用户名: 密码: 验证码:
折射率可控的透明纳米复合光学薄膜的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,人们对于光学材料的需求越来越大。与此同时,人们对光学材料的功能化也提出了更高的要求,人们不仅希望光学材料具有良好的光学性质,同时也希望材料具有良好的稳定性,易加工性,耐热性。因此,传统的无机材料和有机材料已经很难满足人们对于光学材料功能性的要求。随着纳米技术的发展,纳米复合光学材料由于其兼顾了无机材料的稳定性,有机材料的易加工性和折射率可控等特点而越来越多的受到人们的广泛关注。纳米复合光学材料在电子学,光学,机械等方面表现出强大的应用前景。
     在本论文中,我们成功地将具有不同折射率的纳米材料引入到有机体系中,得到了一系列功能性的纳米复合光学薄膜。在第一部分中,在不需要进行化学修饰的条件下,我们将低折射率的介孔二氧化硅微球引入二氧化硅溶胶中,得到了具有仿生形貌的复合涂层。涂层具有良好的减反射防雾耐磨性能。经涂层处理后的玻璃基底在可见光区的光透过率可达99%以上,水滴在涂层表面铺展时间为158毫秒,涂层经负重300g钢丝棉摩擦后性质没有变化。在第二部分中,我们将商品化的晶态硅纳米粒子进行了表面修饰,使其可以稳定分散在常用有机溶剂中。接下来,我们将表面修饰后的晶态硅纳米粒子引入到不同的溶胶和聚合物中,得到了一系列具有高透明性,高折射率,高阿贝数的复合光学薄膜。膜层折射率可达1.990,同时膜层在可见光区透过率高于70%。在第三部分中,我们将单层氧化石墨烯经化学修饰使其可以以单层形式稳定分散,并将这种修饰后的单层氧化石墨烯复合进不同的有机体系中,并利用水合肼还原氧化石墨烯制备了一系列石墨烯掺杂的高折射率复合光学薄膜。膜层的折射率可达1.936,同时膜层在可见光区透过率在80%以上。
As one important part of modern society, optical materials are widely used inmilitary, traffic and daily life. People pay more attention to special refractive indexmaterials in different kinds of optical materials. Refractive index is an importantcharacterization of materials. Traditional method of preparing special refractive indexmaterials is to process inorganic or organic (polymer) materials. Inorganic materialsshow high stability and excellent optical performances, but the complexity of processrestricts the appliance. Although impact resistance and convenience of process oforganic (polymer) materials are better than inorganic materials, stability and opticalperformances of inorganic materials are slightly worse. So hybrid materials come intobeing because they integrate the advantages of inorganic and organic (polymer)materials.
     There are many difficulties to prepare high optical performance materials withspecial refractive index. For low refractive index hybrid materials, traditional etchingmethod limits the size of the production and increases the costs first. And secondcommon low refractive index inorganic particles are easy to aggregate in polymer anddecrease the transmittance of the hybrid materials. Finally mechanical stability oftraditional low refractive materials is poor due to porous structures. For high refractive index hybrid materials, on one hand, people try to synthesis high refractive indexpolymer, but most of polymers contain benzene rings or conjugation structures whichmay decrease the transmittance of materials. On the other hand, people attempt tointroduce modified inorganic particles with high weight content to increase therefractive index. However, too much ligand will decrease the refractive index of hybridmaterials and high weight content nanoparticles may increase the possibility ofaggregation between nanoparticles. In summary, it is an important issue to preparehybrid materials with high performance optical materials.
     In this dissertation, transparent hybrid optical films with special refractive indexwere prepared by incorporating nano-materials into organic sol and polymers byblending method. The work doesn’t broaden the method of preparing nanocomposites,but also have potential application in fabricating optical materials with special refractiveindex.
     In chapter one, we summarized the development and outlook of low refractiveindex hybrid materials and high refractive index hybrid materials respectively, andillustrated the high refractive index materials in the actual applications.
     In chapter two, we used simple method to prepare low refractive index, antifoggingand mechanical stable films doped with mesoporous SiO_2nanoparticles. The size ofnanoparticles prepared in neutral buffer solution is130nm. We dispersed themesoporous SiO_2nanoparticles containing surfactants into the ethanol and blended withsilica sol. We obtained the multifunctional optical films by spin-coating the hybrid soland calcinated to remove the surfactants. The preparation method has advantages asfollows: For one thing, mesoporous SiO_2nanoparticles containing surfactants candisperse in ethanol and silica sol without any aggregation. It can avoid complexchemical modification of mesoporous SiO_2nanoparticles first of all. The next it breakthrough the limitations that hybrid materials doped with unmodified mesoporous SiO_2nanoparticles can only be obtained by LBL method. Finally, the process of removing thesurfactants after solidification of the films can prevent organic sol diffusing into the porous structure and decreasing the air ratio. For another, mesoporous SiO_2nanoparticles embed in the silica film and increase the mechanical stability of the hybridfilms. With the increase of the mesoporous SiO_2nanoparticles weight content, therefractive index of the films decrease and the films show more better performances ofantireflective and antifogging. When the weight content of mesoporous SiO_2nanoparticles was6%, the refractive index of the film was1.24, the transmittance of thefilm was about99%, and the spreading time of water droplet was about158ms.Performances of low refractive index, antireflective and antifogging maintained wellafter the films were scratched repeatedly by weight loaded steel wool and filter paper.
