用户名: 密码: 验证码:
超声珩齿非谐振单元变幅器的设计理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮是机械动力传递的最主要的元器件,齿轮传动由于其传动功率范围大,传动效率高、传动比准确、寿命长、安全可靠等特点,具有其它传动不可替代的优势,得到广泛应用。以齿轮为代表的基础零部件不仅是我国装备制造业的基础性产业,也是我国国民经济建设各领域的重要基础。
     为了提高齿轮的承载能力和缩小传动装置的尺寸,各国普遍采用硬齿面技术。而当前我国的硬齿面齿轮精加工技术明显落后于发达国家。将超声振动引入传统的珩齿工艺中进行超声辅助复合加工是硬齿面齿轮精加工技术的一种新的探索和尝试,其目的在于利用超声振动的特点改进传统珩齿技术的不足,充分发挥珩齿在硬齿面齿轮精加工中的优势,从而实现高质量、高效率、低成本的齿轮精密加工的目标。
     超声辅助珩齿的关键技术之一是振动系统的设计,这也是后续所有研究工作的基础,为此,2009年国家自然科学基金资助了本课题组提出的“非谐振单元变幅器设计理论及其齿轮超声剃珩应用”(No.50975191)项目。本文瞄准“非谐振单元变幅器设计理论”这一关键问题进行了创新性研究,目的是解决不同结构、尺寸齿轮的振动系统的设计问题,使齿轮的振动模态、振动频率、振幅等满足超声珩齿加工的要求。本文主要完成以下研究工作:
     (1)纵向振动变幅器的设计
     对于小直径的齿轮,在变幅杆的推动下主要表现为一维纵向振动,其弯曲振动和径向振动可以忽略不计。将小直径齿轮简化为等截面圆柱杆,则由齿轮、固定螺母及变幅杆组成的变幅器的结构形式、振动特点与复合变幅杆相同。应用复合变幅杆的设计原理设计了纵向振动变幅器,并得到较准确的计算结果。分析比较了提高纵振变幅器振幅的措施,提出了针对大输出端变幅杆应用场合的改进式级联变幅杆。
     (2)齿轮及圆板、环板的弯曲振动
     齿轮的弯曲振动理论是设计弯曲振动变幅器的基础。将齿轮简化为与其分度圆等径的圆板或环板,应用Mindlin中厚板振动理论计算齿轮的弯曲振动,通过与有限元分析结果的比较,说明采用中厚板理论虽然计算复杂,但计算精度高,远优于经典薄板理论。针对沿径向阶梯变厚度齿轮、沿径向任意变厚度圆板、环板、带均布减重孔的齿轮,基于Mindlin中厚板振动理论创新性的提出了计算其弯曲振动频率的方法,通过与有限元分析结果的比较,证明了所提出的方法能够得到较准确的计算结果。
     (3)弯曲振动变幅器的设计
     弯曲振动变幅器是超声珩齿非谐振单元变幅器的主要形式。基于中厚板振动理论,深入分析了弯曲振动变幅器的振动特点,提出了多种数学模型和计算方法,结合实验,确定了合理可行的弯曲振动变幅器设计理论和方法。在此基础上对弯曲振动变幅器的振幅分布特性做了分析,提出了提高变幅器振幅的措施。此外,对弯曲振动变幅器有限元模态分析方法做了探讨。
     (4)由二分之一波长变幅杆组成的弯曲振动
     理论和实验都表明,在弯曲振动变幅器中,固定螺母的长度会对变幅器的频率产生影响,固定螺母越长则变幅器频率越低,反之变幅器频率越高。另外,在弯曲振动变幅器中加入固定板单元也会对变幅器频率产生影响。据此提出由二分之一波长变幅杆组成的弯曲振动变幅器的设计思想,变幅杆按二分之一波长设计,通过改变螺母或固定板的尺寸来调节变幅器频率。从理论上对这种结构的变幅器做了初步的探索研究。
     (5)径向振动变幅器的设计
     径向振动变幅器是超声珩齿非谐振单元变幅器的第三种形式。对于大孔径的齿轮,相应的变幅杆直径也大,变幅器的径向振动增强。如果齿轮做纯径向振动,则这也是一种轴对称的振动模态,可以用来进行齿轮的超声复合加工。基于纵、径耦合振动理论提出了径向振动变幅器的设计理论和数学模型,利用有限元分析方法验证了设计结果的准确性。此外对径向振动变幅器的频率特性和振幅特性做了分析,并提出了径向振动变幅器的改进结构。
     通过以上理论与实验研究,形成了超声珩齿非谐振单元变幅器较为完善的设计理论体系,满足了超声珩齿加工的要求,为今后更深层次的超声珩齿理论研究和实验研究提供了基础。
Gear is the most important component of the mechanical power transmission. It has the advantages of wide range power, high transmission efficiency, accurate drive ratio, long life and safety so as to irreplaceable and extensive use. The gear as the basic components of machinery products is the foundational industry in the national economy development.
