用户名: 密码: 验证码:
冻融循环下橡胶颗粒改良粉煤灰土力学效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济的快速发展,道路交通的作用愈来愈凸显其重要性,其对国民经济的影响力也越来越大。我国季节性冻土分布广泛,其区域遍及长江以北10余省市,占全国总面积的53.5%,季节性冻土区的道路损害多由冻胀和翻浆引起,路基的冻胀和翻浆造成了其力学性能指标的降低。提高季节性冻土区路基的稳定性、增强抗冻融特性,降低冻害现象,对保证季冻区道路的长期安全运营具有重要应用价值。
     本文针对季节冻土地区的道路冻害问题,依托国家高技术研究发展计划(863计划)项目《季节冻土区路基抗冻融稳定控制技术研究》,以国道G102线扩建为工程依托,开展了冻融循环下橡胶颗粒改良粉煤灰土的理论与应用研究,本文的研究工作体现在以下几方面:
     1.在已有的研究结果基础上,对橡胶颗粒改良粉煤灰土的静力特性进行了研究,通过无侧限抗压强度试验、抗冻性试验以及保温性试验,提出了2%橡胶颗粒含量的粉煤灰土(1:2)混合料作为季节性冻土区路基冷阻层材料,室内试验证明了橡胶颗粒改良粉煤灰土抗压强度高、冻胀量小和保温性好的特性。
     2.运用动三轴试验手段对橡胶颗粒改良粉煤灰土与纯粉煤灰土的动力参数进行了对比研究,分析了在不同围压下两种材料的动强度、动模量的变化规律,得出在一围压下,橡胶颗粒改良粉煤灰土和粉煤灰土的动强度与破坏周数成反比,破坏周数相同,动强度与围压成正比,橡胶颗粒改良粉煤灰土的初始切线模量低于粉煤灰土的初始切线模量,平均动模量大于未改良前的结论。
     3.利用课题组研制的路基材料力学参数测试试验机,开展了橡胶颗粒改良粉煤灰土混合料的冻融试验研究,在动荷载作用下,分析了材料在冻融过程中力学特性的演化过程,得出了混合料的力学指标随正负温度变化规律,以及与冻融循环次数的关系。通过监测材料内部温度的变化,得出了在外环境温度变化下混合料内温与应力、应变的演化过程。对监测的应力、应变数据分析,得出了动应力随着温度的下降而随之降低,当温度在正负方向进行转变时,动应力有一个突然减小的变化。冻融循环前四次的动应力略有下降,但下降的幅值较小,冻融循环5~8的动应力趋于稳定。动应变随着温度的降低而下降,动应变在前四次冻融循环时的应变值随着冻融循环次数的增加逐渐减小,但从第五次冻融循环开始动应变变化较小,趋于稳定。每次循环的动模量始终维持在一个比较稳定的值附近;当温度减小到一定程度时,动模量将不再发生改变;相同冻融循环,不同温度下,橡胶颗粒改良粉煤灰土的动模量随着温度的增加而增加,但增加值很小;相同温度,不同冻融循环下,橡胶颗粒改良粉煤灰土的动模量经过3~8次冻融循环动模量变化稳定。
     4.为了进一步验证橡胶颗粒改良后粉煤灰土的路用性能,探索其在季节冻土区道路建设中推广应用,以国道G102线提高公路等级的工程为依托,在G102线上建立1公里实验路。铺设三种不同路基填料的试验路段,在道路中心处,三种路基填料层的上、下表面分别埋设了温度传感器,在不同温度时期监测了三种路基填料上、下表面的温度数据,分析得出橡胶颗粒改良后的粉煤灰土具有热传导性低,保温性能好的特性。
     5.采有限元热分析理论,对冬季时期粉煤灰土、橡胶颗粒改良粉煤灰土及粉质粘土三种材料的路基温度场进行了有限元分析,建立了带有冷阻层的路基三维有限元模型,监测了三种路基填料的最大冻深、温度梯度等冻结参数,分析得出采用橡胶颗粒改良粉煤灰土的冷阻层底面温度最高,冷阻层的道路冻深最小,其温度梯度最大,采用粉质粘土冷阻层的道路冻深最大,温度梯度最小。同时分析确定了采用橡胶颗粒改良粉煤灰土的最小填筑厚度,此厚度确保在该路基填料下方的路基处于正温状态。
With the fast development of economy, the role of road transport is more and moreimportant and its influence on the national economy is growing. Seasonal frozen soil inChina is widely distributed throughout more than10provinces in the north of the YangtzeRiver, taking up53.5%of the country's total area. Road damage in seasonal frozen soil areais mostly caused by frost heave and frost boiling, which reduce the mechanical propertyindex of seasonal frozen soil. Improving the stability of roadbed in seasonal frozen soil areaand enhancing its freezing-thawing resisting characteristics as well as reducing freezinginjury are of great value to ensure the long-term safety operations of road in seasonal frozenarea.