     In chapter three, we prepared high refractive index transparent hybrid films byintroducing modified commercialized crystalline silicon nanoparticles into sol andpolymers. Modified crystalline silicon nanoparticles could disperse in organic solventsand mixed solvent of solvent and monomer. The dispersion of crystalline siliconnanoparticles was improved after modification, and the crystalline structure kept aftermodification. Crystalline silicon nanoparticles could increase the refractive index of thehybrid films effectively in the premise of high transparent. When the weight content ofcrystalline silicon nanoparticles was10%, the refractive index of c-Si/TiO_2hybrid filmwas about1.957. AFM images showed the surfaces of the films were flat and the phaseswere uniform. The transmittance of the film was about80%. We also prepared highrefractive index c-Si/SiO_2and c-Si/PVA hybrid films. Moreover, we modifiedcrystalline silicon nanoparticles with KH-570and made it polymerized with DMAAunder ultraviolet irradiation. When the refractive index was about1.990andtransmittance was about76.5%with nanophase content of25wt%.
     In chapter four, we synthesized monolayer graphene oxide and modified grapheneoxide to make it stable in organic system. We prepared graphene/TiO_2hybrid films byreducing the hybrid film of graphene oxide and TiO_2with hydrazine hydrate. Therefractive index of the film could be continuously regulated in the range of1.849–1.908by the content of graphene. The transmittance was above75%when the graphene was15wt%. Furthermore we also prepared graphene/polyurethane hybrid films. Therefractive index of the film increased with the weight content increase of graphene, andthe increase is a linear relationship. TEM images showed graphene was monolayer inthe nanocomposites, it is important for transparent hybrid films. The transmittance ofthe films was higher than85%when graphene is25wt%.
引文
[1] Blythe A. R., Vinson J.R. Polymeric materials for devices in optical fiber systems[J]. Polymers for Advanced Technologies2000,11,601.
    [2] Dunkers J. P. Cicerone M. T.; Washburn N. R. Collinear optical coherence andconfocal fluorescence microscopes for tissue engineering [J]. Optics Express2003,11,3074.
    [3] Yen C. T., Chen W. C., et al. Synthesis and properties of new polyimide-silicahybrid films through both intrachain and interchain bonding [J]. Polymer2003,44,7079.
    [4] Duc D. N., Tai N. H., Chen S. Y., et al. Controlled growth of carbonnanotube-graphene hybrid materials for flexible and transparent conductors andelectron field emitters [J]. Nanoscale2012,4,632.
    [5] Riza N. A. Advances in Hybrid Optics Physical Sensors for ExtremeEnvironments [J]. Optical Sensing and Detection2010,7726.
    [6] Bréchignac C, Houdy P, Lahmani M. Nanomaterials and nanochemistry [M].Berlin Heidelberg: Springer2007.
    [7] Allcock H. R. Inorganic-organic polymers [J]. Adv. Mater.,1994,6,106.
    [8] Declerck P, Houbertz R, Jakopic G, et al. High refractive indexinorganic-organic hybrid materials for photonic applications [J]. MaterialsResearch Society Symposium Proceedings,2008,1007,15.
    [9] Beecroft L. L, Ober C. K. Nanocomposite materials for optical applications [J].Chem. Mater.,1997,9,1302.
    [10] Janicki V, Wilbrandt S, Stenzel O, et al. Hybrid optical coating design foromnidirectional antireflection purposes [J]. J. Opt. A: Pure Appl. Opt.2005,7,9.
    [11] Yamada M, Tabuchi S. DNA-cyclodextrin-inorganic hybrid material forabsorbent of various harmful compounds [J]. Materials Chemistry and Physics2011,126,278.
    [12] Yamane S; Iwasaki N, Majima T. Feasibility of chitosan-based hyaluronic acidhybrid biomaterial for a novel scaffold in cartilage tissue engineering [J].Biomaterials2005,26,611.
    [13] Yin W, Li X, Withers PJ, et al. Non-contact characterization of hybridaluminium/carbon-fibre-reinforced plastic sheets using multi-frequencyeddy-current sensors [J]. Measurement Science Technology2010,21,105708.
    [14] Bescher E, Stulik D, Makenzie DJ, et al. Long-Term Protection of the LastJudgment Mosaic in Prague [J]. J. Sol-Gel Sci. Technol2000,19,215.
    [15] Schottner G. Hybrid Sol Gel-Derived Polymers: Applications of MultifunctionalMaterials [J]. Chem. Mater.2001,13,3422.
    [16] Hench L. L., West J. K. The sol-gel process [J]. Chem. Rev.1990,90,33.
    [17] Yang C., Wang G., Lu Z., Sun J., Zhuang J., Yang W. Effect of ultrasonictreatment on dispersibility of Fe3O4nanoparticles and synthesis of multi-coreFe3O4/SiO2core/shell nanoparticles [J]. J. Mater. Chem.,2005,15,4252.
    [18] Lu Y., Yin Y., Mayers B. T., Xia Y. Modifying the Surface Properties ofSuperparamagnetic Iron Oxide Nanoparticles through A Sol Gel Approach [J].Nano Lett.2002,2,183.
    [19] Sakai H., Kanda T., Shibata H., Ohkubo T., Abe M. Preparation of HighlyDispersed Core/Shell-type Titania Nanocapsules Containing a Single AgNanoparticle [J]. J. Am. Chem. Soc.2006,128,4944.
    [20] Akerman M. E., Chan W. C. W., et al Biological Sciences-Applied BiologicalSciences [J]. PNAS2002,99,12617.
    [21] Li L., Walda J, Manna L., Alivisatos A. P. Semiconductor Nanorod LiquidCrystals [J]. Nano. Lett.2002,2,557.
    [22] Walker G. W., Sundar V. C., Rudzinski C. M., Wun A. W., Bawendi M. G.,Nocera D. G. Quantum-dot optical temperature probes [J]. Appl. Phys. Lett.2003,83,3555.
    [23] Rodrigo V. S., Marcela M., Aldo J. G. One-Pot Synthesis and Processing ofTransparent, Conducting, and Free standing Carbon Nanotubes/PolyanilineComposite Films [J]. Chem. Mater.2010,22,5222.
