用户名: 密码: 验证码:
耦合输流管系统的非线性动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了耦合输流管系统的振动稳定性和非线性动力学行为,主要考查三种典型的耦合输流管系统:(1)输流管道-地基耦合系统;(2)输流管道-输流管道耦合系统;(3)输流管道-梁式结构耦合系统。重点考查动力耦合效应作用下耦合输流管系统各子结构在多种参数组合下的复杂分岔路径和混沌运动现象,并对分析该动力学模型的半解析方法(DTM)进行了分析与探讨。通过数值计算得到了一些极具价值的结果,发现了一些以往未曾发现的现象。本文所的研究工作具有一下几个方面的特色:
     (1)研究了弹性地基上悬臂输流管的振动稳定性及非线性动力学行为。建立了非线性Pasternak弹性地基上输流管道的非线性运动方程,重点考查了悬臂输流管的内共振、模态转换及内流作用下的非线性动力学行为。结果表明,悬臂输流管-地基系统在内流速的作用下一、二阶模态之间可能会发生3:1内共振,1:1内共振(模态转换);地基剪切刚度对系统的振动稳定性有很大影响,其改变会导致系统出现模态转换,从而导致失稳形式和发生失稳的模态发生变化;增大地基剪切刚度会增大系统Hopf分岔临界流速,并且对系统的混沌运动有较明显的抑制作用。同时,在连接刚度和剪切刚度的作用下,系统可能会出现双退化分岔。
     (2)研究了基础激励作用下非线性Pasternak地基上悬臂输流管的受迫振动。结果表明,系统在基础激励作用下具有非常复杂的动力学行为,包括多种形式的周期、概周期和混沌运动;地基剪切刚度对系统的概周期运动和混沌运动有抑制作用,当地基剪切刚度足够大时,该输流管系统将始终处于周期运动状态;非线性地基刚度对系统的动力学行为也有较大影响。
     (3)研究了脉动流作用下简支输流管-非线性地基系统的动力学行为。详细分析了Galerkin模态截断对系统动力学行为的影响,发现脉动频率越高,则需要越高阶的模态截断才能得到较为准确的结果。基于以上结论,对脉动流作用下简支输流管-非线性地基系统的动力学方程进行求解。结果表明,地基剪切刚度对系统的动力学行为的影响十分明显,而地基的线性支承刚度和非线性支承刚度的影响则较为有限。增加地基剪切刚度,不仅可以增强系统的稳定性,还可以抑制系统的混沌运动,同时会导致系统动力学行为发生根本性的变化。
     (4)研究了由具有相同平均内流速度的两根简支输流管组成的耦合输流管系统的动力学行为。使用分布线性弹簧来模拟两管之间的连接,建立了具有内流脉动的耦合输流管系统的运动方程;通过数值计算考查了不同激励频率组合和连接刚度对系统动力学行为的影响。数值分析表明,由于连接刚度的影响,耦合输流管系统两管的振动状态之间会出现同步现象,连接刚度越大,同步现象越明显。系统在不同激励频率组合下也会出现十分丰富的动力学行为,在某些激励频率组合下,系统的动力学行为与初始条件密切相关。
     (5)进一步研究了不同平均流速组合下耦合简支输流管系统的非线性动力学行为。主要考虑两种不同的流速组合:(1)两管分别具有超临界平均流速和亚临界平均流速脉动流;(2)其中一根管道具有超临界平均流速,另一根则为简支梁(平均流速为零)。结果表明,在连接刚度的作用下,两种组合下耦合系统均表现出同步现象。不同的流速组合会导致系统出现截然不同的动力学行为;对于流速组合(1),系统的动力学响应会由具有亚临界流速的管道所支配;对于流速组合(2),系统的动力学响应会由具有两根管道共同支配。
     (6)将DTM推广到输流直管的振动稳定分析当中,具体考察了不同支承条件下输流管道的振动频率及临界流速,用以检验DTM法的有效性。结果显示,与DQM及文献[1,110]中的结果相比,DTM具有极高的精度,并且待解微分方程阶数的增加并不会使DTM的计算过程变得复杂。
     综上所述,本文对耦合输流管系统的稳定性机理和非线性动力学行为进行了深入的研究,揭示了不同参数组合下耦合输流管系统的分岔路径和混沌运动的形成机制,这对工程输流管线的合理设计具有重要的指导意义。
The vibration stability and nonlinear dynamics of coupled pipe system are studied in the present paper. Three typical coupled pipe systems are considered in the current work: (1) fluid-conveying pipe-nonlinear elastic foundation system; (2) coupled two-pipe conveying fluid system; (3) coupled fluid-conveying pipe-beam system. The complex bifurcation path and chaotic motion of substructures of coupled pipe system are mainly investigated under different combination of system parameters. The semi-analytical methods employed to analyze the dynamical model of coupled pipe system, such as DTM, are also discussed. Based on numerical calculations, some interesting phenomena were observed, and some valuable results were put forward.