     To raise bearing capacity of gears and reduce the size of transmission devices, hardened-tooth gears are widely used in many countries. However china's precision finishing technology of hardened-tooth gears is significantly behind the developed countries. It is a new attempt to introduce the ultrasonic vibration to traditional gear honing processing, the purpose is to use the advantages of the ultrasonic vibration cutting to overcome the traditional honing disadvantage, give full play to the advantage of gear honing in the precision finishing technology, and achieve the goal of gear machining at high quality, high efficient and low cost.
     The design of vibration system is one of the key technologies in ultrasonic gear honing, and also is the further study base. Just for this reason, the project proposed by our research team, named "design theory of transformer with non-resonance structure and its application in ultrasonic gear honing and shaving"(No.50975191) was supported by national natural science foundation in2009. The key problem of "design theory of transformer with non-resonance structure" is focused to be solved and innovative research is carried out in this paper, its purpose is to solve the resonance of vibration system composed of gear and horn, and to make vibration mode and frequency and amplitude of gear meet the ultrasonic machining requirements. The following contents are mainly researched in this paper:
     (1) The design of longitudinal vibration transformer
     For small-diameter gear, its vibration mode of gear is one-dimensional longitudinal vibration driven by ultrasonic horn, its radial vibration and bending vibration can be neglected. The small diameter gear is simplified as a cylindrical rod, and then the system formed by the gear and fixing nut and transformer show the same features as compound ultrasonic horn. The longitudinal vibration transformer is designed using the design principle of the composite horn, and a more accurate calculation is obtained. In the last, the amplitude of longitudinal vibration transformer is also analyzed, and a new cascade horn is proposed to increases the amplitude of longitudinal vibration, it is suitable for the application of the large output horn.
     (2) Axisymmetric flexural vibration of gear and circular plate, annular plate
     Gear axisymmetric flexural vibration is fundamental of design the flexural vibration transformer. Gear is simplified as a circular plate which diameter is equal to gear's pitch circle diameter, and then Mindlin theory of moderately-thick plate vibration is used in the calculation of the gear flexural vibration. The comparison between the calculated results with FEM analysis results show it is more reasonable and accurate to analyze the vibration of gear using Mindin theory than using thin plate theory. Based on Mindlin theory, respectively methods are proposed to calculate the vibration frequency of circular plates with variable thickness along the radial and circular plates with circumferencially distributed holes. Comparisons of calculated results with FEM results prove that this method is reasonably accurate.
     (3) The design of gear flexural vibration transformer
     Gear flexural vibration transformer is the main vibration form of transformer with non-resonance structure in ultrasonic gear honing. Based on Mindlin theory, through in-depth analysis of vibration characteristics of the gear flexural vibration transformer, multiple computational model is proposed, and then the reasonably practicable design theories and methods of the flexural vibration transformer are identified binding experiments. Furthermore, amplitude distribution characters is analyzed and the measures to increase amplitude is raised. In some extend, the analysis of flexural vibration transformer with FEM is explored.
     (4) Flexural vibration transformer composed by half-wavelength horn
     Theories and experiments have shown that the length of nut will have an impact to the frequency of the transformer in flexural vibration amplitude transformer. The longer the fixed nut is, the lower frequency the transformer has, and on the contrary the amplitude transformer will have higher frequency. In addition, the adding of the fixed plate element to flexural vibration amplitude transformer will exert influence over the frequency of the transformer. Based on the results, we put forward a design idea of flexural vibration transformer composed by half-wavelength amplitude transformer. The amplitude transformer is designed as half wavelength and it adjusts the frequency by changing the size of the nut or fixed plate. Theoretically, a preliminary exploration is done on the transformer with this kind of structure.