    [24] Lebeau B, Innocenzi P. Hybrid materials for optics and photonics [J]. Chem. Soc.Rev.2011,40,886.
    [25] Irie M. Photochromism: Memories and Switches [J]. Chem.Rev.2000,100,1683.
    [26] Evans R. A., Hanley T. L., Davis T. P., et al. The generic enhancement ofphotochromic dye switching speeds in a rigid polymer matrix [J]. Nat. Mater.2005,4,249.
    [27] Levy D. Photochromic Sol Gel Materials [J]. Chem. Mater.1997,9,2666.
    [28] Lim C, Hong I. S., Kim, H, et al. Coating and Gas Permeation Properties ofUrushiol-Based Organic/Inorganic Hybrid Films [J]. J. Sol-Gel. Sci. Technol.2004,30,117.
    [29] Belleville P, Bonnin C, Priotton J. J. Room-Temperature Mirror PreparationUsing Sol-Gel Chemistry and Laminar-Flow Coating Technique [J]. J. Sol-GelSci. Technol.,2000,19,223.
    [30] Bescher E, Stulik E, Mackenzie J. D. Long-Term Protection of the LastJudgment Mosaic in Prague [J]. J. Sol-Gel Sci.Technol.2000,19,215.
    [31] Schottner G, Rose K, Posset, U, Scratch and Abrasion Resistant Coatings onPlastic Lenses—State of the Art, Current Developments and Perspectives [J]. J.Sol-Gel Sci. Technol.2003,27,71.
    [32] Saif M. J., Anwar J, Munawar A. A Novel Application of QuaternaryAmmonium Compounds as Antibacterial Hybrid Coating on Glass Surfaces [J].Langmuir,2009,25,377.
    [33] Lee S. M., Lee B. S., Byun T. G., Song K. C. Chain molecules at interfaces: Aversatile self-consistent lattice model [J]. Colloids Surf. A.2010,355,167.
    [34] Akamatsu Y, Makita K, Minami T Large Size Recyclable Colored Glass PlatesPrepared from Organic Colorant Dispersed Silica Sols by the Dipping Method [J].J. Sol-Gel Sci. Technol.2000,19,387.
    [35] Hofacker S, Schottner G. Hybrid Pigments via Sol-Gel Processing [J]. J. Sol-GelSci. Technol.1998,13,479.
    [36] Schubert E. F., Kim J. K., Xi J. Q. Low-refractive-index materials: A new classof optical thin-film materials [J]. Phys. Stat. Sol.2007,8,3002.
    [37] Mangaiyarkarasi D., Breese M. B. H., Ow Y. S. Fabrication of three dimensionalporous silicon distributed Bragg reflectors [J]. Applied Physics Letters2008,93,221905.
    [38] Streubel K., Rapp S., André J., Chitica N.1.26μm vertical cavity laser with twoInP/air-gap reflectors [J]. Electron. Lett.1996,32,1369.
    [39] Waltereit P., Brandt O., Trampert A., Ploog K. H. Nitride semiconductors free ofelectrostatic fields for efficient white light-emitting diodes [J]. Nature2000,406,865.
    [40] Ho S. T., McCall S. L., Jewell J. L., et al. High index contrast mirrors for opticalmicrocavities [J]. Appl. Phys. Lett.1990,57,1387.
    [41] Temelkuran B., Hart S. D., Benoit G., Joannopoulos J. D., Fink Y.Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2laser transmission [J]. Nature2002,420,650.
    [42] Ishizawa H. Ophtalmic-Sol-gel derived nanocrystalline MgF(2) thin films withlow refractive index [J]. J. Sol-Gel Sci. Technol.2008,47,224.
    [43] Zimmermann L., Weibel M., Caseri W., et al. Polymer nanocomposites withultralow refractive index [J]. Polym. Adv. Technol.,1993,4,1.
    [44] Aronson, B. J., Blanford, C. F., Stein, A. Solution-Phase Grafting of TitaniumDioxide onto the Pore Surface of Mesoporous Silicates: Synthesis andStructural Characterization [J]. Chem. Mater.1997,9,2842.
    [45] Juan, F.; Ruiz-Hitzky, E. Selective Functionalization of Mesoporous Silica [J].Adv. Mater.2000,12,430.
    [46] Corma, A., Jorda, J. L., Navarro, M. T., Rey, F. One step synthesis of highlyactive and selective epoxidation catalysts formed by organic–inorganic Ticontaining mesoporous composites [J]. Chem. Commun.1998,1899.
    [47] Yanagisawa T., Shimizu T., Kuroda K., Kato C. The Preparation ofAlkyltriinethylaininonium–Kaneinite Complexes and Their Conversion toMicroporous Materials [J]. Bull. Chem. Soc. Jpn.1990,63,988.
    [48] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature1992,6397,710.
    [49] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., et al A new family ofmesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am.Chem. Soc.1992,114,10834.
    [50] Torres-Costa V., Martin-Palma R. J. Application of nanostructured poroussilicon in the field of optics A review [J]. J. Mater. Sci.2010,45,2823.
    [51] Mohamad H. H., Kim S. J., Cheung M. C. Porous silicon and porous polymersubstrates for optical chemical sensors [J]. Journal of Nanophotonics2010,4,043513.
    [52] Kelly J.J., Kooij E. S., Meulenkamp E. A. Luminescence studies ofsemiconductor electrodes [J]. Electrochim Acta1999,45,561.
    [53] Ozdemir S., Gole J. L. The potential of porous silicon gas sensors [J]. CurrentOpinion in Solid State Material Science2007,11,92.
    [54] Uhlir A. Electrolytic Shaping of Germanium and Silicon [J]. Bell. Syst. Technol.J.1956,35,333.
