用户名: 密码: 验证码:
高速铁道车辆半主动悬挂系统动力学建模优化与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外高速铁路技术的发展,国内旅客列车的运行速度不断提高,既有线提速客车时速已超过200km/h,新建高速铁路列车车速已达到300km/h以上。随着列车速度的提高,轮/轨间作用不断加剧,车辆运动稳定性、运行平稳性以及安全性能受到了严重威胁。如何在高速运行环境下有效抑制车体振动,减小蛇行运动幅值,提高乘客的乘坐舒适性能,增加安全裕量是一项重要的研究内容。
     本文以减小车体横向振动、提高非线性临界速度和增加安全裕量为目的,从高速铁道车辆建模、悬挂系统优化、磁流变阻尼器建模与半主动控制角度,全面分析了基于磁流变阻尼器的半主动控制系统对高速运行状况下的车辆动力学性能的影响情况。主要研究内容如下:
     (1)为了找到最佳的悬挂匹配关系以同时保证铁道车辆的运动稳定性、运行平稳性和曲线通过性能,首先采用ADAMS-Matlab联合设计的方法建立高速铁道车辆悬挂系统参数化模型,然后采用多目标遗传算法对悬挂系统进行优化,采用平均值筛选法和容差设计方法在多组Pareto解中找出最优悬挂参数,使优化后的悬挂系统在保证车辆具有良好运行平稳性的同时,显著提高模型的运动稳定性和曲线通过性能。
     (2)在获得磁流变阻尼器力学试验数据的基础上,采用遗传算法和非线性无约束最优算法成功地对磁流变阻尼器Bouc-Wen模型进行了参数识别,并对识别结果进行了泛化性检验。针对力学模型模拟磁流变阻尼器逆向特性困难这一问题,采用BP神经网络技术模拟磁流变阻尼器运行状态与所需电流强度之间的非线性映射关系,并采用遗传算法优化了逆向神经网络模型的权值和阈值。最后将磁流变阻尼器正向、逆向模型成功应用于1/4车半主动悬挂系统中,取得了很好的控制效果。
     (3)针对半主动开-关控制易导致高频颤振的缺点,分别建立了天棚阻尼控制、加速度阻尼控制、RS(Rakheja-Sankar)控制和天棚-加速度混合控制的连续型半主动控制策略,并分别采用1/4车模型和整车模型对高速运行状况下的几种半主动控制策略进行了仿真分析。分析结果表明:天棚阻尼控制在低频区控制效果好,加速度控制在中、高频区域控制效果好,而天棚阻尼-加速度混合控制兼备天棚阻尼控制和加速度控制的优势。与普通半主动控制相比,连续型控制能将阻尼器状态转换时的大幅“跳动”现象大大减少,使不同状态之间的切换更加平滑,有效缓解高频颤振现象。
     (4)建立更加接近真实状况的基于磁流变阻尼器的高速铁道车辆半主动悬挂系统,分析磁流变阻尼器及半主动控制策略对车辆系统的运行平稳性、运动稳定性和曲线通能力的影响。仿真结果显示,连续型天棚加速度混合控制效果最好。
     (5)通过对不同信号通道内时滞对动力学性能的影响情况进行仿真分析,发现只有速度通道,尤其是构架速度通道内的时滞对动力学性能的影响较大,而其他信号通道内的时滞则影响很小。随着时滞的增大,动力学性能并非单调变化,而是呈波浪形变化且具有一定的规律性。连续型半主动控制作用下的时滞对动力学性能的影响要远小于其他控制策略。图94幅,表20个,参考文献210篇。
With the development of high-speed railway technology at home and abroad, the running speed of passenger train is in constant improvement. The velocity of Speed-raising passenger train of existing lines exceeds200km/h, and of newly-built high-speed train300km/h. With the increasing of train speed, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of vehicle. It is an important research subject how to effectively inhibit the vibration of car body, reduce the amplitude of hunting, improve the ride comfort and increase safety allowance under high-speed running environment.
     The purpose of this research is to reduce the lateral vibration of car body, to increase nonlinear critical velocity and improve safety allowance. From the perspective of building high-speed railway vehicle model, optimizing suspension system, building MR damper model and semi-active control, this paper analyzes the effects of semi-active control system with MR damper on the dynamic performance of vehicles under high-speed running conditions. The main work is as follows:
     (1) In order to find the optimal suspension matching and guarantee the running stability, riding quality and curve negotiation ability of railway vehicles, we built a parametric model of suspension system for high-speed railway vehicle, using ADAMS-Matlab method. We optimized the suspension system by adopting multi-objective genetic algorithm, and found optimal suspension parameters from multi-group Pareto solutions by utilizing average value screening method and tolerance design method. The optimized suspension system could ensure good running stability of the vehicle and significantly improve the riding quality and curve negotiation ability of model.
     (2) On the basis of mechanical test data of MR damper, we successfully identified the parameters of Bouc-Wen model by using genetic algorithm and pattern search method, and made generalized inspections on the identified results. Since it was difficult for mechanical models to simulate the reverse characteristics of MR damper, the nonlinear mapping relationships between running state of MR damper and corresponding currents strength were simulated by utilizing BP neural network technology and the weight and threshold value were optimized by using genetic algorithm. At last, the forward and inverse MR damper model were successfully applied to semi-active suspension system of quarter car and satisfactory control was obtained.