     (5) The design of radial vibration transformer
     Radial vibration amplitude transformer is the third vibration form of the ultrasonic gear honing transformer with non-resonant Structure. The greater the aperture of gears is, the greater the diameter of horns, and the stronger the radial vibration of transformer. The gear's pure radial vibration is also a kind of axisymmetric vibration modes that can be used for compound ultrasonic machining of gears. Based on the longitudinal and radial coupled vibration theory, we present a design theory and mathematical model of radial vibration transformer and verify the accuracy of the design results using finite element analysis method. In addition, an analysis of frequency characteristics and amplitude characteristics of the radial vibration amplitude transformer is also conducted and the improved structure of it is proposed.
     The above theoretical and experimental studies could help shape a fairly complete design theoretical system of ultrasonic gear honing transformer with non-resonant structure, meets the requirements of the ultrasonic gear honing. These creative researches will have set up a basis for the further theoretical and experimental studies on ultrasonic gear honing in the future.
引文
[1]2011年4月齿轮行业信息[EB/OL].中国齿轮专业协会http://www.cncgma.org/new-nr.asp?nclassid=115&id=2638.
    [2]魏冰阳,方宗德,周彦伟,等.螺旋锥齿轮超声振动研磨的声弹性机理[J].中国机械工程,2004,(06):16-20.
    [3]张欣,张耀东.论硬齿面齿轮的应用[J].承钢技术,2006,(2-3):57-59.
    [4]中国齿轮行业“十二五”发展规划纲要[EB/OL].中国齿轮专业协会http://www.cncgma.org/new-nr.asp?anclassid=35&nclassid=&id=2617nclassid=115&id= 2638.
    [5]梁国星.镀膜CBN珩轮激光钎焊理论分析与实验研究[D].太原:太原理工大学,2010年.
    [6]EMAG公司.以刮代磨至臻完善[J].航空制造技术,2009,(10):152-153.
    [7]庄中.汽车齿轮加工的新技术和发展动向[J].汽车工艺与材料,2008,(6):43-47.
    [8]燕芸.硬齿面齿轮加工技术现状分析[J].机械管理开发,2009,24(4):95-96.
    [9]张满栋.电镀CBN硬珩轮珩齿机理及动态仿真分析[D].太原:太原理工大学,2010年.
    [10]陈学杰.强力珩工艺的特点分析及在新项目上的合理应用[J].汽齿科技,2011,(1):1-7.
    [11]Lv.M, Zhang.M.D, Ya.G, et al. Investigation of manufacturing technology in electroplating CBN on gear-horning-tool[C]. Key Engineering Materials,2006,315: 593-596.
    [12]Lv.M, Ma.H.M, Xu.Z.L. Study on new manufacturing process of gear-honing-tool for hardened gear [C]. Key Engineering Material s,2004,259:10-13.
    [13]Zhang.M.D, Lv.M, Ya.G, et al. Theoretical research on gear-honing and manufacturing technology with electroplated CBN honing wheel [J]. Key Engineering Materials,2006, 304:408-412.
    [14]马麟.超声辅助珩齿工艺的基础理论及材料去除机理研究[D].太原:太原理工大学,2009年.
    [15]曹凤国,张勤俭.超声加工技术[M].北京:化学工业出版社,2004.
    [16]张辽远.现代加工技术[J].北京:机械工业出版社2002.
    [17]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社2007.
    [18]限部淳一郎.精密加工一振动切削基础与应用(中译本)[M].北京:机械工业出版社,1985.
    [19]罗凯华.超声振动滚齿加工的实验研究[J].新技术新工艺.2001,(9):14-15.
    [20]尹韶辉,张辉润.超声振动滚齿加工试验.新技术新工艺.1995,(6):21-22.
    [21]B.Y.Wei, X.Z.Deng, Z.D.Fang. Study on ultrasonic-assisted lapping of gears[J]. International Journal of Machine Tools and Manufacture.2007,47(12-13):2051-2056.
    [22]魏冰阳,方宗德,周彦伟,等.螺旋锥齿轮振动研磨的运动模型研究与分析[J].机械科学与技术.2004,23(3):253-259.
    [23]魏冰阳,方宗德,周彦伟,等.螺旋锥齿轮超声振动研磨的声弹性机理[J].中国机械工程.2004,15(6):484-488.