     In this paper, freezing issues in seasonal frozen soil area are discussed based on theNational High Technology Research and Development Program (863Program)-“Technologycontrol study on roadbed resisting freezing-thawing stability”, relying on G102nationalhighway expansion engineering projects. Meanwhile, the theory and application research onrubber particles modified fly ash soil under freeze-thaw cycles is carried out in this paper,with the main research work below:
     The rubber particles modified fly ash soil static properties are studied based on theexisted research results. By unconfined compressive strength tests, the frost resistance testand insulation test, we proposed fly ash soil mixtures (1:2) with2%rubber particles as coldresistance materials for roadbed in seasonal frozen soil areas. Laboratory tests proved thatrubber particles modified fly ash soil has properties of high compressive strength, smallamount of frost heave and good insulation.
     1. By using dynamic three axis test, and through the comparison of the dynamicparameters between rubber particles modified fly ash soil and pure fly ash soil, and theanalysis of the change law of these two materials’ dynamic strength as well as dynamicmodulus under different confining pressures, we concluded that under the same confiningpressure, the dynamic strength of rubber particles modified fly ash soil and pure fly ash soilis inversely proportional to the damage circle number, while under the same damage circlenumber, the dynamic strength is proportional to the confining pressure, with the initialtangent modulus of rubber particles modified fly ash soil lower than pure fly ash soil as well as the average dynamic modulus larger than the unmodified fly ash soil.
     2. By using roadbed material mechanical parameters testing machine developed byResearch Group, we carried out the freezing-thawing tests of rubber particles modified flyash soil mixture. Under dynamic loading, we analyze the evolutionary process of themechanical properties in the process of freezing and thawing, and obtained the variation lawof mechanical index with positive and negative temperature as well as its relationship withFreezing and thawing cycles. By monitoring the temperature change inside the material, wecame to the evolutionary process between Mixture temperature and stress and strain whenthe outside temperature was changing.
     3. By analyzing the monitored stress data and strain data, we concluded that dynamicstress reduced with the decrease of temperature, and at the time of temperature changingbetween the positive and negative direction, there was a sudden decrease change for thedynamic stress. The first four dynamic stresses of freezing-thawing cycles decreased slightlybut the amplitude was small. And after5~8freezing-thawing cycles, the dynamic stresstended to be stable. Dynamic strain fell as the temperature decreased. The first four strainvalue decreased with freezing-thawing cycles increasing. But since the fifthfreezing-thawing cycle, the dynamic strain changed a little and tended to be stable. Dynamicmodulus of every circle was always maintained in a stable value. When the temperature wasreduced to a certain extent, dynamic modulus would no longer change. With the samefreezing-thawing cycle but different temperature, the dynamic modulus of rubber particlesmodified fly ash soil increased with the temperature increasing but the added value wassmall. When the temperature was the same but the freezing-thawing cycles was different, thedynamic modulus of rubber particles modified fly ash soil tended to be stable after3~8times.