     (3) To avoid high frequency flutter caused by on/off semi-active control, the continuous semi-active control strategies of sky-hook(SH) damping control, acceleration drive damping(ADD) control, Rakheja-Sankar control and SH-ADD mix control were built respectively, and the simulations of which under high-speed running state were conducted by using quarter and whole vehicle model respectively. Results showed that the effect of sky-hook control was good in low frequency area and the effect of acceleration drive damping control was better in middle and high frequency area, while SH-ADD mixed control have both the advantage of sky-hook damping control and acceleration drive damping control. Compared with ordinary semi-active control, continuous control could significantly reduce the jumps when damper converts states, so the switch between different states was smoother and the high frequency flutter was reduced effectively.
     (4) A MR damper-based semi-active suspension system of high-speed railway vehicle was built, which is closer to the actual conditions. The effects of MR damper and semi-active control strategies on the running stability, riding quality and curve negotiation ability of vehicle system were analyzed. The simulation results showed that effects of continuous SH-ADD mixed control were the best.
     (5) The effects of time delay in different signal channel on dynamic performance were simulated. It can be seen that effects of time delay on the dynamic performance was bigger only in velocity channel, especially in frame velocity channel, while in others signal channels the effects were very small. With the increasing of time delay, the dynamic performance presented a regular wavelike change rather than a monotonous change. The effect of time delay on the dynamic performance under continuous semi-active control was far less than the others control strategies.
引文
[1]Stanway R, Sproston J L, Stevens N G. Non-linear Identification of an Electrorhelological Vibration Damper[J]. IFAC Identification and System Parameter Estimation,1985,195-200.
    [2]Gamota D R., Filisko F E. Dynamic Mechanical Studies of Electroheological Materials: Moderate Frequencies[J]. Journal of Rheology,1991,35:399-425.
    [3]Kamathgm P, Wereleynm. Dynamic Characterization and analysis of magnetorheological damper behavior[J]. Proceedings of SP IE-International Society Optical Engineering, Washington:SPIE,1998,284-302.
    [4]汪建晓,孟光.磁流变阻尼器用于振动控制的理论及试验研究[J].振动与冲击,2001,20(2):39-46.
    [5]Yang G Q. Large-scale Mageotrheological Fluid Damper for Vibration Mitigation:Modelling[J]. Testing and Control:University of Notre Dame, Indiana, USA,2001.
    [6]易成建.磁流变液:制备、性能测试与本构模型[D].重庆:重庆大学,2011.
    [7]Li P, Kamath G M, Wereley N M. Dynamic characterization and analysis of magnetorheogical dampers behavior[J]. SPIE 1998,3327:284-302.
    [8]Wen Y K. Method of Random Vibration of Hysteretic Systems[J]. Journal of Engineering Mechanics Division,1976, ASCE,102(EM2):249-263.
    [9]Yan G G. Large-scale magnetorheological fluid damper for vibration mitigation:modeling, testing and control[D]. Notre dame:Universtiy of Notre Dame,2001.
    [10]Jansen L M, Dyke S J. Semi-active Control Strategies for MR Dampers:Comparative Study[J]. Journal of Engineering Mechanics,2000 (8):201-212.
    [11]徐赵东,李爱群等.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2):144-148.
    [12]Spencer B F, Dyke S J, Sain MK, etc. Phenomenological Model of a Magnetorheological Damper[J]. Journal of Engineering Mechanics,1997,123(3):230-238.
    [13]邓志党,高峰,刘献栋,等.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006,25(3):121-126.
    [14]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D].南京:南京航空航天大学,2001.
    [15]Gamota D R, Filisko F E. Dynamic mechanical studies of electorheological materials:moderate frequencies[J]. J of Rheology,1991(35):399-425.
    [16]Choi S B, Lee S K. A hysteresis model for the field-dependent damping force of a magnetorheological damper[J]. Journal of Sound and Vibration,2001,245(2):375-383.
    [17]周丽,张志成.基于神经网路技术实现磁流变阻尼器对结构振动的优化控制[J].南京航空航天大学学报,2001(2):144-150.
    [18]王修勇,宋璨,陈政清,等.磁流变阻尼器的性能试验与神经网络建模[J].振动与冲击,2009,28(4):42-46.
    [19]闫明明,陈恩利,王军,等.结构智能半主动控制系统仿真分析[J].系统仿真学报,2007,19(21):4998-5001,5019.
    [20]涂建维,戴葵,瞿伟廉.磁流变阻尼器的磁滞效应与神经网络预测调整[J].华中科技大学学报,2007,35(3):110-112.
    [21]夏品奇.基于系统识别理论的磁流变阻尼器模型[J].工程力学,2003,20(3):115-119.
    [22]李宏男,常治国,王舒岩.基于智能算法的MR阻尼器半主动控制[J].振动工程学报,2004,17(3):344-349.
    [23]Chang C C, Roschke P. Neural Network Modeling of a Magnetorheological Damper[J]. Journal of Intelligent Material Systems and Structures,1998,9(9):755-764.
    [24]Chang C C, Asce M, Zhou L. Neural Network Emulation of Inverse Dynamics for a Magnetorheological Damper[J]. Journal of Structural Engineering,2002,128(2):231-240.
