用户名: 密码: 验证码:
黑河下游不同地下水位胡杨叶形态学生理学响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球水资源极度短缺和严重分布不均已经成为公认的事实。由于水资源的不均分布,加之地理等因素的制约,全世界出现了面积约3000多万平方公里的干旱区,约占全球陆地总面积的20%。有关研究表明,在我国干旱区的面积(不包括半干旱地区面积)约占全中国陆地总面积的1/4。我国干旱区较为独特,位于中国的西北部,深居内陆,与非洲,西亚,澳大利亚等地的干旱区不同的是,境内又有一系列的高山环绕,海洋湿润水汽很难到达这里,因此气候十分干旱。在干旱区的平原地区植被非常稀少,基本上属于荒漠植物,植物的覆盖度在10%以下,只有在河流两岸以及地下水适宜带才有较多的植物生长,覆盖度才可达到20-40%,但是植被种类有限。植物与水分的关系一直是干旱区生态学研究的中心内容,而受制于水分的植物生长状态及其形态、生理研究又是该领域的热点和难点,成为干旱区生态环境保护和恢复重建中必须面对的基础科学问题。
     黑河是我国西北地区典型的内陆河流,即黑河流域上游为森林草地,中游为绿洲农田,下游为荒漠绿洲。黑河起源于青海省的祁连山脉,中间流经甘肃省的河西走廊,最后到达内蒙古自治区的额济纳旗,全长总共821km。黑河下游属于典型的干旱区,虽然在这里植物种类很少,植物的生长状态和形态学、生理学特征严重依赖于地下水的分布和埋深,但是却生长着世界上为数不多的荒漠河岸植物—胡杨(Populus euphratica Oliv.)。作为我国第二大荒漠河岸胡杨林,由于水资源的匮乏和人类活动的影响,致使胡杨林面积极度萎缩,现分布面积为2.94x104 hm2,与30年前相比,减少了2.06 x104 hm2。目前胡杨林病、虫害严重,长势不良,天然更新能力极弱,面临着该物种在本地区消失的危险。由于胡杨是维持荒漠河岸林生态系统平衡的关键物种,也是联合国粮农组织(FAO)确定为最急需优先保护的林木基因资源,所以胡杨的保护与重建势在必行。目前,国家也已经将内蒙古额济纳胡杨林规划为国家级保护森林,主要以胡杨等植物群落和生物多样性为保护对象,胡杨的情况才有所好转。然而,依据限制性环境因子(地下水),如何有效的判别胡杨的生长状态,如何合理的进行胡杨的恢复和重建,如何科学的预测未来胡杨的变迁却知之甚少。因此,本论文以额济纳旗天然胡杨林为研究对象,分别在不同的地下水位,分析了胡杨的生长状态和胡杨叶的形态学和生理学特征,希望能为制定胡杨林的保护和恢复重建中提供科学依据。本研究所取得的主要结论如下:
     1.在不同的地下水位,受水分胁迫程度的不同,天然胡杨的生长状态有较大的差异。胡杨的种群密度(population density),枯枝占所有枝条的比例(ratio of died branches to full branches),树冠,树高均随地下水位的变化而变化。通过研究,可将胡杨的生长状态分为3个级别:(1)地下水位深度在~3m之内时,胡杨长势很好,种群密度最大(-700-~200株/平方公里),枯枝占所有枝条的比例很小(<~10%)。是胡杨生长发育的最佳地下水位。(2)地下水位深度在~3m-~5m之间时,胡杨长势良好,种群密度有所下降(-200--50株/平方公里),枯枝占所有枝条的比例提高(-10%-~60%)。此时,已经发生水分胁迫,是胡杨生长发育较为适宜的地下水位。(3)地下水位深度超过~5m时,胡杨长势差,有的甚至死亡,种群密度最低(<-50株/平方公里),枯枝占所有枝条的比例最高(-60%--100%)。水分胁迫逐渐加剧,是胡杨生长与发育的不适宜水位。
     2.在不同的地下水位,胡杨叶片形态学、生理学参数均明显发生改变。本研究的三个胡杨叶片形态学、生理学参数为:气孔密度(stomatal density),比叶面积(specific leaf area),稳定碳同位素组成(stable carbon isotopic composition)。三者都可以指示不同的地下水位,也就是不同的水分胁迫程度,且指示程度各有不同。
     3.胡杨叶气孔密度(stomatal density, SD)可以对不同地下水位做出响应。随着地下水位的降低(水分胁迫程度的加剧)胡杨叶气孔密度呈现先减小后增加再减小的三次多项式模型变化。这个变化趋势是由盐分胁迫和水分胁迫共同作用形成的。即,盐分胁迫发生在较浅的地下水位(~2.0m-~2.7m),水分胁迫发生在较深的地下水位(~2.7m--8.5m),而地下水位在~2.7m附近处很狭小的范围内胡杨可能不受胁迫(不受盐分胁迫和不受水分胁迫)。在水分胁迫的过程中,随着地下水位埋深(水分胁迫程度的加剧),气孔密度形成了三个部分:由于叶面积减小造成的气孔密度增加部分(地下水位~2.7m-~3.7m),由于气孔数量减小形成的气孔密度减小部分(地下水位~5.2m--8.5m)和两者之间的过渡性区域(地下水位~3.7m-~5.2m)。