    [24]魏冰阳,方宗德,周彦伟,等.超声研齿的材料去除机理与试验研究[J].中国机械工程.2006,(10):995-999.
    [25]魏冰阳,邓效忠,杨建军,等.超声研齿换能器的设计与研齿试验[J].声学技术.2007,26(4):767-770.
    [26]邓效忠,杨建军,魏冰阳,等.超声激励下弧齿锥齿轮研齿系统动态研磨力分析[J].中国机械工程.2008,18(19),2359-2361.
    [27]吴会军,杨建军,张波.超声研齿系统的有限元仿真与试验[J].工具技术.2009,43(8),17-19.
    [28]宋艳丽,魏冰阳,邓效忠.超声研齿振动子系统的研究与变幅杆设计[J].工具技术.2007,41(5),61-64.
    [29]杨建军,邓效忠,魏冰阳.螺旋锥齿轮超声研磨的试验研究[J].应用声学.2008,27(1),64-68.
    [30]杨建军,邓效忠,魏冰阳,等.弧齿锥齿轮激励研齿的动态研磨分析与试验[J].航空动力学报.2010,25(12),2839-2845.
    [31]吴能赏,邓效忠,杨建军.准双曲面齿轮超声研齿系统中变幅杆的设计与研究[J].机械传动.2008,(2),16-17.
    [32]吕明,王时英,轧刚.超声珩齿弯曲振动变幅器的位移特性[J].机械工程学报, 2008,44(7):106-111.
    [33]M.D Zhang, M.Lv, Shengqiang Yang. Theoretical Research on Tooth Profile Modification with Electroplated CBN Hard Honing Wheels [C]. Key Engineering Materials,2008(375),226-230.
    [34]LV Ming, ZHANG Mandong, XIONG Chenxi. The Error Analysis on Tooth Profiles with Electroplated CBN Hard Gear-honing-tools[C]. Key Engineering Materials, 2009(407),73-76.
    [35]Liang Guoxing, Lv Ming, Ma Lin, et al. Deformation mechanism analysis on laser brazing CBN Gear-honing-tool[J]. IET Conference Publications,2009,556 CP.
    [36]Liang Guoxing, Li Wenbin, Ya Gang, et al. Experimental studies on gear-honing-tool with laser brazing film CBN [C].2009 IEEE International Conference on Mechatronics and Automation, ICMA 2009,235-240.
    [37]Ma L, Lv M, Liang G.X, et al. The Analysis for Materials Removal Mechanism of Ultrasonic Auxiliary Gear Honing[C]. Advanced Materials Research,2008,53-54, 179-184.
    [38]李玉梅,张振华,吕明,等.超声振动珩齿材料去除机理的初步分析[J].科技情报开发与经济.2006,16(12),170-171.
    [39]梁国星,徐灵岩,张宇.超声波珩齿加工机理的研究[J].太原科技,2007,(4):71-72.
    [40]高晓旭,梁国星,王时英,等.超声波珩齿加工理论及实验研究.机械工程与自动化.2010(5),99-101.
    [41]WANG Shiying, LV Ming, YA Gang. Research on system design of ultrasonic-assisted honing of gears. Advanced Materials Research[C]. Advanced Materials Research,2008, Vols 53-54,191-196.
    [42]王时英.超声珩齿变幅器的设计理论与实验研究[D].太原:太原理工大学,2008年.
    [43]王时英,吕明,轧刚.非谐环盘及变幅杆组成的变幅器动力学特性研究[J].声学学报,2008,33(5):190-193.
    [44]王时英,吕明,轧刚.超声珩齿指数型变幅器的动力学特性[J].机械工程学报,2007,43(6):106-111.
    [45]张秀琴,王时英,吕明.高精度超声波辅助珩齿装置设计[J].机械设计与制造,2010,(8):53-55.
    [46]宫晓琴,王典国,吕明.基于超声珩齿的振动能量测试研究[J].机械管理开发,2008,23(3),7-8.
    [47]范国良,陈传梁.超声加工概况和未来展望[J].电加工与模具,1994,(6):7-11.
    [48]MINDLIN R D, DERESIEWICZ H. Thickness-shear and flexural vibration of circular disk[J]. Journal of Applied Physics,1954,25:1329-1332.
    [49]MINDLIN R D. Influence of rotary inertia and shear in flexural motion of isotropic elastic plates[J]. Journal of Applied Mechanics,1951,18(1):31-38.