    [25]Guo D L, Hu H Y, Yi J Q. Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper[J]. Journal of Vibration and Control,2004,10(3):461-471.
    [26]Wang D H, Liao W H. Neural network modeling and controllers for magnetorheological fluid dampers [C]. The 10th IEEE International Conference on Fuzzy System,2001, Melbourne, Australia.
    [27]Zapateiro M, Luo N, Karimi H R, etc. Vibration control of a class of semiactive suspension system using neural network and backstepping techniques [J]. Mechanical System and Signal Processing,2009,23(6):1946-1953.
    [28]倪平涛,王开文.抗蛇行减振器对磁流变耦合轮对车辆的临界速度与高速曲线通过性能的影响[J].铁道学报,2007,29(3):34-39.
    [29]高国生,杨绍普,陈恩利,等.高速机车悬架系统磁流变阻尼器试验建模与半主动控制[J].机械工程学报,2004,40(10):87-91.
    [30]陆正刚,胡用生.基于磁流变阻尼器的铁道车辆结构振动半主动控制[J].机械工程学报,2006,42(8):95-100.
    [31]池茂儒.耦合轮对车辆动力学性能的研究[D].成都:西南交通大学,2003.
    [32]Vipul S. Atray, Paul N.Roschke. Design, Fabrication, Testing, and Fuzzy Modelling of a Large Magnetorheological Damper for Vibration Control in a Railcar[C]. Proceeding of Joint Railroad Conference with the IEEE Insert Conference Name April,2003,Chicago.
    [33]Vipil S. Atray, Paul N. Roschke. Neuro-Fuzzy Control of Railcar Vibrations Using Semiactive Dampers[J]. Computer-Aided Civil and Infrastructure Engineering,2004,19:81-92.
    [34]C.Y.Lai, W.H.Liao. Vibration Control of a Suspension System via a Magnetorheological Fluid Damper[J]. Journal of Vibaration and Control,2002,8:527-547.
    [35]D.H. Wang, W.H.Liao. Semi-active Suspension Systems for Railway Vehicles Using Magnetorheological Dampers.Part I:System Integration and Modelling[J]. Vehicle System Dynamics,2008,1-21
    [36]D.H. Wang, W.H.Liao. Semi-active Suspension Systems for Railway Vehicles Using Magnetorheological Dampers.Part II:Simulation and Analysis[J]. Vehicle System Dynamics,2008,1-33
    [37]刘永强.基于磁流变阻尼器的高速动车组半主动控制与时滞分析[D].北京:北京交通大学,2011.
    [38]卜继玲,刘友梅,李芾.机车系统动力学仿真模型研究[J].机车电传动,2004,7(10):3-6,33.
    [39]王开云,封全保,孟宏.时速140 km轨道车动力学性能仿真分析[J].铁道车辆,2004,42(5):1-4.
    [40]刘志恒,张红军.轴箱轴承轴向自由间隙对机车动力学影响分析[J].铁道学报,2006,28(2):48-52.
    [41]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [42]孟宏.提速机车车辆横向运动稳定性研究及应用[D].成都:西南交通大学,2009.
    [43]刘宏友.高速列车中的关键动力学问题研究[D].成都:西南交通大学,2003.
    [44]吕可维.车辆系统非线性动力学问题研究[D].成都:西南交通大学,2004.
    [45]倪平涛.磁流变轮对耦合器及其车辆动力学性能研究[D].成都:西南交通大学,2007.
    [46]王勇.考虑液体晃动的三大件转向架罐车耦合系统动力学性能研究[D].成都:西南交通大学,2004.
    [47]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真[J].铁道学报,2000,22(6):40-45.
    [48]侯茂锐,胡晓依,王成国.转向架失稳的非线性计算方法研究[J].铁道机车车辆,2011,31(4):49-52.
    [49]萧乾,王成国,周建新,等.不同摩擦系统条件下的轮轨滚动接触特性分析[J].中国铁道科学,2011,32(4):66-71.
    [50]李娜,杨恒,屈志坚,等.基于改进最小二乘支持向量机的电力机车牵引电机建模[J].铁道学报,2011,33(3):23-27.
    [51]刘彬彬,罗仁,曾京,等.地铁直线电相车辆曲线通过仿真[J].城市轨道交通研究,2011,14(2):56-61.
    [52]杨俊杰,常崇义,封全保,等.重载组合列车机车缓冲器关键技术参数研究[J].中国铁道科学,2010,31(3):76-81.
    [53]宣言,万家,王澜.高速铁路曲线线路车线耦合系统动力学性能仿真分析[J].中国铁道科学,2008,29(1):7-12.
    [54]王云鹏,朴明伟,兆文忠.3轴H构架架式货车转向架非线性模型[J].铁道机车车辆,2007,27(6):12-16.
    [55]魏伟,张东芹,张军.重载列车纵向冲动机理及参数影响[J].大连交通大学学报,2011,32(1):1-6.
    [56]张雪珊,萧新标,金学松.高速车轮椭圆化对车辆系统行为的影响[J].机械工程学报,2010(16):67-73.
    [57]朴明伟,赵钦旭,方吉,等.3E轴构架转向架的通用动力学要求[J].大连交通大学学报,2010,31(2):9-14.