    [55] Turner D. R. Electropolishing Silicon in Hydrofluoric Acid Solutions [J]. J.Electrochem. Soc1958,105,402.
    [56] Allongue P., Kieling V., Guerischer H. Etching mechanism and atomic structureof Si (111) surfaces prepared in NH4F [J]. Electrochim Acta1995,40,1353.
    [57] Robbie K., Friedrich L. J., Dew S. K. Fabrication of thin flms with highlyporous microstructures [J]. J. Vac. Sci. Technol. A.1995,13,1032.
    [58] Xi J. Q., Kim J. K., Schubert E. F. Silica Nanorod-Array Films with Very LowRefractive Indices [J]. Nano. Lett.2005,5,1385.
    [59] Theiss W. Optical properties of porous silicon [J]. Surf. Sci. Rep.1997,29,91.
    [60] Torres-Costa V., Mart n-Palma R. J. In-depth RBS study of optical layers basedon nanostructured silicon [J]. J. Non-Cryst Solids2006,352,2521.
    [61] Torres-Costa V., Mart n-Palma R. J. Optical characterization of porous siliconfilms and multilayer filters [J]. Appl. Phys. A.2004,79,1919.
    [62] Bruggeman. Berechnung verschiedener physikalischer Konstanten vonheterogenen Substanzen [J]. Ann. Phys.1935,416,636.
    [63] Looyenga H. Dielectric constants of heterogeneous mixtures [J]. Physica1965,31,401.
    [64] Yu H. Y., Matthew H. W., Wooley P. H. Effect of porosity and pore size onmicrostructures and mechanical properties of poly epsilon caprolactonehydroxyapatite composites [J]. Journal of Biomedical Materials Reaserch PartB-Applied Biomaterials2008,86B,541.
    [65] Wang Z. H., Zhang J. H., Tian Z. C., Wang Z. Y., et al. Organic–inorganichybrid photonic hydrogels as a colorful platform for visual detection of SCN-1[J]. Chem. Comm.2010,46,8636.
    [66] Canham L. T. Silicon quantum wire array fabrication by electrochemical andchemical dissolution of wafers [J]. Appl. Phys. Lett.1990,57,1046.
    [67] Dittrich T.H., Yu T. V., Rappich J. Room temperature electroluminescence froma c-Si p-i-n structure [J]. J. Appl. Phys2001,90,2310.
    [68] Martin-Palma R. J., Guerrero-Lemus R., Moreno J. D., Martinez-Duart J.M.,Herrero P. Cross-section TEM and Optical Characterization of Porous SiliconMultilayer Stacks [J]. J. Mater. Sci. Lett.1998,17,845.
    [69] Frohnhoff S., Berger M. G., Vescan L., et al. Formation techniques for poroussilicon superlattices [J]. Thin Solid Films1995,255,59.
    [70] Margolese D. I., Ciesla, U., Stucky D. G., et al. Organization of OrganicMolecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays[J]. Chem. Mater.1994,6,1176.
    [71] Huo Q., Feng P., Gier T. E., Sieger P., et al. Generalized synthesis of periodicsurfactant/inorganic composite materials [J]. Nature1994,368,317.
    [72] Leon R., Petroff P. M., Stucky G. D., et al. Surfactant controlled preparation ofmesostructured transition-metal oxide compounds [J]. J. Chem. Soc., Chem.Commun.1994,1387.
    [73] Antonelli D. M., Ying J. Y. Synthesis of Hexagonally Packed Mesoporous TiO2by a Modified Sol–Gel Method [J]. Angew. Chem. Int. Ed.1995,34,2014.
    [74] Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D. Nonionic Triblock andStar Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc.1998,120,6024.
    [75] Vaudry F., Khodabandeh S., Davis M. E. Synthesis of Pure AluminaMesoporous Materials [J]. Chem. Mater.1996,8,1451.
    [76] Ciesla U., Schacht S., Stucky G. D., Unger K. K., Schüth F. Formation of aPorous Zirconium Oxo Phosphate with a High Surface Area by aSurfactant-Assisted Synthesis [J]. Angew. Chem. Int. Ed.1996,35,541.
    [77] Sayari A., Liu P., Reddy J. S. Mesostructured Zirconium Oxide [J]. Mater. Res.Soc. Symp. Proc.1996,431,101.
    [78] Stein A., Fendorf M., Jarvie T. P., Mueller K. T., et al Salt-Gel Synthesis ofPorous Transition-Metal Oxides [J]. Chem. Mater.1995,7,304.
    [79] Janauer G. G., Dobley A., Guo J., Zavalij P., Whittingham M. S. Novel Tungsten,Molybdenum, and Vanadium Oxides Containing Surfactant Ions [J]. Chem.Mater.1996,8,2096.
    [80] Kim A. Y., Bruinsma P. J., Chen Y. L., Wang L. Q., Liu J. Amphotericsurfactant templating route for mesoporous zirconia [J]. Chem. Commun.1997,161.
    [81] Ulagappan N., Rao C. N. R. Mesoporous phases based on SnO2and TiO2[J].Chem. Commun.1996,1685.
    [82] Liu P., Liu J., Sayari A. Preparation of porous hafnium oxide in the presence of acationic surfactant [J]. Chem. Commun.1997,577.
    [83] Mercier L., Pinnavaia T. J. Mesoporous materials: Advantages of a uniform porestructure in the design of a heavy metal ion adsorbent for environmentalremediation [J]. Adv. Mater.1997,9,500.
    [84] Feng X., Fryxell G. E., Wang L.-Q., Kim Y. A., Liu J., Kemner K. M.Functionalized Monolayers on Ordered Mesoporous Supports [J]. Science1997,276,923.
    [85] Rhijin W. M. V., Vos D. E. D., Bossaert, W. D., et al Sulfonic acidfunctionalised ordered mesoporous materials as catalysts for condensation andesterification reactions [J]. Chem. Commun.1998,317.