     4.胡杨叶片比叶面积(SLA)可以指示水分胁迫。随着地下水位的加深,胡杨的比叶面积以指数方式逐渐减小。地下水位较浅(-2m-~3m)时,比叶面积对地下水位的变化更为敏感。
     5.胡杨叶片稳定碳同位素组成(d13C)也可以指示水分胁迫。随着地下水位的加深,胡杨叶片d13C值逐渐增加。地下水位在~7m出现阈值,当地下水位深于~7m时,d13C对地下水位的变化更加敏感。
     6.在气孔密度的制备和计算中,本研究继承了传统的透明胶带粘取法和显微拍照法并具新意的运用了遥感图像处理技术—面向对象分类,进行胡杨叶气孔密度的计算。利用专业的面向对象分类软件(eCognition)对气孔图像进行多尺度分割,然后将生成的分类图像导入ArcGIS软件中计算气孔密度,最后用R语言编写代码进行批处理。利用宏观图像处理技术解决微观的问题,并且取得了处理速度快,计算精度高的效果。
It has become a well-known fact that the global water resource is in extreme shortage and with severely uneven distribution. Due to the uneven distribution of water resources as well as the constraint of geographic factors, there appears an arid region of more than 30 million square kilometers all around the world. It approximately occupies 20% of the total global land area. Studies have shown that the area of arid regions in China (not including the area of semi-arid regions) largely occupies about 25% of the total land area. The arid regions in our country are relatively unique for they are largely located at the inner continent or northwestern part of China. Comparing with the arid regions in Africa, western Asia and Australia, these regions in our country are mostly surrounded by huge mountain chains. Therefore, it is very difficult for the wet vapor from sea to reach and correspondingly the climate is rather dry. Vegetation is rare in the arid plains and there essentially grows a kind of desert plant. Plant coverage is below 10% and it can reach 20% to 40% only on the sides of rivers and groundwater-suitable regions, where can grow lots of plant. But the vegetation species is limited. The relationship between plant and moisture is always a research focus in the ecological study of arid regions. Moreover, research for the growing status and morphology as well as physiology of plant, which are all subject to water, is a hot and difficult study issue in this field. This is also a basic must-face problem for the protection and reconstruction of the ecological environment in arid regions.