    [50]MINDLIN R D, SCHACKNOW A, DERESIEWICZ H. Flexural vibration of rectangular plates [J]. Journal of Applied Mechanics.1956,23(3),430-436.
    [51]REISSNER E. A consistent treatment of transverse shear deformations in laminated anisotropic plates[J].AIAA,1972,10(5):716-718.
    [52]REISSNER E. The effect of transverse shear deformations on the bending of elastic plates[J]. Journal of Applied Mechanics,1945,12:69-77.
    [53]LEISSA A W. Vibration of plates. [R]. Washington DC.:US Government Printing Office,1969.
    [54]LEISSA A W. Recent research in plate vibrations:classical theory [J]. Shock and Vibration,1977,9(10):13-24.
    [55]LEISSA A W. Recent research in plate vibrations:complicating effects [J]. Shock and Vibration,1977,9(12):21-35.
    [56]W M Lee, J T Chen, Y.T.Lee. Free vibration analysis of circular plates with multiple circular holes using indirect BIEMs [J]. Journal of Sound and Vibration.2007,304(3): 811-830.
    [57]W M Lee, J T Chen. Eigensolutions of a circular flexural plate with multiple circular holes by using the direct BIEM and addition theorem [J]. Engineering Analysis with Boundary Elements.2010,34(12):1064-1071.
    [58]LEE Wei Ming, CHen Jeng Tzong. Free Vibration Analysis of a Circular Plate with Multiple Circular Holes by Using the Multipole Trefftz Method [J]. Computer Modeling in Engineering and Sciences.2009, (2):141-160.
    [59]Laura P A A, Masia U, Avalos D R. Small amplitude, transverse vibrations of circular plates elastically restrained against rotation with an eccentric circular perforation with a free edge [J]. Journal of Sound and Vibration.2006,292(3),1004-1010.
    [60]Ranjan Vinayak, Ghosh M K. Transverse vibration of thin solid and annular circular plate with attached discrete masses [J]. Journal of Sound and Vibration.2006,292(3), 999-1003.
    [61]Rdzanek Wojciech P, Rdzanek, Witold J. Asymptotic formulas for the acoustic radiation impedance of an elastically supported annular plate [J]. Journal of Sound and Vibration. 2007,301(3),544-559.
    [62]Nagaya K. Method for solving vibration problems of a plate with arbitrary shape [J], Journal of the acoustical society of America.1980,67(6),2029-2033.
    [63]Nagaya K. Vibration of a plate having a circular inside edge and a cornered outside edge consisting of arcs [J], Journal of the acoustical society of America.1979,66(6), 1788-1794.
    [64]余春华,董晓云,周叮.用Fourier边界展开的方法研究具有曲线边界的厚板的自由振动[J].振动与冲击.2005,24(2),99-105.
    [65]董晓云.任意中厚板的自由振动分析[D].南京:南京理工大学,2004年.
    [66]Wang D S, Zhao B, Zhou A P, et al. Stusy of acoustics characteristics of bending vibration disc theoretical analysis [J]. Key Engineering Materials,2001, (202),359-364.
    [67]武兰河,李向国,王立彬.圆板轴对称自由振动的微分容积解法[J].振动与冲击,2003,22(3):75-77.
    [68]武兰河.求解不连续中厚板自由振动的微分容积解法[J].计算力学学报,2004,21(1):121-128.
    [69]X Wang, J Yang, J Xiao. On free vibration analysis of circular annular plates with non-uniform thickness by the differential quadrature method[J]. Journal of Sound and Vibration.1995,184(3):547-551.
    [70]X Wang, A G Striz, C W Bert. Free Vibration Analysis of Annular Plates by the DQ Method [J]. Journal of Sound and Vibration.1993,144(1):173-165.
    [71]Chakraverty S, Bhat R B, Stiharu I. Free vibration of annular elliptic plates using boundary characteristic orthogonal polynomials as shape functions in the Rayleigh-Ritz method[J]. Journal of Sound and Vibration.2001,241(3):524-539.
    [72]Dawe D J, Roufaeil O L. Rayleigh-Ritz vibration analysis of Mindlin plates [J]. Journal of Sound and Vibration.1980,69(3):345-359.
    [73]K Y Lam, K C Hung, S T Chow. Vibration analysis of plates with cutouts by the modified Rayleigh-Ritz method[J]. Applied Acoustics.1989,28(1):49-60.