    [86] Stein A., Melde B, J., Schroden R. C. Hybrid Inorganic–Organic MesoporousSilicates—Nanoscopic Reactors Coming of Age [J]. Adv. Mater.2000,12,1403.
    [87] Beck J. S, Vartuli J. C., Roth W. J., Schmitt, K., et al. Synthesis and comparativereactivity and electronic structural features of [MFez3S4]+cubane-type clusters (M=iron, cobalt, nickel)[J]. J. Am. Chem. Soc.1992,114,10834.
    [88] Kimura T., Saeki S., Sugahara Y., Kuroda K. A Organic Modification ofFSM-Type Mesoporous Silicas Derived from Kanemite by Silylation [J].Langmuir1999,15,2794.
    [89] Zhao X. S., Lu G. Q. Modification of MCM-41by Surface Silylation withTrimethylchlorosilane and Adsorption Study [J]. J. Phys. Chem. B.1998,102,1556.
    [90] Inagaki S., Fukushima Y., Kuroda K. Synthesis of highly ordered mesoporousmaterials from a layered polysilicate J. Chem. Soc. Chem. Commun.1993,680.
    [91] Lim M. H., Blanford C. F., Stein A. Synthesis and Characterization of a ReactiveVinyl-Functionalized MCM-41: Probing the Internal Pore Structure by aBromination Reaction [J]. J. Am. Chem. Soc.1997,119,4090.
    [92] Clark J. H., Macquarrie D. J. Catalysis of liquid phase organic reactions usingchemically modified mesoporous inorganic solids [J]. Chem. Commun.1998,853.
    [93] Diaz J. F., Balkus, K., Bedioui, F., Kurshev V., Keva L. Synthesis andCharacterization of Cobalt Complex Functionalized MCM-41[J]. Chem. Mater.1997,9,61.
    [94] Shephard D. S., Zhou W., Johnson B. F. G., et al. Site-Directed SurfaceDerivatization of MCM-41: Use of High-Resolution Transmission ElectronMicroscopy and Molecular Recognition for Determining the Position ofFunctionality within Mesoporous Materials [J]. Angew. Chem. Int. Ed.1998,37,2719.
    [95] Aronson B. J., Blanford,C. F., Stein A. Solution-Phase Grafting of TitaniumDioxide onto the Pore Surface of Mesoporous Silicates: Synthesis andStructural Characterization [J]. Chem. Mater.1997,9,2842.
    [96] Melde B. J., Holland H. T., Blanford C. F., Stein A. Mesoporous Sieves withUnified Hybrid Inorganic/Organic Frameworks [J]. Chem. Mater.1999,11,3302.
    [97] Inagaki S., Guan S., Fukushima Y., Ohsuma T., Terasaki O. Novel MesoporousMaterials with a Uniform Distribution of Organic Groups and Inorganic Oxide inTheir Frameworks [J]. J. Am. Chem. Soc.1999,121,9611.
    [98] Asefa T., MacLachlan M. J., Coombs N., Ozin G. A. Non-aqueoussupramolecular assembly of mesostructured metal germanium sulphides from(Ge44S10) clusters [J]. Nature1999,402,867.
    [99] Li X., Wang X., Hua Z. One-pot synthesis of magnetic and mesoporousbioactive glass composites and their sustained drug release property [J]. ActaMaterialia2008,56,3260.
    [100] Ye B., Trudeau M., Antonelli D. Synthesis and electronic properties ofpotassium fulleride nanowires in a mesoporous niobium oxide host [J]. Adv.Mater2001,13,29.
    [101] Krawiec P., Kaskel S. Thermal stability of high surface area silicon carbidematerials [J]. Jounal of Solid State Chemistry2006,179,2281.
    [102] Gao X. F., Jiang L. Biophysics: Water-repellent legs of water striders [J].Nature2004,432,36.
    [103] Li X., Gao J. P., Xue L. J., Han Y. C. Porous Polymer Films withGradient-Refractive-Index Structure for Broadband and OmnidirectionalAntirefection Coatings [J]. Adv. Funct. Mater.2009,19,1.
    [104] Kim J. K., Fischer A. J., Crawford J., et al. Light-Extraction Enhancement ofGaInN Light-Emitting Diodes by Graded-Refractive-Index Indium Tin OxideAnti-Reflection Contact [J]. Adv. Mater.2008,20,801.
    [105] Huang J. Y., Wang X. D., Wang Z. L. Bio-inspired fabrication of antireflectionnanostructures by replicating fly eyes [J]. Nanotechnology2008,19,025602.
    [106] Lee E. J., Lee H. M., Li Y., Hong L. Y., Kim D. P., Cho S. O. Hierarchical PoreStructures Fabricated by Electron Irradiation of Silicone Grease and theirApplications to Superhydrophobic and Superhydrophilic Films [J]. Macromol.Rapid. Commun.2007,28,246.
    [107] Zhao D. Y., Sun J. Y., Li Q. Z., Stucky G. D. Morphological Control of HighlyOrdered Mesoporous Silica SBA-15[J]. Chem. Mater.2000,12,275.
    [108] Hiller J., Mendelsohn J. D., Rubner M. F. Reversibly erasable nanoporousanti-reflection coatings from polyelectrolyte multilayers [J]. Nature Materials2002,1,59.
    [109] Zhang L., Qiao Z., Zheng M., Huo Q., Sun J. Rapid and substrate-independentlayer-by-layer fabrication of antirefection and antifogging integrated coatings [J].J. Mater. Chem.2010,20,6125.
    [110] Li X., Du X., He J. H. Self-Cleaning Antireflective Coatings Assembled fromPeculiar Mesoporous Silica Nanoparticles [J]. Langmuir2010,26,13528.