    [58]梁树林,朴明伟,张祥杰,等.高速车辆横向稳定性的非线性影响因素研究[J].铁道学报,2009(5):23-30.
    [59]米小珍,樊令举,朴明伟,等.轮轨匹配对高速动车组动力学性能的影响[J].大连交通大学学报,2009,30(4):7-12.
    [60]金新灿,孙守光,陈光雄.车辆通过道岔时转向架结构系统振动特性研究[J].工程力学,2007,24(1):178-185.
    [61]封全保,孙守光,王开云.HXD2型6轴电力机车动力学模型研究[J].铁道机车车辆,2007,17(10):1-3,65.
    [62]张永贵,刘志明,金新灿.动车组拖车轮对振动性能分析[J].铁道机车车辆,2010,30(5):44-46,65.
    [63]张楠,夏禾,程潜,等.制动力作用下车辆-车站结构耦合系统分析[J].振动与冲 击,2011,30(2):138-143.
    [64]彭永昭,郎茂祥,王清校,等.货车装载工况对车辆通过小半径曲线时的垂向平稳性影响[J].中国铁道科学,2011,32(2):97-103.
    [65]辛涛,高亮,郑晓莉.车辆-有砟轨道-桥梁系统动力学分析模型及验证[J].北京交通大学学报,2011,35(3):72-76.
    [66]柳拥军,佟关林.基于虚拟样机的摆式客车迫导向机构的仿真研究[J].北方交通大学学报,2002,26(4):53-56.
    [67]任尊松,孙守光.系统参数对独立轮对轻轨车辆动力学性能的影响[J].电力机车与城轨车辆,2003(4):22-24,49.
    [68]万传风,龙许友,张勇,等.采用直线电机车辆的轨道交通耦合动力学模型及仿真分析[J].城市轨道交通研究,2006,9(5):19-21,25.
    [69]杨俊杰,罗世辉,封全保.纵向力作用下重载机车车钩安全性分析模型[J].铁道机车车辆,2008,28(B12):152-154,216.
    [70]刘永强,杨绍普,申永军.基于磁流变阻尼器的汽车悬架半主动相对控制[J].振动与冲击,2008,27(2):154-156,161.
    [71]刘永强,杨绍普,廖英英.高速动车组悬挂系统横向半主动控制仿真分析[J].振动与冲击,2010,29(9):51-54,96.
    [72]YQ Liu, YY Liao, XN Ma, SP Yang, etc. Dynamics Simulation of High Speed Electric Multiple Units with Semi-active Suspension[C]. Proceedings of The Third International Conference on Modeling and Simulation,2010, vol.1:260-264.
    [73]刘永强,杨绍普,廖英英,等.基于MR阻尼器的高速动车组悬挂系统半主动控制仿真[J].振动与冲击,2010,29(12):97-101.
    [74]Liao Yingying, Liu Yongqiang, Liu Jinxi, et al. Stability analysis of skyhook damper suspension system with time delay for high-speed railway vehicle [C]. Proceedings of The Third International Conference on Modeling and Simulation,2010, vol.3:260-263.
    [75]廖英英,刘金喜,刘永强,杨绍普.半主动控制与时滞对高速铁道车辆平稳性、稳定性及安全性的影响[J].振动与冲击,2011,30(6):58-62.
    [76]廖英英,刘永强,刘金喜,等.时滞对高速铁道车辆悬挂系统半主动控制的影响[J].北京交通大学学报,2011,35(1):122-127.
    [77]杨绍普,陈恩利.具有滞后非线性悬挂转向架的Hopf分叉[J].铁道学报,1993,15(4):11-18.
    [78]Ahmadian M, Yang SP. Effect of system nonlinearites on locomotive bogie hunting stability[J]. Vehicle System Dynamics,1998(26):365-384.
    [79]Yang SP, Ahmadian M. The Hopf Bifurcation in a Railway Wheelset with Nonlinear Damping. Rail Transportation[J]. ASME,1996(12):113-119.
    [80]Ahmadian M, Yang SP. Effect of Suspension Nonlinearities on Rail Vehicle Bifurcation and Stability[J]. Rail Transportation,ASME,1997(13):97-106.
    [81]Ahmadian M, Yang SP. Effect of System Nonlinearities on Locomotive Bogie Hunting Stability[J]. Vehicle System Dynamics,1998(29):365-384.
    [82]陈恩利,杨绍普.两系非线性悬挂车辆的运行稳定性与分岔[J].应用力学学报,1995,12(3):92-95.
    [83]陈恩利,袁向荣.二系滞后非线性悬挂高速转向架的稳定性分析[J].工程力学,1995,12(2):80-86.
    [84]高国生,杨绍普,陈恩利,等.高速机车悬架系统磁流变阻尼器试验建模与半主动控制[J].机械工程学报,2004,40(10):87-91.
    [85]Gao GS, Yang SP. Semi-active Control Performance of Railway Vehicle Suspension Featuring Magnetorheological Dampers [C]. The 1st IEEE Conference on Industrial Electronics and Applications, May 24-27,2006, Singapore.
    [86]高国生,杨绍普,郭京波.轮对蛇行运动Hopf分岔的非线性控制[J].铁道学报,2002,24(3):23-26.