     4. In order to further verify the road performance of fly ash soil improved by rubberparticles and explor the popularization and application of road construction in seasonalfrozen soil, we establish an1000m long experimental path on national highway G102line.We pave three different subgrade test sections and bury temperature sensor in thecenter,the top and bottom of the road at three roadbed filler layer. Then we collect thetemperature data of the roadbed filler at different location in different temperatureperiod.Analysis result shows that the rubber particles improved fly ash soil has low thermalconductivity and good thermal insulation performance.
     5. On the basis of FEM thermal analysis theory, subgrade temperature field of fly ash soil, the rubber particles modified fly ash soil and silty clay is studied.An subgradedimensional finite element model with insulating layer is established.Using this model,wemonitor parameters of subgrade frozen deep, the temperature gradient freeze of threeroadbed filler.Then we obtain the conclusion as follows: the temperature of the bottom ofinsulating layer is the highest on rubber particles improved fly ash soil.The insulating layerhas the minimum road freeze depth and the maximum temperature gradient; Silty clay acrossthe stratosphere has the maximum to freeze depth and the minimum temperature gradient. Atthe same time, we determine the minimum filling thickness of the rubber particles improvedfly ash soil. This minimum filling thickness can insure the roadbed is under a state ofpositive temperature.
引文
[1]吴世明.土动力学.北京:中国建筑工业出版社,2000:1-134
    [2]姚运生,王艳玲.我国北方逐日平均气温的气候模拟.中国农业气象,2004年8月
    [3]陈别,砂土-粘土分层复合试样动力特性试验研究.湖南大学,2009年4月
    [4]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利出版社,1996:523-532
    [5]杜修力,路德春.土动力学与岩土地震工程研究进展[J].岩土力学,2011,10(8):10-20
    [6]史丙新、张力方.天津滨海场地土动力学参数研究[J].震灾防御技术,2010,13(3):288-298
    [7]孟上九,陈卓识.轨道交通荷载下路基土的动力学相关进展[J].世界地震工程,2011,21(12):373-377
    [8]兰景岩,薄景山.土动力学参数对设计反应谱的影响[J].地震工程与工程振动,2008,22(3):184-188
    [9]BOOMINATHAN A,HARI S. Liquefaction strength of fly ash reinforced with randomlydistributed fibers [J]. Soil Dynamics and Earthquake Engineering,2002,22(4):1027-1033
    [10]曹成效,刘乐军,李培英,杜军.循环荷载作用下粉土的动力学特性[J].海洋科学进展,2007,32(1):54-62
    [11]王建华,要明伦.循环应变下饱和砂(粉)土衰化动力特性研究.水利学报,1997
    [12]王峻,王强,王杰民.震后黄土动力学特性试验研究.水文地质工程地质,2010,37(4):34-39
    [13]晏鄂川,刘汉超,唐辉明.滑带土动力学性质试验研究.工程地质学报
    [14]陈清华,冉少庭,杨昌斌.淤泥类土动力学性质的试验研究.资源环境与工程,2008,22(3):65-69
