用户名: 密码: 验证码:
SVM和CBR的建模研究及其在转炉炼钢过程的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼钢是钢铁工业的重要生产过程,而转炉炼钢是最主要的炼钢生产方式。随着模型技术和计算机技术的不断发展,转炉炼钢生产的自动化水平得到不断提高。转炉炼钢二级过程控制是衡量生产自动化水平并关系冶炼钢水质量的关键环节,然而,因我国炼钢生产工艺和原料质量等方面的限制,国外引进的模型系统无法达到预期效果。因此,建立适合我国国情的转炉炼钢二级过程控制模型,对提高我国转炉炼钢生产自动化水平具有重要意义。本文以基于副枪的碱性氧气顶吹转炉为研究对象,针对转炉炼钢生产二级过程控制中所要涉及的模型展开系统深入地研究。本文主要包括以下内容:
     根据转炉炼钢生产对模型的实际需求情况,将所研究模型划分为三类,即主吹阶段控制模型,二吹阶段控制模型和预报模型。分别针对基于副枪的转炉炼钢生产中的三个关键问题开展相关的建模研究工作。
     1)提出基于支持向量机和案例推理的主吹阶段控制模型。针对主吹阶段石灰加入量问题,首先提出基于支持向量机的碱度偏差估计模型,用于估计炉渣实际碱度与目标碱度的偏差,进一步,将对碱度偏差的估计结果引入传统的石灰加入量计算公式,实现对石灰加入量计算的改进;针对主吹阶段氧气吹入量的计算,提出基于混合相似度案例检索的案例推理模型,在案例检索过程中采用基于几何相似和最近邻方法的混合相似度案例检索方法,对于不同的案例检索策略,分别采用加权求和方法和增量回归方法对相似案例进行重用,使所建立的模型能够充分挖掘数据中不同特性的信息。
     2)提出基于混合智能方法的二吹阶段控制模型。针对二吹阶段冷却剂加入量问题,首先提出基于支持向量机的冷却剂加入决策模型,确定是否需要加入冷却剂。如果需要加入,则建立基于支持向量机分类和基于案例推理回归的组合模型计算冷却剂加入量,以融合不同模型的优势;在对二吹阶段氧气量吹入量模型的研究中,提出基于动态案例库的案例库维护策略,同时,在案例检索过程中引入奖惩措施以改善相似度计算过程,以提高相似案例检索的精度和模型的精度。
     3)提出基于支持向量机和微粒群的熔池碳含量和温度预报模型。主要包括吹炼终点碳温预报模型、主吹阶段熔池碳温实时预报模型和二吹阶段熔池碳温实时预报模型。针对高维空间数据密度随维数增长而指数下降的问题,提出基于机理分析和互信息计算的变量选择策略,在此基础上,建立基于支持向量机的终点碳温预报模型,模型中所涉及参数使用微粒群方法确定,以提高模型精度;主吹阶段熔池碳温实时预报模型的建立以理论脱碳模型为基础,首先建立脱碳模型中关键参数与生产条件之间的关系,进而使用确定的参数建立脱碳模型,得到主吹阶段熔池碳含量的实时预报结果。主吹阶段熔池实时温度的预报描述为实时碳含量的函数,最终建立主吹阶段熔池碳温的实时预报模型;二吹阶段熔池实时碳含量和温度预报模型基于理论模型和案例推理方法建立,使用案例推理方法确定理论模型中的参数,实现各炉次模型参数的自学习,在实现二吹阶段熔池碳温实时预报的同时,实现对吹炼终点的控制。
Steelmaking production is an important process in steel industry and basic oxygen furnace (BOF) steelmaking is the most popular mode. With the development of modeling and computer technology, BOF steelmaking production automation is continuously improved. Process control of BOF steelmaking reflects the automation level and affects the quality of steel. However, due to constraints of steel production process and quality of raw material, the imported model systems can not achieve the desired results. Therefore, modeling suitable models for national conditons has great significance to improve the level of automation of BOF steel production. Sub-lance based basic oxygen furnace is selected as the object of study and the models related to the process control of BOF are deeply researched in this paper. The main contents of this paper are as follows:
     1) Support vector machine (SVM) and case based reasoning (CBR) based control models in main blow phase are researched. For lime addition amount control, an alkalinity deviation estimation model based on SVM is proposed to evaluate the difference between actual alkalinity and aim alkalinity of slag. Further more, traditional lime addition calculation formula is modified by introducing the alkalinity deviation; for the problem of oxygen blow volume control, a case-based reasoning model with mixed case retrieve and case reuse is proposed, k nearest neighborhood and geometrical similarity methods are used in case retrieve step and correspond to the weighted sum and incremental regression in reuse step to adequately mine the information from different aspects.