     (1) The vibration stability and nonlinear dynamical behavior of cantilevered fluid-conveying pipe-nonlinear elastic foundation system are studied. The equation of motion of a cantilevered pipe conveying fluid rested on nonlinear elastic foundation is obtained based on the nonlinear Pasternak foundation model. The internal resonance, mode exchange and nonlinear dynamics induced by internal flow are mainly investigated. Results show that the internal flow may induce 3:1 internal resonance,1:1 internal resonance; the shear stiffness has significant influence on the stability of the system; mode exchange may occur leading to the change of mode and type of instability with the variety of shear stiffness; the critical flow velocity corresponding to Hopf bifurcation increases and chaos may be controlled with the increasing of shear stiffness.
     (2) The forced vibration of cantilevered fluid-conveying pipe rested on nonlinear elastic foundation system under foundation excitation is further studied. The effect of excitation frequency and shear stiffness on the dynamical behavior of system is mainly investigated. The results demonstrate that the pipe system has complex response with the variation of foundation excitation, and period motions, quasi-periodic motions, chaos are observed; with the increase of foundation shear stiffness, the regions of quasi-periodic motions, chaos decrease. The system undergoes period motion with the variation of foundation excitation.
     (3) The dynamical behavior of simply supported pipe conveying pulsating fluid rested on nonlinear elastic foundation is studied. The influence of Galerkin mode truncation on the dynamics of the system is discussed. The results show that, the Galerkin mode truncation number may chose to be bigger when the forcing frequency is higher. Then, the Equation of motion of the pipe-foundation system is solved based on Galerkin method. Results show that, the shear stiffness has more significant influence on the dynamics of the system than linear stiffness and nonlinear stiffness. With the increasing of shear stiffness, the stability of the system can be reinforced and the chaotic motion may be controlled.
     (4) The nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The mean flow velocities of the two pipes are the same to each other. The pipe system is composed of two colligated pipes. The connection between two pipes taken into account is considered as a linear spring. Base on this consideration, the nonlinear equations of motion of the coupled two pipe system are derived, and solved numerically. The effect of connection stiffness and different combination of forcing frequencies on the dynamics of the system is explored. Results show that the connection stiffness has significant effect on the dynamic behavior of the coupled pipe system. The pipe system exhibits extremely rich dynamical behaviors when the connection stiffness is taken into account. The most interesting results obtained are that the motion types of the two pipes might be synchronous. The dynamical behavior may be very rich in different combination of the forcing frequencies, and in some cases, the stable response of the system is related to the initial conditions.
     (5) The nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid with different mean flow velocities is further studied. Two combinations of the mean flow velocities considered are:the mean flow velocity of one pipe is in sub-critical region, and of another is in super-critical region; the mean flow velocity of one pipe is in super-critical region, and of another is zero (considered as simply supported beam). Results show that, for two cases, the synchronous phenomenon can be observed; for different combinations, the coupled pipe system exhibits entire different dynamical behaviors; the dynamical response of the system is dominated by the pipe with the sub-critical mean flow velocity for case (1); the dynamical response of the system is dominated by both pipes for case (2).
     (6) The differential transformation method (DTM) is extended to analyze the vibration and stability of straight pipe conveying fluid. The vibration frequencies and critical velocities of different boundary conditions are obtained by using DTM and compared with that obtained by DQM and reported in Refs.[1,110]. Results show that, the DTM is an effective and precision method for solving the vibration problem of pipes conveying fluid. The calculation procedure of DTM does not get more complicated when the order of differential equation increases.
     From these contents listed above, the vibration stability and nonlinear dynamical behavior of coupled pipe system conveying are deeply investigated in the present paper. Especially, the bifurcations and chaotic mechanism of the coupled pipe system under different combination of system parameters are explored. The conclusions obtained in this study are significant for the design of pipes conveying fluid.