    [111] Du X., He J. H. Facile Fabrication of Hollow Mesoporous Silica Nanospheresfor Superhydrophilic and Visible/Near-IR Antireflection Coatings [J]. Chem.Eur. J.2011,17,8165.
    [112] Hoshikawa Y., Nomura A., Shimojima A., Okubo T. Mesoporous SilicaNanoparticles with Remarkable Stability and Dispersibility for AntireflectiveCoatings [J]. Chem. Mater.2010,22,12.
    [113] Yamaguchi M., Nakayama H., Yamada K., Imai H. Ultra low refractive indexcoatings consisting of mesoporous silica nanoparticles [J]. Optics Letters2009,34,2060.
    [114] Trout T. J., Schmieg J. J., Gambogi W. J., et al. Optical photopolymers: designand applications [J]. Adv. Mater.1998,10,1219.
    [115] Suzuki N., Tomita Y., Kojima T. Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films [J]. Appl. Phys. Letter.,2002,81,4121.
    [116] Houbertz R., Fr hlich L., Popall M., et al. Inorganic-organic hybrid polymers forinformation technology: from planar technology to3D nanostructures [J]. Adv.Eng. Mater.2003,5,551.
    [117] Sun Y., Forrest S. R. Organic light emitting devices with enhanced outcouplingvia microlenses fabricated by imprint lithography [J]. J. Appl. Phys.,2006,100,073106.
    [118] Kim W. S., Yoon K. B., Bae B. S.. Nanopatterning of photonic crystals with aphotocurable silica–titania organic–inorganic hybrid material by a UV-basednanoimprint technique [J]. J. Mater. Chem.,2005,15,4535.
    [119] Lü C., Yang B. High refractive index organic–inorganic nanocomposites: design,synthesis and application [J]. J. Mater. Chem.,2009,19,2884.
    [120] Dislich H. Plastics as Optical Materials [J]. Angew. Chem. Int. Ed. Engl.1979,18,49.
    [121]吕长利.新型高折射率环氧和环硫系光学树脂的制备和性能研究[D].吉林大学,2000.
    [122] Speight J. G. Lange’s handbook of chemistry (16th Edition)[M], New York:McGraw-Hill,2005.
    [123] Gao C., Yang B., Shen J. An improved dilatometer for polymers based onbeta–particle absorption [J]. J. Appl. Polym. Sci.,2000,75,1474.
    [124] Palik E. D. ed. Handbook of optical constants of solids [M]. Orlando: AcademicPress,1985.
    [125] Li Y. Q., Fu S. Y., Mai Y. W. Preparation and characterization of transparentZnO/epoxy nanocomposites with high-UV shielding efficiency [J]. Polymer2006,47,2127.
    [126] Demir M. M., Memesa M., Castignolles P., et al. PMMA/zinc oxidenanocomposites prepared by in-situ bulk polymerization [J]. Macromol. RapidCommun.2006,27,763.
    [127] Krogman K. C., Druffel T., Sunkara M. K. Anti-reflective optical coatingsincorporating nanoparticles [J]. Nanotechnology2005,16, S338.
    [128]刘毅飞.基于溶胶-凝胶的光功能性杂化膜层的制备和表征[M].吉林大学,2008.
    [129] French R. H., Glass S, J,, Ohuchi F, S,, et al. Experimental and theoreticaldetermination of the electronic structure and optical properties of three phases ofZrO2[J]. Phys. Rev. B: Condens. Mater.1994,49,5133.
    [130] Demir M. M., Memesa M., Castignolles P., et al. PMMA/zinc oxidenanocomposites prepared by in-situ bulk polymerization [J]. Macromol. RapidCommun.2006,27,763.
    [131] Liang L., Xu Y., Zhang L., et al. Polyvinylpyrrolidone/ZrO2–based sol–gel filmsapplied in highly reflective mirrors for inertial confinement fusion [J]. J. Sol-GelSci. Technol.2008,47,173.
    [132] Tsuzuki T. Abnormal transmittance of refractive-index-modified ZnO/organichybrid films [J]. Macromol. Mater. Eng.2008,293,109.
    [133] Liu L., Zheng Z., Wang X. High refractive index thin films ofZnS/polythiourethane nanocomposites [J]. Journal of Applied Polymer Science2010,117,1978.
    [134] Schulz H., M dler L., Pratsinis S. E., et al. Transparent nanocomposites ofradiopaque, flame-made Ta2O5/SiO2particles in an acrylic matrix [J]. Adv. Funct.Mater.2005,15,830.
    [135] Yin Y., Zhou S., Gu G., et al. Preparation and properties of UV-curablepolymer/nanosized indium-doped tin oxide (ITO) nanocomposite coatings [J]. J.Mater. Sci.2007,42,5959.
    [136] Kypriandou-Leodidou T., Althaus H. J., Wyser Y., et al. High refractive indexmaterials of iron sulfides and poly(ethylene oxide)[J]. J. Mater. Res.1997,12,2198.
    [137] Yang H. L., Quan R., Zhang G. H., et al. Preparation and optical constants of thenano-crystal and polymer composite Bi4Ti3O12/PMMA thin films [J]. Opt. LaserTechnol.2005,37,259.
    [138] Mataki H., Yamaki S., Fukui T. Nanostructured organic/inorganic composites astransparent materials for optical components [J]. Jpn. J. Appl. Phys. Part12004,43,5819.
    [139] Caseri W R. Nanocomposites of polymers and inorganic particles: preparation,structure and properties [J]. Mater. Sci. Technol.2006,22,807.
    [140] Schneider J., Fanter D., Bauer M., et al. Preparation and optical transparency ofcomposite materials from methacrylate ester copolymers and faujasites with anembedded azo dye [J]. Microporous Mesoporous Mater.2000,39,257.