     2) The control models based on hybrid intelligent methods in second blowing stage are researched. For the coolant addition amount, SVM based decision model is built to determine whether the coolant is needed. If needed, SVM and CBR based combine model is adopted to calculate the coolant addition amount. For oxygen volume control, a dynamic case base strategy is applied and Bayesian rewards and punishment are introduced when calculating the similarity between current case and history case to improve the accuracy of case retrieval.
     3) SVM and particle swarm optimal (PSO) based carbon content and temperature prediction models mainly contain the endpoint prediction and real time prediction are researched. Mechanism analysis and mutual information calculation based variable selection are proposed to choose appropriate input variables for endpoint carbon content and temperature prediction. Then the SVM method is used for modeling and predicts the endpoint. In main blow stage, bath carbon content and temperature real-time forecasting model is built based on theory decarburization model. The second blowing bath carbon and temperature prediction models are based on experience model and CBR model. The real-time bath carbon content and temperature prediction can also realize the endpoint control.
引文
[1]刘浏.中国转炉炼钢技术的进步[J].钢铁,2005,40(02):1-5.
    [2]ALEKSASHIN S I, HOLLIAS G. Creation and growth of oxygen-converter steelmaking [J]. Metallurgist,2007,51 (1-2):60-66.
    [3]冯捷,张红文.转炉炼钢生产[M].北京:冶金工业出版社,2006.
    [4]Blanco C, Diaz M. Model of mixed control for carbon and silicon in a steel converter [J]. ISI1 International,1993,33 (7):757-763.
    [5]Zhang X, Garmhausen R C, Bolling S A, et al. Blowing correction model for the q-bop at u.s steel gary works [C]. Steelmaking Conference Proceedings,1995:709-713.
    [6]Fruehan R J. Current status and future developments in oxygen steelmaking [C]. The Sixth International Iron and Steel Congress, Nagoya Japan,1990:73-85.
    [7]Chou K C, Pal B, Reddy G. A general model for BOP decarburization [J]. ISIJ International,1993. 33 (8):862-868.
    [8]Modigell M, Traebert A, Monheim P, et al. A new tool for process modeling of metallurgical processes [J]. Computers & Chemical Engineering,2001,25:723-727.
    [9]Yugov P. Mechanism and kinetics of optimized slag formation in an oxygen converter [J]. Metallurgist,2005,49 (7-8):307-310.
    [10]杨文远,吴文东,王明林.转炉高效吹氧技术的研究与应用[J].炼钢,2005,21(1):1-5.
    [11]赵成林,林东.马嵩等.复吹转炉炼钢过程数学模拟:动力学模型[J].材料与冶金学报.2004,3(2):99-104.
    [12]汤天宇,杨素波,张大德等.攀钢120t转炉半钢炼钢终点控制模型[J].钢铁钒钛,2001,22(3):46-51.
    [13]喻淑仁.转炉炼钢过程静态控制及其数学模型[J].炼钢,1995,3:55-60.
    [14]周子兹,蒋慎言.LD转炉动态控制CRM模型[J].冶金自动化,1989,13(2):3-8.
    [15]史成钢.转炉控制动态校正模型的分析与改进[J].鞍钢技术,1992,5:36-41.
    [16]黄金侠,金宁德.转炉冶炼终点静态控制预测模型[J].炼钢,2006,22(1):45-48.
    [17]Snoeijer B. Static and dynamic model metallurical background. DANIELI CORUS,2004.
    [18]朱光俊,梁中渝.转炉炼钢静态控制优化模型[J].炼钢,1999,15(4):25-28.
    [19]刘春荣.宝钢转炉复吹改造后的计算机控制[J].冶金自动化.1991,15(4):9-15.
    [20]万雪峰,李德刚,廖相巍等.转炉炉气分析技术的发展及应用[J].鞍钢技术.2009,30(5):7-12.