引文
[1]Paidoussis M. P. Fluid-Structure Interactions:Slender Structures and Axial Flow. vol.1. London, Academic Press,1998
    [2]Paidoussis M. P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics. Journal of Sound and Vibration,2008,310:462-492
    [3]Bourrieres F. J. Sur un phenomene d'oscilation auto-entretenue en mecanique des fluids reels. Publications Scientifiques et Techniques du Ministere de 1'Air,1939, No.147
    [4]Paidoussis M. P, Issid N. T. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration,1974,33:267-294
    [5]Ashley H., Haviland G. Bending vibrations of a pipe line containing flowing fluid. Journal of Applied Mechanics,1950,17:229-232
    [6]Feodos'ev V. P. Vibrations and stability of a pipe when liquid flows through it. Inzhenernyi Sbornik,1951,10:169-170
    [7]Housner G. W. Bending vibrations of a pipe line containing flowing fluid. Journal of Applied Mechanics,1952,19:205-208
    [8]Niordson F. I. Vibrations of cylindrical tube containing flowing fluid. Kungliga Tekniska Hogskolans Handlingar (Stockholm),1953, No.73
    [9]Long R. H. J. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. Journal of Applied Mechanics,1955,22:65-68
    [10]Dodds H. L. H., Runyan H. L. H. Effect of high velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe. NANA Technical Note D-2870,1965
    [11]Naguleswaran S., Williams C. J. H. Lateral vibrations of a pipe conveying fluid. Journal of Mechanical Engineering Science,1968,10:228-238
    [12]Li T., Dimaggio D. D. Vibration of a propellant line containing flowing fluid. In Proceedings AIAA 5th Annual Structures and Materials Conference,1964:194-199
    [13]Movchan A. A. On the problem of stability of pipe with fluid flowing through it. Prikladnaia Mathematika I Mekhanika,1965,29:760-762
    [14]Chen S. S., Rosenberg G. S. Vibrations and stability of a tube conveying fluid. Argonne National Laboratory Report ANL-7762,1971
    [15]Chen S. S. Forced vibration of a cantilevered tube conveying fluid. Journal of the Acoustical Society of America,1970,48:773-775
    [16]Chen S. S. Flow-induced instability of an elastic tube. ASME Paper No.71-Vibr.-39,1971
    [17]Chen S. S. Dynamic stability of a tube conveying fluid. ASCE Journal of the Engineering Mechanics Division,1971,97:1469-1485
    [18]Chen S. S. Vibrations of continuous pipes conveying fluid. In flow-Induced Structural Vibrations, Berlin:Springer,1972.663-675
    [19]Benjamin T. B. Dynamics of a system of articulated pipes conveying fluid. I. Theory, Proceedings of the Royal Society (London) A,1961,261:457-486
    [20]Gregory R. W., Paidoussis M. P. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory. Proceedings of the Royal Society (London) A,1966, 293:512-527
    [21]Paidoussis M. P. Dynamics of tubular cantilevers conveying fluid. Journal of Mechanical Engineering Science,1970,12:85-103
    [22]Paidoussis M. P., Issid N. T. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration,1974,33:267-294
    [23]Holmes P. J. Bifurcations to divergence and flutter in flow-induced oscillations:a finite-dimensional analysis. Journal of Sound and Vibration,1977,53:471-503
    [24]Holmes P. J. Pipes supported at both ends cannot flutter. Journal of Applied Mechanics,1978,45:619-622
    [25]Paidoussis M. P. Flow-induced instabilities of cylindrical structures. Applied Mechanics Reviews,1987,40:163-175
    [26]王琳,匡友弟,黄玉盈等.输液管振动与稳定性研究的新进展——从宏观尺度到微纳米尺度.固体力学学报,2010,31(5):481-495
    [27]Ni Q., Huang Y. Y. Differential quadrature method to stability analysis of pipes conveying fluid with spring support. Acta Mechanica Solida Sinica,2000,13: 320-327.
    [28]倪樵,黄玉盈,陈贻平.微分求积法分析具有弹性支承输液管的临界流速.计算力学学报,2001,18(2):146-149
    [29]Ryu S. U., Sugiyama Y., Ryu B. J. Eigenvalue branches and modes for flutter of cantilevered pipes conveying fluid. Computers and Structures 2002,80:1231-124
    [30]刘俊卿,王克林.弹性支承输液管道的临界流速.应用力学学报,2003,20(1):133-135
    [31]马小强,向宇,黄玉盈.输液管临界流速分析的精细积分法.华中科技大学学报(自然科学版),2003,31(11):92-94
    [32]Aldraihem O. J. Analysis of the dynamic stability of collar-stiffened pipes conveying fluid. Journal of Sound and Vibration,2007,300(1):453-465
    [33]Qian Q., Wang L., Ni Q. Instability of simply supported pipes conveying fluid under thermal loads. Mechanics Research Communication,2009; 36(3):413-417.
