Physiology 48 (1):74-83
    Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The Mechanisms of Brassinosteroids' Action:From Signal Transduction to Plant Development. Molecular Plant
    Yang NS, Christou P (1990) Cell type specific expression of a CaMV35S-GUS gene in transgenic soybean plants. Dev Genet 11:289-293
    Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proceedings of the National Academy of Sciences 107 (13):6100-6105
    Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell 109 (2):181-191
    Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany 55 (399):1135-1143
    Zurek DM, Rayle DL, McMorris TC, D. CS (1994) Investigation of Gene Expression, Growth Kinetics, and Wall Extensibility during Brassinosteroid-Regulated Stem Elongation. Plant Physiol 104 (2):505-513

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700