    [21]张润宇,肖兵,张文弟.转炉钢水含碳量的估计[J].自动化学报,1993,19(3):381-383.
    [22]李彦平,潘德惠.BOF系统的炉气分析及其自动控制[J].控制与决策,1988,19(2):7-10.
    [23]Johansson A, Medvedev A, Widlund D. Model-based estimation of decarburization rate and carbon content in the basic oxygen steelmaking process [C]. Industry Applications Conference, Rome Italy,2000:2578-2583.
    [24]Medvedev A, Johansson R, Birk W. Model-based estimation of molten metal analysis in the LD converter:experiments at ssab tunnplat ab in lulea [J]. IEEE Transactions on Industry Applications, 2002,38 (2):565-570.
    [25]胡志刚,谭明祥,刘浏等.在150 t转炉上用质谱仪进行钢水连续定碳[J].钢铁研究学报,2003,15(4):61-65.
    [26]张贵玉,万雪峰,林东等.基于炉气分析的熔池碳含量及温度变化研究[J].钢铁研究学报,2006,18(11):56-59.
    [27]石知机,汪国才,李应江.炉气分析终点控制技术在马钢转炉的应用[J].钢铁,2007,42(4):24-26.
    [28]Li S, Wei X L, Yu L X. Numerical simulation of off-gas formation during top-blown oxygen converter steelmaking [J]. Fuel,2011,90(4):1350-1360.
    [29]于立业,徐林,王建辉等.基于声强的转炉氧枪枪位控制专家系统[J].冶金自动化,2005,6:11-14.
    [30]刘浏.转炉控制信息与在线检测技术(上)[J].冶金自动化,2000,2:5-9.
    [31]刘浏.转炉控制信息与在线检测技术(下)[J].冶金自动化,2000,3:5-8.
    [32]Evestedt M, Medvedev A. Model-based slopping warning in the LD steel converter process [J]. Journal of Process Control,2009,19 (6):1000-1010.
    [33]Horvath G, Pataki B, Strausz G. Black-box modeling of a complex industrial process [C]. IEEE Conference and Workshop on ECSB,1999:60-66.
    [34]艾立群.人工神经网络在钢铁工业中的应用[J].钢铁研究学报,1999,9(4):60-63.
    [35]Jimenez J, Mochon J, Ayala J S, et al. Blast furnace hot metal temperature prediction through neural networks-based models [J].ISIJ International,2004,44 (3):573-580.
    [36]Radhakrishnan V R, Mohamed A R. Neural networks for the identification and control of blast furnace hot metal quality [J]. Journal of Process Control,2000,10 (6):509-524.
    [37]Wang J, P. Van Der Wolk P J, Van Der Zwaag S. Effects of carbon concentration and cooling rate on continuous cooling transformations predicted by artificial neural network [J]. ISIJ International,1999,39 (10):1038-1046.
    [38]Trzaska J, Dobrzanski L A. Application of neural networks for designing the chemical composition of steel with the assumed hardness after cooling from the austenitising temperature [J]. Journal of Materials Processing Technology,2005, (164-165):1637-1643.
    [39]Kong L X, Hodgson P D, Collinson D C. Modelling the effect of carbon content on hot strength of steels using a modified artificial neural network [J]. ISIJ International 1998,38 (10):1121-1129.
    [40]Pernia-Espinoze A, Castejon-Limas M, Gonzez-Marcos A, et al. Steel annealing furnace robust neural network model [J]. lronmaking and Steelmaking,2005,32 (5):418-427.
    [41]Kubat C. Taskin H, Artir R, et al. Bofy-fuzzy logic control for the basic oxygen furnace (BOF) [J]. Robotics and Autonomous Systems.2004,49 (3-4):193-205.
    [42]Frattini Fileti A M, Pacianotto T A, Pitasse Cunha A.. Neural modeling helps the BOS process to achieve aimed end-point conditions in liquid steel [J]. Engineering Application of Artificial Intelligence,2006,19(1):9-17.
    [43]Szekely N. Simplifying the model of a complex industrial process using input variable selection [J]. Periodica Polytechnica Electrical Engineering,2003,47 (1-2):141-147.
    [44]Cox I J, Lewis R W, Ransing R S, et al. Application of neural computing in basic oxygen steelmaking [J]. Journal of Material Processing Technology,2002,120:310-315.