    [15]李时亮,周全能.粉煤灰作为路堤填料的动力特性试验研究[J].岩土力学,2005,26(2):311-315;
    [16]孙志明.季冻地区软基土的力学特性试验分析[J].黑龙江交通科技,2010,第11期
    [17]张淑娟,赖远明,李双洋,常小晓.冻土动强度特性试验研究[J].岩土工程学报,2008,30(4):34-38
    [18]毕贵权,张侠,李国玉等.冻融循环对黄土物理力学性质影响的试验[J].兰州理工大学学报,2010,36(2):12-16
    [19]陈伟,刘恩龙.胶结土力学特性与强度分析[J].建筑科学,2011,27(1):65-69
    [20]熊恩来,阮永芬,刘文连,王云生.云南泥炭土力学特性实验及归一化性状研究[J].云南水利发电,2010,9(2):71-74
    [21]黄绍坚.一种以吸力解释膨胀土力学特性的尝试[J].土工基础,1992,6(2):6-11
    [22]刘崇权.钙质土土力学理论及其工程应用.1993,18(5):21-25
    [23]蔡应彬.浅谈高液限土的土质土力学特性及其处治方法[J].科技咨询导报,2007
    [24]余跃,郭见扬.海洋土力学特性的实验研究[J].岩土力学,1987,8(1):67-71
    [25]WANGDY, MAW, NIUYH, etal. Effect of cyclic freezing and thawing onmechanical properties of Qinghai Tibet clay [J]. Cold Regions Science and TechnologyEngineering Geology,2007,48(1):34-43
    [26]MAW, WU Z W, ZHANG L X. Analyses of process on the strength decrease infrozen soils under high confining pressures [J]. Cold Regions Science and Technology,1999,29(1):1-7
    [27]Demp sey B J, ThompsonM R. Durability properties of lime soil mixtures [J]. Highway Research Record.1968(235):61-75
    [28]李清宪,于海兵,王天亮.冻融作用下水泥改良土的静力特性研究[J].国防交通工程与技术,2011,42(2):29-32
    [29]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003:157-175
    [30]中华人民共和国水利部. GB/T50123-1999.土工试验方法标准[S].北京:中国计划出版社,1999
    [31]王天亮,刘建坤,田亚护.水泥及石灰改良土冻融循环后的动力特性研究[J].岩土工程学报,2010,23(11):1733-1737
    [32]王天亮,刘建坤,彭丽云,田亚护.冻融循环作用下水泥改良土的力学性质研究[J].中国铁道科学,2010,27(11):7-13
    [33]陈花林.石灰改良泥质粉砂岩路基填料的试验研究[J].铁道工程学报,2008,3(3):7-12
    [34]易平.高液限黏土作路基填料改良方案现场试验研究[J].山西建筑,2008,34(23):67-73
    [35]刘皓琨.电石灰提高路基填料承载比的应用探讨[J].湖南交通科技,2007,33(3):32-36
    [36]毛红梅.高速铁路石灰改良黄土路基填料试验研究[J].陕西科技,2006,35(3):87-91
    [37]药秀明,杨晓华,吴红兵.粉煤灰、电石渣混合料作为路基填料的应用研究[J].公路交通科技应用技术版
    [38]李季宏.冻融作用对石灰土临界动应力影响的试验研究[J].线路路基
    [39]贺建清,阳军生,靳明.循环荷载作用下掺土煤矸石力学性状试验研究[J].岩石力学与工程学报,2008,27(2):6-10
    [40]薛俊良.盐渍土改性作高速公路路基填料的试验研究[J].北京科技大学土木与环境工程学院,2008,21(22):21-26
    [41]田湘鹰.弱膨胀土作路基填料的化学改良试验分析研究[J].山西建筑,2008,34(35):101-105
    [42]郭绍影.铁路路基填料改良前后物理、化学性质变化分析[J].岩土工程,2009,1(12):33-36
    [43]汪海洋,李粮纲,余雷.水泥和石灰改良路基填料对比试验研究[J].水利水运工程学报,2010,6(2):43-47
    [44]宇德忠,程培峰.季冻区粉砂土冻融循环后的强度研究[J].低温建筑技术,2011,34(3):101-103
    [45]王宁等.冻融循环对季节冻土区黄土路堑边坡的影响[J].公路交通科技(应用技术版),2011,25(4):79-84
    [46]许强,吴礼舟,张莲花.冻融循环作用下非饱和黏土的抗剪强度试验[J].成都理工大学学报(自然科学版),2011,31(3):334-337
    [47]刘明辉,王元丰.冻融循环下粉煤灰混凝土弹性模量损伤预测模型[J].土木工程学报,2011,12(S1):66-70
    [48]毕贵权;张侠;李国玉;马巍;毛云程;穆彦虎.冻融循环对黄土物理力学性质影响的试验[J].兰州理工大学学报,2010,16(2):114-117
    [49]李长雨.冻融循环对粉煤灰土动力特性影响的试验研究[D].吉林大学硕士论文,2007年4月