    [87]马新娜,杨绍普,邸书灵.基于磁流变阻尼器的高速机车横向半主动振动控制研究[J].振动与冲击,2009,28(7):126-130.
    [88]马新娜,杨绍普,刘晓星,等.磁流变阻尼器系统的非线性动力学分析[J].振动与冲击,2011,30(6):31-35.
    [89]朱浩,刘少军,黄中华,等.ADAMS/rail虚拟样机技术在车辆系统建模及仿真分析中的应用[J].交通与计算机学报,2003,21(5):81-84.
    [90]文振华,程浩,廖耘,等.瞬态冲击下车辆动力学建模及仿真分析[J].电力机车与城轨车辆,2004,27(4):9-10.
    [91]张卫东,莫旭辉,彭劲松.基于ADAMS的液压平板铁水包车动力学仿真[J].专用汽车,2007(10):35-37.
    [92]陈嫦,唐进元,王祁波,等.铁道车辆空气弹簧动力学键合图建模及仿真[J].铁道科学与工程学报,2011,8(2):97-103.
    [93]何炎权,刘少军,朱浩,等.基于磁流变阻尼器的半主动车辆座椅悬架模糊控制研究[J].汽车工程,2006,28(7):667-670.
    [94]朱浩,刘少军,邬平波,等.基于柔性车体的铁道车辆主动悬挂的模糊控制研究[J].中国机械工程,2006,17(18):1883-1887.
    [95]金星亮,乔世范.车辆-轨道-路基系统垂向动力分析模型的试验验证[J].振动与冲击,2008,27(3):38-41.
    [96]张怀亮,公衍军.基于ADAMS的矿用电机车制动系统建模及仿真[J].矿山机械,2008,36(11):32-34.
    [97]Pombo J, Ambrosio J, Figueiras, L, etc. Models development for applications in railway dynamics[C].5th ADAMS/Rail Users Conference,2000, Haarlem, The Netherlands.
    [98]He Y P, Mcphee J. Optimization of the lateral stability of rail vehicles[J]. Vehicle System Dynamics,2002,38(5):361-390.
    [99]Harder R F. Dynamic modelling and simulation of three-piece north American freight vehicle suspensions with non-linear frictional behaviour using ADAMS/rail[C].5th ADAMS/Rail User's Conference,2000, Haarlem.
    [100]Gugliotta A, Soma A, Mauro S R. Dynamic simulation of a friction damped railway vehicle[C]. 4th ADAMS/Rail Users Conference,1999, Utrecht.
    [101]Kochak R, Sharma A. Development of a virtual prototype domestic container rail car[C].16th European MDI Users' Conference,2001, Berchtesgaden, Germany.
    [102]Severson K J. The development of collision dynamics models to estimate the results of full-scale rail vehicle impact tests[D]. Massachusetts:Tufts university,2000.
    [103]Delorenzo M. NUCARS modeling of a freight locomotive with steerable trucks[D]. Virginia:Virginia Polytechnic Institute and State University,1997.
    [104]Brent S B. Advanced multibody dynamics modeling of the freight train truck system[D]. Virginia:Virginia Polytechnic Institute and State University,2008.
    [105]Lee Y S, Kim S H. Structural analysis of 3D high-speed train-bridge interactions for simple train load models[J]. Vehicle System Dynamics,2010,48(2):263-281.
    [106]Wang F C, Liao M K. The lateral stability of train suspension systems employing inerters[J]. Vehicle System Dynamics,2010,48(5):619-643.
    [107]Mazilu T. Prediction of the interaction between a simple moving vehicle and an infinite periodically supported rail-Green's functions approach[J]. Vehicle System Dynamics,2010, 48(9):1021-1042.
    [108]Zhang Z Y, Dhanasekar M. Dynamics of railway wagons subjected to braking/traction torque[J]. Vehicle System Dynamics,2009,47(3):285-307.
    [109]Barbosa R S. Safety of a railway wheelset-derailment simulation with increasing lateral force[J]. Vehicle System Dynamics,2009,47(12):1493-1510.
    [110]Brable D, Andersson E. On minimizing derailment risks and consequences for passenger trains at high speeds[J]. Proc. IMechE Part F:J. Rail and Rapid Transit,2009(223):543-566.
    [111]郝建华,曾京,邬平波.铁路车辆垂向减振与悬挂系统参数优化[J].交通运输工程学报,2005,5(14):10-14.
    [112]陈大跃.汽车半主动悬架的多目标优化设计[J].机械工程学报,2000,36(6):91-94,98.
    [113]宁晓彬,蒋健,谢伟东.基于汽车悬架的多目标优化方法的研究[J].机电工程,2011,28(2):166-171.
    [114]成棣,王成国,刘金朝.车轮踏面多目标优化设计研究进展[J].铁道机车车辆,2011,30(4):5-11.
    [115]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011,47(2):102-108.
    [116]Crews J H, Mattson M G, Buckner G D. Multi-objective control optimization for semi-active vehicle suspensions[J]. Journal of Sound and Vibration,2011(330):5502-5516.
    [117]Sancibrian R, Garcia P, Viadero F, Fernandez A, etc. Kinematic design of double-wishbone suspension systems using a multiobjective optimization approach[J]. Vehicle System Dynamics, 2010,48(7):793-813.