     Heihe is a typical inland river in the northwestern part of our country, the upper reaches of which is covered with forest grass, the middle reaches and lower reaches are respectively scattered by oasis farmland and oasis desert. Heihe River originates in Qilian Mountains in Qinghai Province and flows through Hexi Corridor of Gansu Province; it finally reaches the Inner Mongolia Autonomous Region Ejina, with the total length being of 821km. The lower reaches of Heihe River are a typical arid area. Although the plant species is limited here and the growing status, morphology as well as physiological characteristics of the plant extremely depend on the distribution and depth of groundwater, there still grows a globally rare desert plant-Populus euphratica Oliv. As the second largest desert riparian Populus euphratica Oliv forest, its area has withered extremely due to shortage of water resource and the influence of human activity. Now its distribution area is of 2.94 x104 hm2, which has decreased 2.06×10 4 hm2 comparing with 30 years ago. Now the Populus euphratica Oliv forest is heavily damaged by pests and diseases, the growing status of this tree is bad and its natural regeneration ability is very weak. Thus Populus euphratica Oliv faces the danger of disappearing from the region. Because Populus euphratica Oliv is a key species in maintaining the ecological balance of desert riparian forests and it is determined by FAO as the forest genetic resource needing to be protected prior to others, the protection and reconstruction of Populus euphratica Oliv is imperative. At present, our country has already taken the Ejina Populus euphratica Oliv forest as a national protection forest, which is mainly for the protection of Populus euphratica Oliv, plant communities and biodiversity. Then the status of Populus euphratica Oliv has improved. However, according to the restrictive environmental factor (groundwater), we still know little about how to effectively distinguish the growing status of Populus euphratica Oliv, how to make reasonable rehabilitation and reconstruction as well as how to scientifically predict the changes of Populus euphratica Oliv in the future. Therefore, this article took natural Populus euphratica Oliv of Ejina as its study object and analyzed the growing status, the morphology of leaves as well as the physiological characteristics of Populus euphratica Oliv in different groundwater levels. We hope that our study can provide a scientific basis for the protection and reconstruction of Populus euphratica Oliv. The main conclusions of this study are as follows:
     1. As to different groundwater levels with different degrees of water stress, the growing status of natural Populus euphratica Oliv are quite different. The population density (PD), ratio of died branches to full branches (RBF), the crown and height of Populus euphratica Oliv all vary as the groundwater changes. Generally speaking, the growing status of Populus euphratica Oliv can be divided into 3 levels:(1) population density (-700-~200tree/hm2) is rather high where the groundwater table is less than~3 m, and ratio of died branches to full branches is very low (<~10%). This groundwater level forms the optimum wet conditions for for Populus euphratica Oliv to grow and develop. (2) the density(~200-~50 tree/hm2) is much reduced where the groundwater table is between~3 and~5 m, and ratio of died branches to full branches is promoted (~10%-~60%). At this time, water stress is happened and this groundwater table is appropriate to growth and development of Populus euphratica Oliv. (2) the density(<~50 tree/hm2) is very low when the groundwater table is beyond~5 m, and ratio of died branches to full branches is very high (-60% -~100%). This groundwater table is not suitable for the growth and development of Populus euphratica Oliv.
     2. The morphological and physiological parameters of Populus euphratica Oliv were significantly changed with different groundwater tables. In this study, three leaf-related morphological and physiological parameters of Populus euphratica Oliv are stomatal density, specific leaf area and stable carbon isotopic composition. Both of them can indicate different different groundwater tables.
     3. Variation of stomatal density (SD) of Populus euphratica Oliv can indicate different groundwater tables. salt stress dictates leaf stomatal density (SD) of shallow groundwater conditions (less than~2.7 m) and that water stress dictates leaf stomatal density (SD) of deep groundwater conditions (larger than~2.7 m), the narrow zone around~2.7 m probably being a stress-free zone (neither salt stress nor water stress). Within the water-stressed portion (from~2.7 to~8.5 m) or the bell-shaped portion, SD climbing segment (~2.7 -~3.7 m) is leaf-area controlled and the declining segment (~5.2 -~8.5 m) is stomatal-number controlled with the plateau segment (~3.7 -~5.2 m) being the transition.