    [74]A J Morris. Introduction to finite element vibration analysis[J]. Journal of Sound and Vibration.1992,153(3):569.
    [75]Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures[J]. Discrete and Continuous Dynamical Systems-Part B.2009, 11(2):387-419.
    [76]曹志远,杨异田.厚板动力学理论及其应用[M].北京:科学出版社,1983.
    [77]钱伟长.不用Kirchhoff假设的弹性板理论初探[J].上海工业大学学报.1994,15(1):1-26.
    [78]曾德顺.厚圆柱壳的非轴对称自由振动[J].同济大学学报.1994,22(3):274-278.
    [79]孙全新,罗祖道.用能量法求解简谐力作用下圆板的振动[J].力学季刊,1983,(4):27-35.
    [80]W Karunasena, C M Wang* S Kitipornchai, et al. Exact solutions for axisymmetric bending of continuous annular plates[J]. Computers & Structures.1997,63(3),455-464.
    [81]Xu Xu, Feng Shan. Three-dimensional vibration of thick plate[J]. Journal of Shanghai University (English Edition).1998,2(2):112-116.
    [82]J So, A W Leissa. Three-dimensional vibration of thick circular and annular plates [J]. Journal of Sound and Vibration.1998,209(1):15-41.
    [83]K M Liew, K C Hung, M K Lim. A continuum three-dimensional vibration analysis of thick rectangular plates[J]. International Journal of Solids and Structures.1993,30(2), 3357-3379.
    [84]林仲茂.超声变幅杆的原理和设计[M].北京,科学出版社,1987.
    [85]贺西平,高洁.超声变幅杆设计方法研究[J].声学技术,2006,25(1),82-86.
    [86]贺西平.一端带有圆柱杆的复合纵振超声变幅杆的简明设计理论[JJ.声学技术.1994,13(2),85-88.
    [87]E Mori, K Itoh, A Imamura. Analysis of a short column vibrator by apparent elasticity method and its application[C]. Ultrasonic International 1997 Conference Proceedings. IPC Science and technology press.1997,262-266.
    [88]贺西平.纵振型超声变幅杆的等效四端网络[J].陕西师大学报,1994,22(1):87-88.
    [89]Seah K H W, Wong Y S, Lee L C. Design of tool holders for ultrasonic machining using FEM[J]. Journal of Materials Processing Technology,1993,37:801-816.
    [90]黄春霞.超声变幅杆的参数计算及有限元分析[D].湘潭:湘潭大学,2007.
    [91]赵莉,王时英,轧刚.超声加工中变幅杆的动力学分析[J].电加工与模具.2005,(2):35-38.
    [92]范国良,应祟福,林仲茂,等.一种新型的超声加工深小孔的工具系统[J].应用声学.1982,(1):2-7.
    [93]郑建新,徐家文,刘传绍,等.超声加工中局部共振机理的模拟试验研究[J].南京航空航天大学学报.2006,38(5):644-648.
    [94]曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势[J].电加工与模具.2005,S1:25-31.
    [95]李汾娟.基于ANSYS超声波辅助珩齿振动系统的设计与研究[J].机械管理开发.2009,24(5):31-32.
    [96]朱林,李继云,赵洪兵,等.弯曲振动圆盘振动特性试验研究[J].机械设计与制造.2010,(3):110-112.
    [97]祝锡晶.超声光整加工及表面成型技术[M].北京:中国科学文化出版社,2005.
    [98]王时英.圆锥过渡复合变幅杆动力学特性研究[J].太原理工大学学报,2007,38(2):95-97.
    [99]阮世勋.用电子计算机编制超声变幅杆设计用表[J].广西大学学报,自然科学版,1981,29-35.
    [100]贺西平.一端带有圆柱杆的复合纵振超声变幅杆的简明设计理论[J].声学技术.1994,13(2):85-88.
    [101]俞宏沛.纵向振动换能器工程设计理论(上)[J].水声通讯,1984,(3):17-58.
    [102]周光平,程存弟,鲍善惠.超声换能振动系统共振长度及速度增益的传输矩阵求法[J].陕西师范大学学报(自然科学版).1993,21(3):35-38.
    [103]赵福令,冯冬菊,郭东明,等.超声变幅杆的四端网络法设计[J].声学学报,2002,27(6):554-558.