    [118]Gobbi M, Levi F, Mastinu G. Multi-objective robust design of the suspension system of road vehicles[J]. Vehicle System Dynamics,2004,41(suppl.):537-546.
    [119]Lucente G, Rossi C. Multi-objective control of semi-active suspension systems[C]. IEEE International Symposium on Industrial Electronics,2005(1):399-404.
    [120]Ahmad A, Guido K, Enrico P, etc. Multi-objective preview control of active vehicle suspensions:Experimental results[C].2nd IEEE International Conference on Advanced Computer Control,2010(3):497-502.
    [121]Nquyen Q H, Choi S B. Optimal design of MR shock absorber and application to vehicle suspension[J]. Smart Materials and Structures,2009,18(3):1-11.
    [122]Guido K, Tobias K, Enrico P, etc. A nonlinear estimator concept for active vehicle suspension control[C]. Proceedings of the 2010 American Control Conference,2010,4578-4581.
    [123]Tobias K, Guido K. Modified optimal control of a nonlinear active suspension system[C]. Proceedings of the IEEE Conference on Decision and Control,2010,5572-5577.
    [124]Giorqio P, Massimiliano G, Gianpiero M. Multi-objective-reliability-based optimization of a farm tractor front axle suspension[J]. Journal of Heavy Vehicle Systems,2011,18(3):257-271.
    [125]Loyer B, Jezequel L. Robust design of a passive linear quarter car suspension system using a multi-objective evolutionary algorithm and analytical robustness indexes[J]. Vehicle System Dynamics,2009,47(10):1253-1270.
    [126]Verros G, Kazantzis M, Natsiavas S, etc. Multi-objective optimization of quarter car models with passive and semi-active suspensions[J]. Multi-body Dynamics:Monitoring and Simulation Techniques,2004,429-438.
    [127]Aditya A, Kumar S, Sandipan B. Optimisation of double wishbone suspension system using multi-objective genetic algorithm[J]. Lecture Notes in Computer Science,2010(6457):445-454.
    [128]Montazeri G M, Soleymani M. Genetic optimization of a fuzzy active suspension system based on human sensitivity to the transmitted vibrations [J]. Journal of Automobile Engineering,2008, 222(10):1769-1780.
    [129]Stribersky, A, Kienberger, A, Muller,H. Design and evaluation of a semi-active damping system for rail vehicles[J]. Vehicle System Dynamics,28(suppl),1998,669-681.
    [130]陈健,王开文.半主动悬挂机车平稳性和曲线通过动力学性能仿真研究[J].机车电传动,2006,(3):40-43.
    [131]刘少军,蔡丹,朱浩.高速列车横向半主动减振器的天棚阻尼控制仿真研究[J].机床与液压,2006,(10):70-72,85.
    [132]熊勇刚,谢勇,丁问司,等.机车车辆半主动悬挂控制系统的研究[J].中南大学学报(自然科学版),2005,36(4):678-682.
    [133]王月明.车辆半主动悬挂开关控制特性的研究[J].机械工程学报,2002,38(6):148-151.
    [134]丁问司,卜继玲.铁道车辆横向开关半主动悬架系统研究[J].机械工程学报,2004,40(9):161-170.
    [135]杨建伟,黄强,李伟,等.基于加速度阻尼控制的半主动悬挂研究[J].铁道学报,2006,28(5):21-27.
    [136]曾京,戴焕云,乌平波.基于开关阻尼控制的铁道客车系统的动力学性能研究[J].中国铁道科学,2004,25(6):27-31.
    [137]Sugahara Y, Takigami T, Sampei M. Suppressing Vertical Vibration in Railway Vehicles through Primary Suspension Damping Force Control[J]. Journal of System Design and Dynamics,2007,1(2):224-235.
    [138]Shen Y. Vehicle Suspension Vibration Control with Magnetorheological Dampers[D]. Waterloo:Universtiy of Waterloo,2005.
    [139]佐佐木 君章.改善高速列车的横向乘坐舒适度—半主动悬挂减振装置的应用[J].铁道学报,2004,26(1):105-115.
    [140]董仲美,王自力,蒋海波.基于LQR的半主动悬挂机车车辆控制策略的研究[J].铁道机车车辆,2007,21(Suppl.1):86-89.
    [141]吴宁,王悦明,文彬.铁道车辆横向主动悬挂的H∞控制[J].中国铁道科学,2006,27(3):68-72.
    [142]刘增华,李芾,傅茂海,等.铁道车辆空气弹簧系统最优控制策略及方法研究[J].铁道学报,2006,28(1):26-30.
    [143]Umehara R, Otsuki M, Yoshida K. Bilinear Robust Control for Vertical Vibration in Railway Vehicle with Semi-Active Suspensions[J]. Journal of System Design and Dynamics, 2007,1(1):2-13.
    [144]Sugahara Y, Takigami T, Kazato A. Suppression of Vertical Vibration in Railway Vehicles by Damping Force Control of Primary Suspension Using an LQG Controlle[J]. Journal of System Design and Dynamics,2008,2(1):251-262.
    [145]Sugahara Y, Kazato A. Suppression of Vertical Vibration in Railway Vehicles by Controlling the Damping Force of Primary and Secondary Suspensions[J]. QR of RTRI,2008,49(1):7-15.