    [45]Valyon J, Horvath G. A sparse robust model for a Linz-Donawitz steel converter [J]. IEEE Transactions on Instrumentation and Measurement,2009,58 (8):2611-2617.
    [46]田民乐,刘少民.基于模糊神经网络的炼钢炉静态建模[J].北京科技大学学报,1998,20(2):136-139.
    [47]王永富,李小平,柴天佑等.转炉炼钢动态过程预设定模型的混合建模与预报[J].东北大学学报(自然科学版),2003,24(8):715-718.
    [48]黄云,齐振亚,黄履仁.利用人工神经网络系统预报钢水温度[J].炼钢,2001,17(5):43-46.
    [49]杨立红,刘浏,何平.基于双输出神经网络的转炉碳温控制模型[J].钢铁,2002,37(11):13-16.
    [50]Yang L H, Liu L, He P. [%P] prediction and control model for oxygen-converter process at the endpoint based on adaptive neuro-fuzzy system [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation,2002:1901-1905.
    [51]Wang X, Li S Y, Wang Z J. A multiple RBF NN modeling approach to BOF endpoint estimation in steelmaking process [C]. International Symposium on Neural Networks,2004:57-73.
    [52J Wang X, Wang Z J, Tao J. Multiple Neural Network Modeling Method for Carbon and Temperature Estimation in Basic Oxygen Furnace [C]. International Symposium on Neural Networks, 2006:870-875.
    [53]Ding X Y, Wang J, Yang S P. Predictive model of BOF based on LM-BP neural network combining with learning rate [C]. Knowledge Acquisition and Modeling,2009. KAM'09. Second International Symposium on, Wuhan,2009:155-157.
    [54]Han M and Zhao Y. Robust relevance vector machine with noise variance coefficient [C].2010 IEEE World Congress on Computational Intelligence, Barcelona. Spain,2010:3571-3576.
    [55]Wang X Z, Han M, Wang Y J. Applying input variables selection technique on input weighted support vector machine modeling for BOF endpoint prediction [J]. Engineering Application of Artificial Intelligence,2010,23(9):1012-1018.
    [56]王心哲,韩敏.基于变量选择的转炉炼钢终点预报模型[J].控制与决策,2010,25(10):1593-1597.
    [57]王心哲,韩敏,杨溪林等.基于支持向量机碱度偏差估计的石灰加入量模型[J].控制理论与应用,2009,26(12):1415-1418.
    [58]谢书明,高宪文.柴天佑.基于灰色模型的转炉炼钢终点预报研究[J].钢铁研究学报.1999,11(4):9-12.
    [59]谢书明,柴天佑,陶钧.一种转炉炼钢动态终点预报的新方法[J].自动化学报,2001,27(1):136-139.
    [60]柴天佑,谢书明,杜斌等.基于RBF神经网络的转炉炼钢终点预报[J].中国有色金属学报,1999,9(4):868-872.
    [61]陶钧,谢书明,柴天佑.基于遗传算法和径向基函数神经网络的转炉炼钢模型[J].系统仿真学报,2000,12(3):241-245.
    [62]谢书明,孙廷玉,柴天佑等.转炉炼钢智能动态终点控制[1J].控制理论与应用,2001,18(3):346-352.
    [63]谢书明,陶钧,柴天佑.基于神经网络的转炉炼钢终点控制[J].控制理论与应用,2003,20(6):903-907.
    [64]Tao J, Wang X, Chai T Y, et al. Intelligent control method and application for BOF steelmaking process [C].15th 1FAC World Congress, Barcelona, Spain,2002:439-444.
    [65]郭亚芬,杜斌.宝钢有副枪转炉吹炼终点控制模型研究与应用[J].冶金自动化,2003,S1:45-48.
    [66]Dong Z K, Wang X, Wang X B, et al. Application of weighted multiple models adaptive controller in the plate cooling process [J]. Acta Automatica Sinica,2010,36 (8):1144-1150.
    [67]Tian H X, Mao Z Z, Wang A N. Hybrid modeling for soft sensing of molten steel temperature in LF [J]. Journal of Iron and Steel Research, International,2009,16 (4):1-6.
    [68]张立岩,柴天佑.氧化铝回转窑制粉系统磨机负荷的智能控制[J].控制理论与应用,2010,27(]]):1471-1478.