    [141] Zhou R. J., Burkhart T. Optical properties of particle-filled polycarbonate,polystyrene, and poly(methyl methacrylate) composites [J]. J. Appl. Polym. Sci.2009,115,1866.
    [142] Shibahara S., Oka W. Transparent composite composition. WO03064530[P]2003.
    [143] Kang S., Lin H., Day D. E., et al. Optically transparent polymethyl methacrylatecomposites made with glass fibers of varying refractive index [J]. J. Mater. Res.1997,12,1091.
    [144] Suárez S., Devaux A., Baňuelos J., et al. Transparent zeolite-polymer hybridmaterials with adaptable properties [J]. Adv. Funct. Mater.2007,17,2298.
    [145] Li Y. Q., Fu S. Y., Yang Y., et al. Facile synthesis of highly transparent polymernanocomposites by introduction of core–shell structured nanoparticles [J]. Chem.Mater.2008,20,2637.
    [146] Althues H., Henle J., Kaskel S. Functional inorganic nanofillers for transparentpolymers [J]. Chem. Soc. Rev.2007,36,1454.
    [147] Caseri W. Nanocomposites of polymers and metals or semiconductors:Historical background and optical properties [J]. Macromol. Rapid Commun.2000,21,705.
    [148] Lin Z., Cheng Y. R., Lv H., Zhang L., Yang B. Preparation and characterizationof novel ZnS/sulfur-containing polymer nanocomposite optical materials withhigh refractive index and high nanophase contents [J]. Polymer2010,51,1424.
    [149] Heinrich J. L., Curtiz C. L., Credo G. M., Kavanagh K. L., Sailor M. J.Luminescent Colloidal Silicon Suspensions from Porous Silicon [J]. Science1992,255,66.
    [150] Nayfeh O. M., Antoniadis D. A., Mantey K., Nayfeh M. H. Uniform delivery ofsilicon nanoparticles on device quality substrates using spin coating fromisopropyl alcohol colloids [J]. Appl. Phys. Lett.2009,94,043112.
    [151] Jang S. J., Song Y. M., Yu J. S., Yeo C. I., Lee Y. T. Antireflective properties ofporous Si nanocolumnar structures with graded refractive index layers [J]. Opt.Lett2011,32,253.
    [152] Tsai R. Y., Kuo L. C., Ho F. C. Amorphous silicon and amorphous siliconnitride films prepared by a plasma-enhanced chemical vapor deposition processas optical coating materials [J]. Appl. Opt.1993,32,5561.
    [153] Papadimitrakopoulos F., Wisniecki P., Bhagwagar D. E. Mechanically attritedsilicon for high refractive index nanocomposites [J]. Chem. Mater.1997,9,2928
    [154] Kang Z. H., Zhang Z. D., Lee S. T., et al. A Polyoxometalate-AssistedElectrochemical Method for Silicon Nanostructures Preparation: From QuantumDots to Nanowires [J]. J. Am. Chem. Soc.2007,129,5326.
    [155] Kell J. A., Shukaliak A. M., Veinot J. G. C. Size-Dependent Reactivity inHydrosilylation of Silicon Nanocrystals [J]. J. Am. Chem. Soc.2011,133,9564.
    [156] Wehling T. O., Novoselov K. S., Morozov S. V. Molecular doping of graphene[J]. Nano. Lett.2008,8,173.
    [157] Ni Z. H., Wang H. M., Kasim J., et al. Graphene Thickness Determination UsingReflection and Contrast Spectroscopy [J]. Nano. Lett.2007,7,2758.
    [158] Roddaro S., Pingue P., Piazza V., Pellegrini V., Beltram F. The Optical Visibilityof Graphene: Interference Colors of Ultrathin Graphite on SiO2[J]. Nano. Lett.2007,7,2707.
    [159] Jung I., Pelton M., Piner R., Dikin D. A., et al Simple Approach forHigh-Contrast Optical Imaging and Characterization of Graphene-Based Sheets[J]. Nano. Lett.2007,7,3569.
    [160] Wang X. F., Chen Y. P., Nolte D. D. Strong anomalous optical dispersion ofgraphene: complex refractive index measured by Picometrology [J]. OpticsExpress2008,16,22105.
    [161] Bruna M., Borini S. Optical constants of graphene layers in the visible range [J].Appl. Phys. Lett.2009,94,031901.
    [162] Garnweitner G., Goldenberg L. M., Sakhno O. V., et al. Large-scale synthesis oforganophilic zirconia nanoparticles and their application in organic-inorganicnanocomposites for efficient volume holography [J]. Small2007,3,1626.
    [163] Monte F., Martínez O., Rodrigo J A., et al. A volume holographic sol-gelmaterial with large enhancement of dynamic range by incorporation of highrefractive index species [J]. Adv. Mater.,2006,18,2014.
    [164] Sakhno O. V., Goldenberg L. M., Stumpe J., et al. Effective volume holographicstructures based on organic–inorganic photopolymer nanocomposites [J]. J. Opt.A: Pure Appl. Opt.2009,11,024013.
    [165] Arpin K. A., Mihi A., Johnson H. T., et al. Multidimensional Architectures forFunctional Optical Devices [J]. Adv. Mater.2010,22,1084.
    [166] Kim W. S., Yoon K. B., Bae B. S. Nanopatterning of photonic crystals with aphotocurable silica–titania organic–inorganic hybrid material by a UV-basednanoimprint technique [J]. J. Mater. Chem.2005,15,4535.
    [167] Li Y. F., Zhang J. H., Yang B. Antireflective surfaces based on biomimeticnanopillared arrays [J]. Nano Today.2010,5,117.