    [34]Lu P., Lee H. P. A treatment for the study of dynamic instabilities of fluid-conveying pipes. Mechanics Research Communication,2009,36(6):742-746
    [35]金基铎,杨晓东,张宇飞.固定约束松动对输流管道稳定性和临界流速的影响.振动与冲击,2009,28(6):95-99
    [36]孟丹,郭海燕,徐思朋.输流管道的流体诱发振动稳定性分析.振动与冲击,2010,29(6):80-83.
    [37]郭长青,刘红涛,王晓锋等.输流管道在分布随从力作用下的振动和稳定性.2010,27(4):190-196
    [38]Huang Y., Liu Y., Li B., et al. Natural frequency analysis of fluid conveying pipeline with different boundary conditions. Nuclear Engineering and Design,2010, 240:461-467
    [39]Thurman A. L., Mote Jr. CD. Nonlinear oscillation of a cylinder containing flowing fluid. Journal of Engineering for Industry,1969,91:1147-1155
    [40]Holmes P. J. Bifurcations to divergence and flutter in flow-induced oscillations:a finite dimensional analysis. Journal of Sound and Vibration,1977,53:471-503
    [41]Ch'ng E., Dowell E. H. A theoretical analysis of nonlinear effects on the flutter and divergence of a tube conveying fluid. In Flow-induced Vibrations. New York: ASME,1979:65-81
    [42]Rousselet J., Herrmann G. Dynamic behaviour of continuous cantilevered pipes conveying fluid near critical velocities. Journal of Applied Mechanics,1981,48: 943-947
    [43]Namachchjvaya N. S., Tien W. M. Bifurcation behavior of nonlinear pipes conveying pulsating flow. Journal of Fluids and Structures,1989,3:609-629
    [44]Semler C., Li G X., Paidoussis M. P. The nonlinear equations of motion of pipes conveying fluid. Journal of Sound and Vibration,1994,169(5):577-599
    [45]Paidoussis M. P., Li X. G. Pipes conveying fluid:a model dynamical problem. Journal of Fluids and Structures,1993,7:137-204
    [46]黄玉盈,钱勤,徐鉴等.输液管的非线性振动、分叉与混沌—现状与展望.力学进展,1998,28(1):30-42
    [47]徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展.力学进展,2004,34(2):182-194.
    [48]Tang D. M., Dowell E. H. Chaotic oscillations of a cantilevered pipe conveying fluid. Journal of Fluids and Structures,1988,2:263-283
    [49]Paidoussis M. P., Li G. X., Moon F. C. Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. Journal of Sound and Vibration,1989, 135:1-19
    [50]Paidoussis M. P., Li G. X., Rand R. H. Chaotic motions of a constrained pipe conveying fluid:comparison between simulation, analysis and experiment. Journal of Applied Mechanics,1991,58:559-565
    [51]Paidoussis M. P., Semler C. Nonlinear and chaotic oscillations of constrained cantilevered pipe conveying fluid:a full nonlinear analysis. Nonlinear Dynamics, 1993,4:655-670
    [52]Jin J. D. Stability and chaotic motions of a restrained pipe conveying fluid. Journal of Sound and Vibration,1997,208:427-439
    [53]Jin J. D., Zou G. S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid. Journal of Sound and Vibration,2003,260: 783-805
    [54]Ni Q., Huang Y. Y. Nonlinear dynamic analysis of a viscoelastic pipe conveying fluid. China Ocean Engineering,2000,14(3):312-328
    [55]倪樵,黄玉盈.非线性约束粘弹性输液管的动力特性分析.华中科技大学学报,2001,29(2):87-89
    [56]徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ).应用数学和力学,2006,27(7):819-824
    [57]徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ).应用数学和力学,2006,27(7):825-832
    [58]Wang L., Ni Q. A note on the stability and chaotic motions of a restrained pipe conveying fluid. Journal of Sound and Vibration,2006,296:1079-1083
    [59]Semler C., Paidoussis M. P. Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. Journal of Fluids and Structures,1996, 10:787-825
    [60]Ginsberg J. H. The dynamic stability of a pipe conveying a pulsatile flow. International Journal of Engineering Science,1973,11:1013-1024
    [61]Paidoussis M. P., Issid N. T. Experiments on parametric resonance of pipes containing pulsatile flow. Journal of Applied Mechanics,1976,43:198-202
    [62]Paidoussis M. P., Sundararajan C. Parametric and combination resonances of a pipe conveying pulsating fluid. Journal of Applied Mechanics,1975,42:780-784