    [69]Wai R J, Lee J D, Chuang K L. Real-time PID control strategy for maglev transportation system via particle swarm optimization [J]. IEEE Transactions on Industrial Electronics,2011,58 (2): 629-646.
    [70]张绍德,毛雪菲,毛雪芹.基于最近邻聚类支持向量机辨识的的电弧炉电极逆控制[J].控制理论与应用,2010,27(7):909-915.
    [71]Kittisupakorn P, Thitiyasook P, Hussain M A, et al. Neural network based model predictive control for a steel pickling process [J]. Journal of Process Control,2009,19 (4):579-590.
    [72]Bouhouche S, Lahreche M, Bast J. Control of heat transfer in continuous casting process using neural networks [J]. Acta Automatica Sinica,2008,34 (6):701-706.
    [73]陈治明,罗飞,黄晓红等.基于混沌优化支持向量机的轧制力预测[J].控制与决策,2009,24(06):808-812.
    [74]工永富,王殿辉,柴天佑.基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿[J].自动化学报,2010,36(3):412-420.
    [75]Zervas P L, Tatsis A, Sarimveis H, et al. Development of a novel computational tool for optimizing the operation of fuel cells systems:Application for phosphoric acid fuel cells [J]. Journal of Power Sources,2008,185 (1):345-355.
    [76]Zhu D F, Zheng Z, Gao X Q. Intelligent optimization-based production planning and simulation analysis for steelmaking and continuous casting process [J]. International Journal of Iron and Steel Research.2010,17 (9):19-24,30.
    [77]Stephane N, Jean Marc L L. Case-based reasoning for chemical engineering design [J]. Chemical engineering research and design,2008,86:648-658.
    [78]白锐,佟绍成,柴天佑.从数据中提取生料浆配料过程运行控制的模糊规则[J].控制与决策,2010,25(7):1015-1020.
    [79]柴天佑,丁进良,王宏等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515.
    [80]Das A, Maiti J, Banerjee R N. Process control strategies for a steel making furnace using ANN with bayesian regularization and ANFIS [J]. Expert Systems with Applications,2010,37 (2): 1075-1085.
    [81]李勇,吴敏,曹卫华等.基于线性规划和遗传-粒子群算法的烧结配料多目标综合优化方法[J].控制理论与应用,2011,28(12):1740-1746.
    [82]王万雷,杨静萍,薄洪光.基于微粒群和满足质量约束的组炉方案优化方法[J].控制理论与应用,2010,27(4):509-512.
    [83]Atighehchian A, Bijari M, Tarkesh H. A novel hybrid algorithm for scheduling steel-making continuous casting production [J]. Computers and Operations Research,2009,36 (8):2450-2461.
    [84]Vapnik V. The nature, of statistical learning theory [M]:Springer-Verlag,1995.
    [85]Cover T, Thomas J. Elements of Information Theory[M]:John Wiley,1990.
    [86]Alex J S, Bernhard S. A tutorial on support vector regression [J]. Statistics and Computing,2004, 14(3):199-222.
    [87]Baccarini L M R, Rocha V V, Menezes B R, et al. SVM practical industrial application for mechanical faults diagnostic [J]. Expert Systems with Applications, In Press, Corrected Proof:
    [88]Cao S G, Liu Y B, Wang Y P. A forecasting and forewarning model for methane hazard in working face of coal mine based on LS-SVM [J]. Journal of China University of Mining and Technology,2008,18 (2):172-176.
    [89]Cerqueira A S, Ferreira D D, Ribeiro M V, et al. Power quality events recognition using a SVM-based method [J]. Electric Power Systems Research,2008,78 (9):1546-1552.
    [90]Chen K Y, Chen L S, Chen M C, et al. Using SVM based method for equipment fault detection in a thermal power plant [J]. Computers in Industry,2011,62 (1):42-50.
    [91]Demir B, Erturk S. Clustering-based extraction of border training patterns for accurate svm classification of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters,2009,6 (4): 840-844.
    [92]Ferras M, Leung C C, Barras C, et al. Comparison of speaker adaptation methods as feature extraction for SVM-based speaker recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing,2010,18(6):1366-1378.
    [93]Huang C, Zhang R, Chen Z, et al. Predict potential drug targets from the ion channel proteins based on SVM [J]. Journal of Theoretical Biology,2010,262 (4):750-756.