    [50]SUMIO HORIUCHI, MASATO KAWAGUCHI. Effective use of fly ash slurry as fillmaterial [J]. Journal of Hazardous Materials,2000,76:301-337
    [51]仇文革,孙兵.冻土三轴冻胀应力应变试验方法研究[J].冰川冻土,2010,32(1):55-59
    [52]李雨浓,张喜发,张冬青.季冻区公路路基细粒土冻胀性分类研究[J].公路交通科技,2007,24(12):8-12
    [53]田亚护.动静荷载作用下细粒土冻结时水分迁移与冻胀特性实验研究[J].岩土工程,2008,50(3):76-79
    [54]毕贵权,张侠,李国玉,马巍,毛云程,穆彦虎.冻融循环对黄土物理力学性质影响的试验[J].兰州理工大学学报,2010,36(2):21-16
    [55]彭丽云,刘建坤,田亚护.粉质粘土的冻胀特性研究[J].水文地质工程地质,2009,6(1):63-69
    [56]唐益群,洪军,杨坪,王建秀,胡向东.人工冻结作用下淤泥质黏土冻胀特性试验研究[J].岩土工程学报,2009,31(5):23-29
    [57]范家骅,张喜发.公路路基细粒土法向冻胀力影响因素研究[J].北方交通.2004,45(10):32-26
    [58]张玉富,单炜,柳俊哲.季节性冻土切向冻胀力与冻胀性关系[J].低温建筑技术,2004(5):21-24
    [59]姜龙,王连俊,张喜发.季冻区公路路基砂类土冻胀分类研[J].工程地质学,2007,15(05):34-40
    [60]朱东海.季节性冻土路基冻胀时的稳定性分析[J].路基工程,2008,7(5):3-9
    [61]冷毅飞,张喜发,张冬青.季节冻土区公路路基细粒土冻胀敏感性研究[J].冰川冻土,2006,28(2):56-60
    [62]张以晨,李欣,张喜发,张冬青.季冻区公路路基粗粒土的冻胀敏感性及分类研究[J].岩土工程学报,2007,29(10):67-71
    [63]刘鸿绪,朱卫中,朱广祥,高爱娣,曾赛星.再论冻胀量与冻胀力之关系[J].冰川冻土,2001,1(1):12-16
    [64]夏琼,杨有海,窦顺.兰新铁路路基冻胀特征及冻害整治措施研究[J].冰川冻土,2011,33(1):13-16
    [65]叶阳升,王仲锦,程爱君,罗梅云.路基的填料冻胀分类及防冻层设置[J].中国铁道科学,2007,28(1):21-25
    [66]周扬.冻土冻胀理论模型及冻胀控制研究[D]
    [67]Yarbasi N, Kalkan E,Akbulut S. Modification of the geotechnical propert ies, asinfluenced by freezethaw of granular soils with waste additives[J]. Cold Regions Scienceand Techno logy,2007,48(1):111-123
    [68] JESSBERGER Hans L, WOLFGANG Ebel. Proposed method for reference tests onfrozen soil [J]. Engineering Geology,1980,18(1):31-34
    [69]Beskow G. Soil freezing and frost heaving with special application to roads and railways[J]. Swendish geology survey yearbook(Series C),1935,26:14-21
    [70]Miller R D. Ice sandwich functional semipermeable menbrance [J]. Science,1970,169:584-585
    [71]Konard J M, Morgenstern N R. The segregation potential of a freezing soil [J].Canadian geotechnical engineering journal,1981,18:482-492
    [72]Radd F J, Oertle D H. Experimental pressure studies of frost heave mechanismas andgrowth fusion behavion [A].2th Int. Conf. on permafrost [C]. Washington, D. C.: NationalAcademy press,1973:377-384
    [73]Loch J P G,Miller R D. Tests of the concepts of secondary frost heaving [J]. Soils Sci.Soc. Am. Proc,1975,39:1036-1041
    [74]顾义明,王国忠,高明星.橡胶颗粒沥青混合料低温力学性能的研究[J].内蒙古农业大学学报,2011,23(4):220-223
    [75]李金凤,王洛英,李文杰,刘小敏等.废旧橡胶颗粒在道路工程中的应用[J].中外公路,2011,8(8):241-244
    [76]满金宝.掺加橡胶颗粒抗冻路面的性能评价研究[J].中外公路,2011,19(10):225-227