    [63]Ariaratnam S. T., Namachchivaya N. S. Dynamic stability of pipes conveying pulsating fluid. Journal of Sound and Vibration,1986,107:215-230
    [64]Namachchivaya N. S. Non-linear dynamics of supported pipe conveying pulsating fluid—Ⅰ. Subharmonic resonance. International Journal of Non-linear Mechanics, 1989,24:185-196
    [65]Namachchivaya N. S., Tien W. M. Non-linear dynamics of supported pipe conveying pulsating fluid—Ⅱ. Combination resonance. International Journal of Non-linear Mechanics,1989,24:197-208
    [66]Namachchivaya N. S., Tien W. M. Bifurcation behavior of nonlinear pipes conveying pulsating flow. Journal of Fluids and Structures,1989,3:609-629
    [67]Jin J. D., Song Z. Y. Parametric resonances of supported pipes conveying pulsating fluid. Journal of Fluids and Structures,2005,20:763-783
    [68]Jayaraman K., Narayanan S. Chaotic oscillations in pipes conveying pulsating fluid. Nonlinear Dynamics,1996,10(4):333-357
    [69]Oz H. R., Boyaci H. Transverse vibrations of tensioned pipes conveying fluid with time dependent velocity. Journal of Sound and Vibration,2000,236:259-276
    [70]Oz H. R. Nonlinear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. International Journal of Non-Linear Mechanics,2001, 36(1):1031-1039
    [71]Chatjigeorgiou I. K., Mavrakos S. A. Bounded and unbounded coupled transverse response of parametrically excited vertical marine risers and tensioned cable legs for marine applications. Applied Ocean Research,2002,24:341-354
    [72]Chatjigeorgiou I. K., Mavrakos S. A. Nonlinear resonances of parametrically excited risers—numerical and analytic investigation for Ω=2ω1. Computers and Structures,2005,83:560-573
    [73]Panda L. N., Kar R. C. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dynamics,2007,49:9-30
    [74]Panda L. N., Kar R. C. Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. Journal of Sound and Vibration,2008,309:375-406
    [75]Wang L. A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid. International Journal of Non-Linear Mechanics,2009, 44:115-121
    [76]Wang L. Erratum to "a further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid"[International Journal of Non-Linear Mechanics,2009,44:115-121]. International Journal of Non-Linear Mechanics, 2010,45:331-335
    [77]Herrmann G. Stability of equilibrium of elastic systems subjected to non-conservative force. Applied Mechanics Reviews,1967,20:103-108
    [78]Svetlitsky V. A. Vibration of tubes conveying fluid. Journal of the Acoustical Society of America,1977,62:595-600
    [79]Mote C. D. J. Dynamics stability of axially moving materials. Flow-Induced Vibration Digest,1977,4:2-11
    [80]Blevins R. D. Flow-Induced Vibration. New York:Van Nostrand Reinhold,1977: 40-58
    [81]Wadham-Gagnon M., Paidoussis M. P., Semler C. Dynamics of cantilevered pipes conveying fluid. Part 1:Nonlinear equations of three-dimensional motion. Journal of Fluids and Structures,2007,23:545-567
    [82]Paidoussis M. P., Semler C., Wadham-Gagnon M., et al. Dynamics of cantilevered pipes conveying fluid. Part 2:Dynamics of the system with intermediate spring support. Journal of Fluids and Structures,2007,23:569-587
    [83]Modarres-Sadeghi Y., Semler C., Wadham-Gagnon M., et al. Dynamics of cantilevered pipes conveying fluid. Part 3:Three-dimensional dynamics in the presence of an end-mass. Journal of Fluids and Structures,2007,23:589-603
    [84]Modarres-Sadeghil Y, Paidoussis M. P., Semler C. Three-dimensional oscillations of a cantilever pipe conveying fluid. International Journal of Non-Linear Mechanics,2008,43:18-25
    [85]Koo G. H., Park Y. S. Vibration analysis of a 3-dimensional piping system conveying fluid by wave approach. International Journal of Pressure Vessels and Piping,1996,67:249-256