    [94]Jazebi S, Vahidi B, Jannati M. A novel application of wavelet based SVM to transient phenomena identification of power transformers [J]. Energy Conversion and Management,2010,52 (2):1354-1363.
    [95]Kim S K, Park Y J, Toh K A, et al. SVM-based feature extraction for face recognition [J]. Pattern Recognition,2010,43 (8):2871-2881.
    [96]McLaren M, Vogt R, Baker B, et al. Data-driven background dataset selection for svm-based speaker verification [J]. IEEE Transactions on Audio, Speech, and Language Processing,2010,18 (6): 1496-1506.
    [97]Moustakidis S P, Theocharis J B, Giakas G. A fuzzy decision tree-based SVM classifier for assessing osteoarthritis severity using ground reaction force measurements [J]. Medical Engineering and Physics,2010,32 (10):1145-1160.
    [98]Ranaee V, Ebrahimzadeh A, Ghaderi R. Application of the PSO-SVM model for recognition of control chart patterns [J]. ISA Transactions,2010,49 (4):577-586.
    [99]Salahshoor K, Kordestani M, Khoshro M S. Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers [J]. Energy,2010.35 (12):5472-5482.
    [100]Tao S H, Chen D Z, Zhao W X. Fast pruning algorithm for multi-output LS-SVM and its application in chemical pattern classification [J]. Chemometrics and Intelligent Laboratory Systems, 2009,96(1):63-69.
    [101]Wu X J, Huang Q, Zhu X J. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM [J]. International Journal of Hydrogen Energy, 2011,36(1):885-892.
    [102]Yuan X F, Wang Y N, Wu L H. SVM-based approximate model control for electronic throttle valve [J]. IEEE Transactions on Vehicular Technology,2008,57 (5):2747-2756.
    [103]桂卫华,宋海鹰,阳春华Hammerstein-Wiener模型最小二乘向量机辨识及其应用[J].控制理论与应用.2008,25(3):393-397.
    [104]Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process [J]. IEEE Transactions on Automation Science and Engineering,2009,6 (4): 730-743.
    [105]Yelamos I, Escudero G, Graells M, et al. Performance assessment of a novel fault diagnosis system based on support vector machines [J]. Computers and Chemical Engineering,2009,33 (1): 244-255.
    [106]上社斌,宋秀安.转炉炼钢生产技术[M],北京:化学工业出版社,2008.
    [107]Schank R. Dynamic Memory:A Theory of Reminding and Learning in Computers and People [M]. New York:Cambridge University Press 1982.
    [108]Ani E C, Avramenko Y, Kraslawski A, et al. Selection of models for pollutant transport in river reaches using case based reasoning [J]. Computer Aided Chemical Engineering.2009,27:537-542.
    [109]Baruque B. Corchado E, Mata A, et al. A forecasting solution to the oil spill problem based on a hybrid intelligent system [J]. Information Sciences,2010,180 (10):2029-2043.
    [110]Castro J L, Navarro M, Sanchez J M, et al. Loss and gain functions for CBR retrieval [J]. Information Sciences,2009,179 (11):1738-1750.
    [111]Corchado J M, Bajo J, DePaz J F, et al. An execution time neural-CBR guidance assistant [J]. Neurocomputing,2009,72 (13-15):2743-2753.
    [112]Cunningham P. A taxonomy of similarity mechanisms for case-based reasoning [J]. IEEE Transactions on Knowledge and Data Engineering,2009,21 (11):1532-1543.
    [113]Darder M, Valera A, Nieto E, et al. Multisensor device based on Case-Based Reasoning (CBR) for monitoring nutrient solutions in fertigation [J]. Sensors and Actuators B:Chemical,2009,135 (2): 530-536.
    [114]Farah I R, Boulila W, Ettabaa K S, et al. Interpretation of multisensor remote sensing images: multiapproach fusion of uncertain information [J]. IEEE Transactions on Geoscience and Remote Sensing,2008,46 (12):4142-4152.
    [115]Florez-Puga G, Gomez-Martin M A, Gomez-Martin P P, et al. Query-Enabled Behavior Trees [J]. IEEE Transactions on Computational Intelligence and Al in Games.2009,1 (4):298-308.