    [77]邓安,冯金荣.砂-轮胎橡胶颗粒轻质土工填料试验研究[J].建筑材料学报,2010,34(2):116-120
    [78]辛凌,刘汉龙,沈扬,何稼.废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J].岩土工程学报,2010,24(3):428-433
    [79]左春阳;周俊;邓文.膨胀土掺和橡胶颗粒改良效果评价综述[J].山西建筑,2010,34(25):83-84
    [80]尚守平等.橡胶颗粒-砂混合物动剪切模量的试验研究[J].岩土力学,2010,33(2):378-381
    [81]Sacramento County Department of Environmental Review and Assessment. Report onthe Status of Rubberized Asphalt Traffic Noise Reduction in Sacramento CountyR,1999
    [82]KUENNEN T. Asphalt rubber makes a quiet comeback [J]. Better Roads,2004,8(5):32-43
    [83]Oliver J W H. Modification of Paving Asphalts by Digestion with Scrap Rubber.Transportation Research Record.1979,8(21):37-44
    [84]Charles J. Glover and Richard R. Davison. High-Cure Crumb Rubber Modified Asphaltfor Dense-Graded Mixes. Project Summary Report1460-S,1998:16-23
    [85]R. Michael Anderson, John T Harvey, James A. Scherocman. Bailey Method forGradation Selection in Hot-Mix Asphalt Mixture Design. Transportation Research E-circular.Number E-C044, October2002:2-6
    [86]C. L. Monismith, F. N. Finn. Improved Asphalt Mix Design. AAPT.1985(54):347-406
    [87]Louisiana Standard Specifications for Construction of Roads and Bridges. StateLouisiana Department of Transportation and Development Baton Rouge.2000:97-105
    [88]Standard Specifications for Construction and Maintenance of Highways and Bridges.Texas Department of Transportation.1995:45-62
    [89]Billiter T C, Chun J S, Pavision R R, Glover C J, Buttin J A. Investigation of the CuringVariables of Asphalt-Rubber Binder. ACS Division of Fuel Chemistry Preprints.1996,41(4):1221-1226
    [90]Swearingen, David L. Newton C. Jackson, and Keith W. Anderson. Use of RecycledMaterials in Highway Construction. Washington State Department of Transportation, ReportNo.WA-RD252.1, Olympia, Washington, February,1992:87-92
    [91]State of California Department of Transportation. Asphalt Rubber Usage Guide.Division of Engineering Services.2003:1-4
    [92]Freedy L. Robert, Prithvi S. Kandhal, E. Ray Brown, Robert L.Dunning. Investigationand Evaluation of Ground Tire Rubber in Hot Mix Asphalt. National Center for AsphaltTechnology Report No.89-3.1989,8:69-82
    [93]ARRB Transport Research. Crumb Rubber Asphalt Fatigue Study Phase1: BinderTesting.1997,2:73-91
    [94]Panagiotis Frantzis. Crumb Rubber-Bitumen Interactions: Cold-Stage OpticalMicroscopy. Journal of Materials in Civil Engineering/ASCE.2003,9(10):419-426