    [146]Chen CJ, Li HC, Gao HL. Study on Self-Optimizing Integrated Skyhook Control Algorithm of Semi-active Suspension System. [C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006, Dalian, China.
    [147]陈春俊,王开云.高速列车横向半主动悬挂系统建模研究及分析[J].振动与冲击,2006,25(4):151-154,169.
    [148]方锡邦,陈无畏,吴乐,等.模糊控制技及其在汽车半主动悬架中的应用[J].机械工程学报,1999,35(3):98-100.
    [149]王世明,王孙安,李天石.基于遗传算法的Boltzman机混合策略的半主动悬架连续模糊控制器[J].机械工程学报,2000,36(9):83-85.
    [150]陈无畏,王其东,王志君,等.汽车半主动悬架的非线性神经网络自适应控制研究[J].机械工程学报,2000,36(1):75-78.
    [151]陈龙,周孔亢,李德超.半主动悬架控制与整车性能匹配研究[J].机械工程学报,2002,38(3):113-116.
    [152]陈龙,江浩斌,周孔亢,等.半主动悬架系统设计及控制[J].机械工程学报,2005,41(5):137-141.
    [153]陈龙,周立开,江浩斌,等.基于模糊动态模型的半主动悬架控制系统设计及稳定性分析[J].机械工程学报,2008,44(2):113-117.
    [154]王其东,陈无畏,张炳力.基于多体模型的汽车半主动悬架控制方法研究[J].机械工程学报,2004,40(1):104-108.
    [155]吴学杰,王月明,张利民,等.高速列车横向悬挂主动、半主动控制技术的研究[J].铁道学报,2006,28(1):50-54.
    [156]文彬,王月明,黄强.列车横向平稳性与车间阻尼减振研究[C].铁道科学技术新进展——铁道科学研究院55周年论文集,2005.
    [157]张瑞亭,赵云生.高速列车的减振降噪技术[J].国外铁道车辆,2005,42(2):10-16.
    [158]江浩斌,方恩,周孔亢.半主动悬架可调阻尼减振器及其控制时滞研究[J].江苏大学学报,2004,25(5):393-396.
    [159]孙益民,李仲兴,王国林.具有时滞补偿的汽车半主动悬架最优控制方法[J].农机化研究,2004(6):152-154.
    [160]汪若尘,陈龙,江浩斌.时滞半主动悬架模糊神经网络控制.农业机械学报,2007,38(7):10-12,48.
    [161]汪若尘,陈龙,江浩斌.基于多项式判别理论时滞半主动悬架稳定性研究[J].中国机械工程,2006,17(24):2628-2631.
    [162]汪若尘,陈龙,江浩斌.时滞半主动悬架大系统递阶控制研究[J].中国机械工程,2007,18(11):1382-1385.
    [163]赵剡水,周孔亢,李仲兴,等.磁流变减振器半主动悬架的系统时滞[J].机械工程学 报,2009,45(7):221-227.
    [164]杨小卫,周孔亢,贾永枢.基于模糊内模控制磁流变半主动悬架的时滞研究[J].机床与液压,2008,36(6):119-122,124.
    [165]张家龙,陈效忠.半主动悬架模糊PID混合控制及时滞分析[J].轻型汽车技术,2005(10):8-11.
    [166]陈龙,汪若尘,江浩斌,等.含时滞半主动悬架及其控制系统[J].机械工程学报,2006,42(1):130-133.
    [167]薛晓敏,孙清,张陵,等.利用遗传算法的磁流变阻尼器结构含时滞半主动控制[J].西安交通大学学报,2010,44(9):122-127.
    [168]朱茂飞,陈无畏,祝辉.基于磁流变减振器的半主动悬架时滞变结构控制[J].机械工程学报,2010,46(12):113-120.
    [169]徐龙河,周云.MRFD半主动控制系统的时滞与补偿[J].地震工程与工程振动,2001,21(3):127-131.
    [170]孙清,田绍峰.时滞对结构振动半主动控制效果的影响[J].应用力学学报,2002,19(3):77-80.
    [171]孙清,伍晓红,戴红,等.结构振动半主动控制系统的时滞补偿研究[J].机械科学与技术,2005,24(5):505-509.
    [172]徐建功,王肇民,何玉敖.基于预测控制的结构振动半主动控制研究[J].世界地震工程,2003,19(2):126-131.
    [173]张猛,段刚,薛学涛,等.主动或半主动控制系统的时滞与补偿[J].河南科学,2006,24(4):488-492.
    [174]曹登庆,曾京,程危危,等.装有MR阻尼器的转向架动力系统的时滞输出反馈控制[J].振动与冲击,2009,28(6):135-138.
    [175]董小闵,余淼,黄尚廉,等.汽车磁流变半主动控制系统中的时滞与补偿[J].计算机仿真,2006,23(4):229-232.
    [176]陈健,王开文,倪平涛,等.控制时滞对半主动悬挂车辆动力学性能的影响[J].铁道机车车辆,2006,26(4):9-11,62.
    [177]何姗,陈昭晖,应祖光.半主动控制拉索的稳定性分析[J].噪声与振动控制,2007,27(3):31-33.
    [178]张军,王勃,闫文川.控制时滞对磁流变半主动悬挂系统稳定性的影响[J].机械工程师,2009(6):89-90.