    [104]张向慧.1/2波长复合形变幅杆的有限元分析.南京理工大学学报(自然科学板).2010,34(1):99-102.
    [105]涂振飞ANSYS有限元分析工程应用实例教程[M].北京:中国建筑工业出版社.2010.
    [106]张云电,王纯,喻家英.中间有圆柱孔的换能器和变幅杆[J].太原机械学院学报,1993,14(3):231-237.
    [107]王翠英,轧刚,王跃.超声喷丸中级联式变幅杆的动力学特性研究[J].机械设计与制造.2011,(3):216-218.
    [108]刘战锋,李培繁,王天琦.超声复合变幅杆的设计与研究[J].现代制造工程,2008,(2): 102-104.
    [109]Cortinez V H, Laura P A A. Analysis of vibrating rectangular plates of discontinuously varying thickness by means of the Kantorovich extended method[J]. Journal of Sound and Vibration,1990,137(3):457-461.
    [110]张英世,蒋持平.阶梯式矩形板的振动[J].应用力学学报,1998,15(4):109-115.
    [111]黄玉盈,梁广基.变厚度圆板的轴对称弯曲[J].华中工学院学报,1982,(2):119-124.
    [112]陈殿云,任宝生.径向任意变厚度圆板轴对称横向振动频率的计算[J].洛阳工学院学报,1998,19(2):86-90.
    [113]陈殿云,梁斌,杨民献.阶梯状或线性变厚度正交异性圆板的横向振动[J].工程力学,2002,19(6):154-158.
    [114]L E Luisoni, P A A Laura, R Grossi. Antisymmetric modes of vibration of a circular plate elastically restrained against rotation and of linearly varying thickness[J]. Journal of Sound and Vibration.1977,55(3):461-466.
    [115]B Singh, V Saxena. Axisymmetric vibration of a circular plate with double linear variable thickness[J]. Journal of Sound and Vibration.1995,179(5),879-897.
    [116]T A Lenox, H D Conway. An exact, closed form, solution for the flexural vibration of a thin annular plate having a parabolic thickness variation[J]. Journal of Sound and Vibration.1980,68(2),231-239.
    [117]王瑶,胡银燕.厚度变化对中厚环形板非线性振动的影响[J].暨南大学学报(自然科学与医学版).1999,20(3):23-27.
    [118]Jae Hoon Kang. Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation[J]. Computers & Structures.2003,81(16): 1663-1675.
    [119]李萍.用广义微分求积法分析变厚度圆板的自由振动[J].山西建筑.2006,32(12):45-47.
    [120]梁清香,张根全,刘梓才.圆孔对等厚薄圆板固有频率影响的研究[J].太原理工大 学学报.2003,34(1):66-69.
    [121]梁清香,戴保东,王灵卉.圆孔对中厚圆板固有频率影响的研究[J].太原重型机械学院学报.2003,24(2):103-105.
    [122]梁清香,赵坚,林金保.圆孔对厚圆板固有频率影响的研究[J].太原重型机械学院学报.2003,24(4):316-319.
    [123]左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社,1987.
    [124]郭继红.关于阻抗匹配问题的分析[J].辽宁大学学报(自然科学版).2001,28(3):257-259.
    [125]陈桂生.超声换能器设计[M].北京:海洋出版社,1984.
    [126]赵猛,张以都,马良文,等.装配结构模态仿真与实验对比研究[J].振动与冲击.2005,24(1):28-29.
    [127]杨军,吕露,王凯,等.基于ANSYS的装配体的模态分析[J].汽车实用技术.2011,(5):24-26.
    [128]Mindlin R D, Mediek M A. Extensional Vibrations of Elastic Plates[J]. Journal of Applied Mechanics.1959,26:561-569.
    [129]Richard Holland, E P EerNisse. Design of Resonant piezoelectric disk devices [R]. Boston, USA:MIT Press,1959.
    [130]Schnabel P. Dispersion of Thickness Vibrations of Piezoceramic Disk Resonators[J]. Trans. IEEE,1978, SU-25:16-24.
    [131]强盘富.有限尺寸压电陶瓷圆板的耦合振动[J].声学学报(中文版).1984,9(1):47-54.
    [132]杜怀璋.圆形超声辐射器的多维耦合振动[J].兰州大学学报(自然科学版).1999,35(2):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700