    [116]Juarez J M, Guil F, Palma J, et al. Temporal similarity by measuring possibilistic uncertainty in CBR [J]. Fuzzy Sets and Systems,2009,160 (2):214-230.
    [117]Jun O, Lowther D A. A hybrid design model for electromagnetic devices [J]. IEEE Transactions on Magnetics,2009,45 (3):1442-1445.
    [118]Lin R H. An intelligent model for liver disease diagnosis [J]. Artificial Intelligence in Medicine, 2009,47(1):53-62.
    [119]Lopez B, Pous C, Gay P, et al. eXiT*CBR:A framework for case-based medical diagnosis development and experimentation [J]. Artificial Intelligence in Medicine,2011,51(2):81-91.
    [120]Luo X, Shen G Q, Fan S. A case-based reasoning system for using functional performance specification in the briefing of building projects [J]. Automation in Construction,2010.19 (6): 725-733.
    [121]Mendes E, Mosley N. Bayesian network models for web effort prediction:a comparative study [J]. IEEE Transactions on Software Engineering,2008,34 (6):723-737.
    [122]Montani S. How to use contextual knowledge in medical case-based reasoning systems:A survey on very recent trends [J]. Artificial Intelligence in Medicine.2011,51(2):125-131.
    [123]Negny S, Le Lann J M, Bertrand B, et al. Acceleration of the retrieval of past experiences in case based reasoning:application for preliminary design in chemical engineering [J]. Computer Aided Chemical Engineering.2008,25:1009-1014.
    [124]Reguera Acevedo P, Fuertes Martinez J J, Dominguez Gonzalez M. et al. Case-Based Reasoning and system identification for control engineering learning [J]. IEEE Transactions on Education,2008.51 (2):271-281.
    [125]Stephane N. Hector R, Marc L L J. Effective retrieval and new indexing method for case based reasoning:Application in chemical process design [J]. Engineering Applications of Artificial Intelligence,2010,23 (6):880-894.
    [126]Tung Y H, Tseng S S. Weng J F, et al. A rule-based CBR approach for expert finding and problem diagnosis [J]. Expert Systems with Applications,2010.37 (3):2427-2438.
    [127]Van Den Branden M, Wiratunga N, Burton D, et al. Integrating case-based reasoning with an electronic patient record system [J]. Artificial Intelligence in Medicine,2011,51(2):117-123.
    [128]Chen Y, Rangarajan G, Feng J, et al. Analyzing multiple nonlinear time series with extended Granger causality [J]. Physics Letters A,2004,324:26-35.
    [129]Qiao Z, McAleer M, Wong W K. Linear and nonlinear causality between changes in consumption and consumer attitudes [J]. Economics Letters,2009,102 (3):161-164.
    [130]Guo S, Seth A K, Kendrick K M, et al. Partial Granger causality-Eliminating exogenous inputs and latent variables [J]. Journal of Neuroscience Methods,2008,172 (1):79-93.
    [131]Costantini V, Martini C. The causality between energy consumption and economic growth:A multi-sectoral analysis using non-stationary cointegrated panel data [J]. Energy Economics,2010,32 (3):591-603.
    [132]Chiou-Wei S Z, Chen C F, Zhu Z. Economic growth and energy consumption revisited-Evidence from linear and nonlinear Granger causality [J]. Energy Economics,2008,30 (6): 3063-3076.
    [133]李伟明,穆志纯.基于案例推理的冷轧负荷分配模型研究[J].系统仿真学报,2006,18(8):2162-2165.
    [134]孟祥宁,张海鹰,朱苗勇.转炉炼钢过程静态控制模型的改进[J].材料与冶金学报,2004,3(4):246-249.
    [135]王建辉,徐林,方晓柯等.基于一类GA-RBF神经网络的转炉炼钢静态模型控制[J].东南大学学报(自然科学版),2005,35:90-94.
    [136]Xu R, Chen Y W. Generalized N-dimensional principal component analysis (GND-PCA) and its application on construction of statistical appearance models for medical volumes with fewer samples [J]. Neurocomputing,2009,72 (10-12):2276-2287.
    [137]Reid M K, Spencer K L. Use of principal components analysis (PCA) on estuarine sediment datasets:The effect of data pre-treatment [J]. Environmental Pollution,2009,157 (8-9):2275-2281.
    [138]Hsieh P C, Tung P C.A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition [J]. Pattern Recognition,2009,42 (5):978-984.