     4. Variation of specific leaf area (SLA) of Populus euphratica Oliv can indicate different groundwater tables (water stress). Specific leaf area (SLA) decreases exponentially with increasing groundwater tables. Our research show that specific leaf area (SLA) is more sensitive to groundwater tables when the table is shallow and~3 m of groundwater table seems to be a threshold where SLA becomes less sensitive to groundwater table.
     5. Variation of stable carbon isotopic composition (d13C) of Populus euphratica Oliv can also indicate different groundwater tables (water stress). The d13 is also strongly dependent on groundwater table. Our research show that stable carbon isotopic composition (d13C) becomes more sensitive when the groundwater table is deep and-7 m of DG seems to be a threshold where the d13C signature becomes more sensitive to DG.
     6. In the preparation and calculation of stomatal density, this study has inherited the traditional ways of adhesive cellophane tape emulated and microscopic photographed method, it also made the creative use of remote sensing image processing technology (object-oriented classification) to calculate the Populus euphratica Oliv leaves stomatal density. We used the professional object-oriented classification software (eCognition) to give a multiscale segmentation for the stomatal images. Then we imported the generated classification images into the ArcGIS software to calculate stomatal density. Finally, we made a batch program using R language to deal with a lot of photos'data. Using macro-image processing technology to solve micro-problems, and achieve the effect of fast processing speed, high precision calculation.
引文
柴成林,李绍华,徐迎春.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].植物生理学通讯.2001,37(6):495-498.
    曹慧等,兰彦平,王孝威等.水分胁迫对短枝型果树光合速率日变化的影响[J].山西农业科学.2000,28(3):53-55.
    陈杰忠,赵红业,叶自行.水分胁迫对柁果成花效应及内源激素变化的影响[J].热带作物学报,2000,21(2):74-79.
    陈立讼,刘星辉.水分胁迫对荔枝叶片内源激素含量的影响[J].热带作物学报.1999,20(3):31-35.
    陈立松,刘星辉.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系[J].热带作物学报.1999,20(2):31-36.
    陈立松,刘星辉.水分胁迫对荔枝叶片超微结构的影响[J].福建农业大学学报.2001,30(2):171-174.
    陈献男,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报.2000,29(1):35-39.
    程瑞平,束怀瑞,顾曼如.水分胁迫对果树生长和叶中矿质元素含量的影响[J].植物生理学通讯.1992,28(1):32-34.
    董健康,邓西民,曾骧.缺水条件下苹果幼树叶片C同化产物的输出和分配[J].核农学报.1994,8(2):92-96.
    高秀萍,闫继耀,刘恩科等.水分胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化[J].园艺学报.2002,29(3):268-270.
    何逢标,刘雪梅.西北干旱区水问题对策探讨[J].干旱区资源与环境.2007,21(11):9-12.
    李守波.黑河下游地下水波动带地下水时空动态GIS辅助模拟研究[D].兰州大学硕士学位论文.2007.
    罗华建,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学.1999,16(2):126-130.
    马兰青,王丽雪,王有年等.干旱对苹果叶片形态解剖结构的影响[J].北京农学院学报.1996,11(2):27-29.
    聂磊,刘鸿先,彭少鳞.水分胁迫对长期UV-B辐射下柚树苗生理特性的影响[J].植物资源与环境学报.2001,10(3):19-24.
    曲焕林.中国干旱半干旱地区地下水资源评价[M].北京:科学出版社,1991.
    曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报.1999,26(3):147-151.
    汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21
    滕元文,周湘红.果树气孔反应及其叶水势的调控[J].干旱地区农业研究.1993,11(4):60-64.
    夏军,孙雪涛,谈戈.中国西部流域水循环研究进展与展望[J].地球科学进展.2003,18(1):58-67.