    [179]单红艳,石棉芸.基于模糊控制磁流变车辆半主动悬架的时滞研究[J].机械设计与制造,2008(8):59-61.
    [180]Chen P C, Lee T Y. Time delay study on the semi-active control with a Magnetorheological damper[C]. The 14th World Conference on Earthquake Engineering,2008, Beijing, China.
    [181]Rensburg N J, Steyn J L, Els P S. Time delay in a semi-active damper:modeling the bypass valve[J]. Journal of Terramechanics,2002,39(1):35-45.
    [182]Elmadany M M, Abduljabbar Z. Alternative control laws for active and semi-active automotive suspensions-A comparative study[J]. Computers & Structures,1991,39(6):623-629.
    [183]Hac A, Youn I. Optimal design of active and semi-active suspensions including time delays and preview[J]. Journal of vibration and Acoustics,1993,115(4):498-508.
    [184]Mohamed A R, Mariam J, Mohamed H. Compensation of time delay effect in semi-active controlled suspension bridges[J]. Journal of vibration and Control,2010,16(10):1527-1558.
    [185]Philp R, Reynolds P, Nyawako D S. Semi-active control of staircase vibration under human excitation[C]. Conference Proceedings of the Society for Experimental Mechanics Series, 2011(4):263-272.
    [186]Sohn H C, Hong K S, Hedrick J K. Semi-active control of the Macpherson suspension system: Hardware-in-the-loop simulations [C]. IEEE Conference on Control Applications, 2000(1):982-987.
    [187]Shih M H, Sung W P. The energy dissipation behavior of displacement dependent semi-active hydraulic damper[J]. Structural Enginneering/Earthquake Enginering,2004,21(2):121-129.
    [188]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,2001.
    [189]中华人民共和国铁道部中技国际招标公司[R].时速200公里铁路动车组关于动态轮重-脱轨系数的计算报告.2005.09.
    [190]王成国.MSC.ADAMS/Rail基础教程[M].北京:科学出版社,2005.
    [191]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [192]刘永强,杨绍普,廖英英,等.基于遗传算法的磁流变阻尼器Bouc-Wen模型参数辨识[J].振动与冲击,2011,30(7):261-265.
    [193]Liu Y Q, Yang S P and Liao Y Y. A Quantizing Method for Determination of Controlled Damping Parameters of Magnetorheological Damper Models [J]. Journal of Intelligent Material Systems and Structures,2011,22(18):2127-2136.
    [194]Yang S P, Li S H, Wang X J, et al. A hysteresis model for magneto-rheological damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6 (2):139-144.
    [195]Guo S Q, Yang S P, Pan C Z. Dynamic modeling of magnetorheological damper behaviors[J]. Journal of Intelligent Material Systems and Structures,2006,17((1):3-14.
    [196]Guo S Q, Yang S P, Pan C Z. Analysis of an Isolation System with Magnetorheological Damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6(1), 75-80.
    [197]Pan C Z, Yang S P, Shen Y J. An electro-mechanical coupling model of magnetorheological damper[J]. International Journal of Nonlinear Sciences and Numerical Simulation,2005,6 (1): 69-73.
    [198]潘存治,杨绍普.磁流变阻尼器及其控制系统动态响应试验研究[J].石家庄铁道学院学报,2005,18(4):1-4.
    [199]邢海军,杨绍普,申永军,等.孔隙阀式磁流变阻尼器准静力分析[J].振动、测试与诊断,2009,29(4):454-456.
    [200]邢海军,杨绍普,申永军.旁置孔隙阀式磁流变阻尼器阻尼力解析解[J].振动与冲击,2009,28(5):176-179.
    [201]邢海军,杨绍普,郭树起,等.一种磁流变阻尼器动态阻尼力模型[J].振动与冲击,2010,29(7):105-108.
    [202]邢海军,杨绍普,申永军.磁流变阻尼器阻尼力计算[J].机械设计,2008,25(9):7-10.
    [203]Lagarias J C, Reeds J A, Wright M H, etc. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions [J]. SIAM Journal of Optimization,1998,9(1):112-147.
    [204]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [205]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [206]田雨波.混合神经网络技术[M].北京:机械出版社,2009.
    [207]MATLAB中文论坛.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
    [208]Karnopp D. Design principles for vibration control systems using semi-active dampers[J]. Journal of Dynamic Systems, Measurement, and Control,1990(112):448-455.
    [209]Savaresi SM, Silani E, Bittanti S. Acceleration-Deriven-Damper(ADD):An optimal control algorithm for comfort-oriented semiactive suspensions[J]. Journal of Dynamic Systems, Measurement, and Control,2005(127):218-229.
    [210]Rakheja S, Sankar S. Vibration and shock isolation performance of a semi-active'on-off' damper[J]. J. Vibr. Acoust. Stress Reliab. Des.,1985 (107):398-403.
    [211]Eslaminasab N, Golnaraghi ME The effect of time delay of the semi-active dampers on the performance of on-off control schemes [C].2007 ASME International Mechanical Engineering Congress and Exposition, November 11-15,2007, Seattle, Washington, USA.
    [212]Eslaminasab N. Development of a semi-active intelligent suspension system for heavy vehicles[Dissertation]. University of Waterloo, Waterloo, Canada,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700