    [86]Pramila A. On the gyroscopic terms appearing when the vibration of fluid conveying pipe is analyzed using the FEM. Journal of Sound Vibration,1986,105: 515-516
    [87]Zhang Y. L., Gorman D. G., Reese J. M. A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluid. Journal of Sound Vibration,2001,245:93-112
    [88]Pramila A., Laukkanen J., Liukkonen S. Dynamics and stability of short fluid-conveying Timoshenko element pipes. Journal of Sound Vibration,1991,144: 421-425
    [89]Ni Q., Zhang Z. L., Wang L. Application of the differential transformation method to vibration analysis of pipes conveying fluid. Applied Mathematics and Computation,2011,217:7028-7038
    [90]Dutta S. C., Roy R. A critical review on idealization and modeling for interaction among soil-foundation-structure system. Computers and Structures,2002, 80(20-21):1579-159
    [91]Stein R. A., Tobriner M. W. Vibration of pipes containing flowing fluids. Transactions of the ASME-Journal of the Applied Mechanics,1970,37:906-916
    [92]Lottati I., Kornecki A. The effect of an elastic foundation and of dissipative forces on the stability of fluid-conveying pipes. Journal of Sound and Vibration,1986, 109:327-338
    [93]Dermendjian-Ivanova D. S. Critical flow velocities of a simply supported pipeline on an elastic foundation. Journal of Sound and Vibration,1992,157(2):370-374
    [94]Chary S. R., Rao C. K., Iyengar R. N. Vibration of fluid conveying pipe on Winkler Foundation. Proceedings of the Eighth National Convention of Aerospace Engineers on Aeroelasticity, Hydroelasticity and other Fluid-Structure Interaction Problems, ⅡT Kharagpur, India,1993:266-287
    [95]王忠民,冯振宇,赵凤群等.弹性地基输流管道的耦合模态颤振分析.应用数学与力学,2000,21(10):1060-1068
    [96]Doared O., de Langre E. Local and global instability of fluid-conveying pipes on elastic foundation. Journal of Fluids and Structures,2002,16(1):1-14
    [97]Doared O. Dissipation effect on local and global stability of fluid-conveying pipes. Journal of Sound and Vibration,2010,329(1):72-83
    [98]王忠民,张战午,李会侠.粘弹性地基上粘弹性输流管道的稳定性分析.计算力学学报,2005,22(5):613-617
    [99]Djonjorov P., Vassilev V., Dzhupanov V. Dynamic stability of fluid conveying cantilevered pipes on elastic foundation.2001,247(3):537-546
    [100]Vassilev V. M., Djondjorov P. A. Dynamic stability of viscoelastic pipes on elastic foundations of variable modulus. Journal of Sound and Vibration,2006,297: 414-419
    [101]Chellapilla K. R., Simha H. S. Critical velocity of fluid-conveying pipes resting on two-parameter foundation. Journal of Sound and Vibration,2007,302:387-397
    [102]Wang L., Ni Q. Large-amplitude free vibrations of fluid-conveying pipes on a Pasternak foundation. International Journal of Structural Stability and Dynamics, 2008,8:615-626
    [103]梁峰,金基铎,杨晓东等.弹性地基上输流管道的静态和动态稳定性研究.工程力学,2010,27(11):166-171
    [104]Qian Q., Wang L., Ni Q. Nonlinear response of a fluid-conveying pipe embedded in nonlinear elastic foundations. Acta Mechanica Solida Sinica 2008,21(2): 171-176
    [105]Paidoussis M. P., Semler C. Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end. International journal of non-linear mechanics,1998,33:15-32
    [106]Yoona H. I., Son I. S. Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass. International Journal of Mechanical Sciences,2007, 49:878-887
    [107]Hellum A., Mukherjee R., Hull A. J. Flutter instability of a fluid-conveying fluid-immersed pipe affixed to a rigid body. Journal of Fluids and Structures,2011, 27:1086-1096
    [108]Zhou J. K. Differential transformation and its applications for electrical circuits. Wuhan, China:Huazhong University Press,1986
    [109]Chen C. K., Ho S. H. Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform. International Journal of Mechanical Science,1999,41:1339-1356
    [110]Thomson WT. Theory of vibration with appl:cation.London:Unwin Hyman Ltd;1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700