    [95]George B. Way, P. E. Arizona Department of Transportation. Flagstaff I-40AsphaltRubber Overlay Project Nine Years of Success. Paper Presented to TRB78th AnnualMaatina1999,8:108-117
    [96]许健,牛富俊,李爱敏,林战举.季节冻土区保温法抑制铁路路基冻胀效果研究[J].铁道学报,2010,32(6):123-126
    [97]孙立民.高原多年冻土区路基保温材料的应用[J].路基工程,2003,7(6):32-37
    [98]田亚护.多年冻土区含保温夹层的路基温度场数值模拟[D]
    [99]刘辉,陈文胜,黄生文,周德泉.多年冻土地区路基保温技术及其适用性分析[J].西部探矿工程,2004,11(11):34-40
    [100]邹积君,藏可莉,臧克冰,郭雨民.寒冷地区路基保温技术研究[J].科技创业;
    [101]苏谦,王迅,刘深.青藏铁路新型路基保温材料应用试验研究[J].西南交通大学学报,2007,42(4):45-49
    [102]闫格.硬质聚氨酯泡沫在路基上应用浅谈[J].聚氨酯工业,2002,17(1):78-82
    [103]王申平,王平.青藏铁路多年冻土保温板护坡应用研究[J].路基工程,2008,5(4):56-61
    [104]干刚.高层建筑-基础-地基三维动力相互作用分析[D].杭州:浙江大学,1996
    [105]俞载道,傅公康.桩-土-高层框剪结构动力相互作用分析[J].同济大学学报,1984,7(1):51-55
    [106]俞载道,陈容,傅公康.固定式海洋平台的抗震分析[J].同济大学学报,1984,23(4):56-59
    [107]应稼年,王荣昌,俞载道.地基土-桩基础-核电站辅助厂房结构相互作用体系的地震响应分析[J].地震工程与工程抗振,1995,15(1):21-25
    [108]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):67-74
    [109]王开顺.地基阻抗与结构地震反应[J].地震工程与工程振动,1985,5(2):4-9
    [110]王开顺,李有为,李林友.土与结构相互作用地震反应研究及实用计算[J].建筑结构学报,1986,7(2):12-16
    [111]严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业出版社,1981
    [112]Novak M,Aboul-Ella F. Impedance functions of piles in layered media. J Engng MechDiv,ASCE,1978,104(EM3)
    [113]Hadjian A H, Anderson D, Tseng W S, Tsai N L,Chang C Y, Tang Y K, Tang H T,Stepp J C. The learning from the larger scale Lotung soil-structure interaction experiment. In:Proc2nd International Conference on Recent Advances in Geotechnical EarehquakeEngineering and Soil Dynamics, St. Louis, Missouri,1991
    [114]Wolf J P著,吴世明等译.土-结构动力相互作用[M].北京:地震出版社,1989
    [115]Velesos A S, Nair V V D. Torsional vibration of viscoelastic foundation. J GeotechEngng Div, ASCE,1974,100(GT3)
    [116]GANDAHL R. Some aspects of the design of roads with boards of plasticfoam[C]//Proceedings of3rd International Conference on Permafrost. Edmonton: NationalResearch Council of Canada Press,1978:792-797
    [117]JOHNSON G H. Performance of an insulated roadway on permafrost[C]//Proceedingsof the4th International Conference on Permafrost. Washington: National Academy Press,1983:548-553
    [118]盛熠,张鲁新,杨成松等.保温处理措施在多年冻土区道路工程中的应用[J].冰川冻土,2002,24(5):618-622
    [119]骆亚生,李靖,徐丽等.掺土粉煤灰的工程性质试验研究[J].岩土力学,2009,30(2):67-71
    [120]冯海宁,杨有海,龚晓南.粉煤灰工程特性的试验研究[J].岩土力学,2002,23(5):579-583
    [121]魏海斌.冻融循环对粉煤灰土动强度的影响[J].吉林大学学报(工学版),2007,23(2):329-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700