    [139]Hsu C C, Chen M C, Chen L S. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring [J]. Expert Systems with Applications,2010,37 (4):3264-3273.
    [140]Hu H. ICA-based neighborhood preserving analysis for face recognition [J]. Computer Vision and Image Understanding,2008,112 (3):286-295.
    [141]Kuo S C, Lin C J, Liao J R.3D reconstruction and face recognition using kernel-based ICA and neural networks [J]. Expert Systems with Applications,2011,38 (5):5406-5415.
    [142]Kwak N, Kim C, Kim H. Dimensionality reduction based on ICA for regression problems [J]. Neurocomputing,2008,71(13-15):2596-2603.
    [143]Ye Y. Zhang Z L, Zeng J, et al. A fast and adaptive ICA algorithm with its application to fetal electrocardiogram extraction [J]. Applied Mathematics and Computation,2008,205 (2):799-806.
    [144]Deville Y, Hosseini S, Deville A. Effect of indirect dependencies on maximum likelihood and information theoretic blind source separation for nonlinear mixtures [J]. Signal Processing,2011,91 (4):793-800.
    [145]Freiman M, Werman M, Joskowicz L. A curvelet-based patient-specific prior for accurate multi-modal brain image rigid registration [J]. Medical Image Analysis,2011,15(1):125-132.
    [146]Jung C S, Seo H, Kang H G. Estimating redundancy information of selected features in multi-dimensional pattern classification [J]. Pattern Recognition Letters,2011,32 (4):590-596.
    [147]Kulkarni A, Naveen Kumar B S C, Ravi V, et al. Colon cancer prediction with genetics profiles using evolutionary techniques [J]. Expert Systems with Applications,2011,38 (3):2752-2757.
    [148]Ong J L, Seghouane A K. Feature selection using mutual information in CT colonography [J]. Pattern Recognition Letters,2011,32 (2):337-341.
    [149]Zhang H, Guan C, Li Y. A linear discriminant analysis method based on mutual information maximization [J]. Pattern Recognition,2011,44 (4):877-885.
    [150]Lee C M, Ko C N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm [J]. Neurocomputing,2009,73 (1-3):449-460.
    [151]Ray R N, Chatterjee D, Goswami S K. An application of PSO technique for harmonic elimination in a PWM inverter [J]. Applied Soft Computing,2009,9 (4):1315-1320.
    [152]Shayeghi H, Pirayeshnegab A, Jalili A, et al. Application of PSO technique for GEP in restructured power systems [J]. Energy Conversion and Management,2009,50 (9):2127-2135.
    [153]Shayeghi H, Shayanfar H A. Jalilzadeh S, et al. Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO [J]. Energy Conversion and Management.2009, 50 (10):2554-2561.
    [154]Shayeghi H, Shayanfar H A, Jalilzadeh S, et al. A PSO based unified power flow controller for damping of power system oscillations [J]. Energy Conversion and Management,2009,50 (10): 2583-2592.
    [155]Han M, Wang X Z, Wang Y J. Applying ICA on Neural Network to Simplify BOF Endpiont Predicting Model [C]. IEEE World Congress on Computational Intelligence, Hongkong,2008: 772-777.
    [156]R Boom. Sublance technology for oxygen steelmaking [J]. Steel Technology lnternatioanl. 1994,10 (2):90-94.
    [157]Robertson K J, Balajee S R, Shearer J M, et al. The Sublance Dynamic Control Operation and its Efect on the Performance of the Inland Steel Company's No.4 BOF Shop [C]. Steelmaking Conference Proceedings,1989:159-166.
    [158]Ramaseder N, Pirklbauer W, Kalisch J. Sublance system for blowing process control [J]. MPT. 1993,3:42-45.
    [159]Apeldoorn G J. Hubbeling P D. Gootjes P.达涅利康力斯副枪系统的应用[J].钢铁,2004,39(11):29-32.
    [160]章文超.转炉副枪系统型式与国产化[J].世界钢铁,2010,(2):23-26.
    [161]Hubbeling P D, Oostermeijer G A转炉副枪和动态控制[J].钢铁,2007,42(4):83-86.
    [162]夏升华,邵克志.济钢120t转炉副枪测量系统[J].冶金自动化,2004,(3):62-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700