    [168] Shanbhogue H., Nagendra C. L., Annapurna M., Kumar S., Thutupalli G.Multilayer antireflection coatings for the visible and near-infrared regions [J].Applied Optics1997,36,6339
    [169] Fernández-Hidalgo P., Martín-Palma R. J., Conde A., et al. Structural andchemical characterization of functional SiOxCy:H coatings for polymeric lenses[J]. J. Vac. Sci. Technol. B2004,22,2402.
    [170] Yu Y. Y., Chien W. C.; Wu T. H. Highly transparentpolyimide/nanocrystalline-titania hybrid optical materials for antireflectiveapplications [J]. Thin. Solid. Films2011,520,1495.
    [171] Mont F. W., Kim J. K., Schubert M. F., Schubert E. F., Siegel R. W.High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emittingdiodes [J]. Journal of Applied Physics2008,103,083120.
    [172] Taskar N. R., Chabra V., Dorman D., et al. Light efficient packagingconfigurations for led lamps using high refractive index encapsulants [J].US20060255353[P]2006.
    [173] Kim J. S., Yang S., Bae B. S. Thermally Stable Transparent Sol-Gel BasedSiloxane Hybrid Material with High Refractive Index for Light Emitting DiodeEncapsulation [J]. Chem. Mater.2010,22,3549.
    [174] Lin Y. H., You J. P., Shi F. G., et al. Development of High-Performance OpticalSilicone for the Packaging of High-Power LEDs [J]. IEEE Trans. Comp. Pack.Tech2010,33,761.
    [175] Schottner G., Rose K., Posset U. Scratch and Abrasion Resistant Coatings onPlastic Lenses—State of the Art, Current Developments and Perspectives [J]. J.Sol–Gel Sci. Technol.2003,27,71.
    [176] Hwang D. K., Moon J. H., Shul Y. G., Jung K. T., Kimand D. H., Lee D. W.Scratch Resistant and Transparent UV-Protective Coating on Polycarbonate [J]. J.Sol–Gel Sci. Technol.2003,26,783.
    [177] Nakayama N., Hayashi T., Synthesis of novel UV-curable difunctionalthiourethane methacrylate and studies on inorganic-organic nanocomposite hardcoatings for high refractive index plastic lenses [J]. Prog. Org. Coat.2008,62,274.
    [178] Min W. L., Jiang B., Jiang P. Bioinspired Self-Cleaning Antireflection Coatings[J]. Adv. Mater.2008,20,3914.
    [179] Sun C. H., Gonzalez A., Linn N. C. Templated biomimetic multifunctionalcoatings [J]. Appl. Phys. Lett.2008,92,051107.
    [180] Boden S. A., Bagnall D. M. Tunable reflection minima of nanostructuredantireflective surfaces [J]. Appl. Phys. Lett.2008,93,133108
    [181] McHale G., Shirtcliffe N. J., Newton M. I. Contact-Angle Hysteresis onSuper-Hydrophobic Surfaces [J]. Langmuir2004,20,10146.
    [182] Kanamori Y., Kobayashi K., Yugami H., Hane K. Subwavelength AntireflectionGratings for GaSb in Visible and Near-Infrared Wavelengths [J]. Jpn. J. Appl.Phys.2003,42,4020.
    [183] Kanamori Y., Sasaki M., Hane K. Broadband antireflection gratings fabricatedupon silicon substrates [J]. Opt. Lett.1999,24,1422.
    [184] Yang Y., Lu N., Xu H., Shi G., Xu M., Lin X., Li H., Wang W., Qi D., Lu Y.,Chi L. Biomimetic Corrugated Silicon Nanocone Arrays for Self-CleaningAntireflection Coatings [J]. Nano. Res.2010,3,520.
    [185] Watson G. S., Waston J. A. Natural nano-structures on insects—possiblefunctions of ordered arrays characterized by atomic force microscopy [J]. Appl.Surf. Sci.2004,235,139.
    [186] Zhang L. B., Li Y., Sun J. Q., Shen J. C. Layer-by-layer fabrication ofbroad-band superhydrophobic antirefection coatings innear-infrared region [J]. J.Colloid. Inter. Sci.2008,319,302.
    [187] Zhang X. T., Sato O., Taguchi M., Einaga Y., Murakami T., Fujishima A.Self-Cleaning Particle Coating with Antireflection Properties [J]. Chem. Mater.2005,17,696.
    [188] Cerqua K. A., Hayden J. E., LaCourse W. C. Stress measurements in sol-gelfilms [J]. J. Non-Cryst. Solids.1988,100,471.
    [189] Raut H. K., Ganesh V. A., Nair A. S., Ramakrish S. Anti-reflective coatings: Acritical, in-depth review [J]. Energy Environ. Sci.2011,4,3779.
    [190] Stavenga D. G., Foletti S., Palasantzas G., Arikawa K. Light on the moth-eyecorneal nipple array of butterflies [J]. Proc. R. Soc. London. Ser. B.2006,273,661.
    [191] Sun T. L., Feng L., Gao X. F., Jiang L. Bioinspired Surfaces with SpecialWettability [J]. Acc. Chem. Res.2005,38,644.
    [192] Ghosh G. Sellmeier coeffcients and dispersion of thermo-optic coeffcients forsome optical glasses [J]. Applied Optics1997,36,1540.
    [193] Xu Y. F., Wang Y., Chen Y. S., et al. A Hybrid Material of Graphene and Poly(3,4-ethyldioxythiophene) with High Conductivity, Flexibility, and Transparency[J]. Nano. Res.2009,2,343.
    [194] Zhu Y. W., Cai W. W., Ruoff R. S., et al. Transparent self-assembled flms ofreduced graphene oxide platelets [J]. Appl. Phys. Lett.2009,95,103104.
    [195] Stankovich S., Kevin M. K., Richard D. P., et al. Graphene-based compositematerials [J]. Nature2006,442,04969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700