    徐迎春,李绍华,柴成林等.水分胁迫期问及胁迫解除后苹果树源叶碳水同化物代谢规律的研究[J].果树学报.2001,18(1):1-6.
    严大义,张春开,叶金伟.葡萄水分胁迫反应的研究[J].葡萄栽培与酿酒.1994, 71(4):14-16.
    杨永青,蒋湘宁.胡杨抗旱生理及分子基础研究[M].北京:中国环境科学出版社,2010.
    杨洪强,贾文锁,张大鹏.失水对苹果新根ABA含量和蛋白激酶的影响[J].园艺学报.2000,27(2):79-84.
    张丽.黑河流域下游生态需水理论与方法研究田[D].北京林业大学硕士学位论文.2004.
    张强,赵映东,张存杰等.西北干旱区水循环与水资源问题[J].干旱气象.2008,26(2):1-8.
    赵传燕,李守波,贾艳红等.黑河下游地下水波动带地下水与植被动态耦合模拟[J].应用生态学报.2008,19(12):2687-2692.
    赵雪宇,张学英.轻度水分胁迫下草莓叶片渗透性、弹性及冠层结构变化[J].北方园艺.1995,103(4):56-57.
    周兴福.西北干旱区水资源制度创新构想[J].改革.2005,(1):45-48.
    Boher, H. J., Jensen, R.G. Strategies for engineering drought stress tolerance in plant [J]. Trends in Biotecnology.1996,14:89-97.
    Chen, Z. H. et al. Photosynthetic acclimation to water stress in citrus[J]. Acta Agricultural University Zhejiangensis.1992,18(2):113-118.
    Gowing, D. T. et al. Apositive root-sourced signal as anindicatorof soil dryingin apple [J] J.Exp.Bot.1990,41:1535-1540.
    Hsiao, T. C. plant responses to drought stress[J]. Annual Review of plant Physiology.1973, 24:519-570.
    Riccardi, F., Gazeau, P., Vienne, D. et al. Protein changes in response to progressive water deficit in Maize[J]. Plant Physiol.1998,117:1253-1263.
    Lacono, F. et al. Response of electron transport rate of water stress-affected grapevines: Influence of leaf age [J]. Vitis.2000,39(4):137-144.
    Postel S. L., Daily G. C., Ehrlich P. R. Human appropriation of renewable freshwater [J]. Science.1996,271:785~788.
    Postel S.L. Water for food production:will there be enough in 2025 [J]? Bioscience,1998,48: 629~637.
    Wyn Jones, R. G. et al. The physiology and biochemistry of drought resistance in plants [M]. New York:Academic Press.1981.172-204.
    Yang, C. W., Wang, J. W. and Kao, C. H. The relation between accumulation of abscisic acid and praline in detached rice leave[J]. Biologia Plantarum.2000,43:301-304.
    白根本,沈昕,王沙生.胡杨盐诱导基因与盐抑制基因的差减杂交显示研究[J].林业科学.2003,39(2):168-170.
    白根本,于沙生,沈昕等.用蛋白电泳分析方法探讨胡杨远缘杂种鉴定及其抗盐性[J].北京林业大学学报.2000,22(3):5-7.
    陈亚宁,陈亚鹏,李卫红等.塔里木河下游胡杨脯氨酸累积对地下水位变化的响应[J].科学通报.2003,48(9):958-961.
    崔红,赵淑贤,金鸽.荒漠绿洲—额济纳胡杨林自然保护区[J].内蒙古林业.2000,2:23-24.
    丁霞,陈晓阳,李云等.胡杨叶片不定芽再生体系的研究[J].北京林业大学学报.2003,25(2):28-31.
    丁托娅.世界杨柳科植物的起源、分化和地理分布[J].云南植物研究.1995,17(3):277-290.
    董玉芝,白根本.用同工酶研究胡杨天然群体遗传结构[J].东北林业大学学报.1998,26(5):16-20.
    杜巧玲,许学工,李海涛等.黑河中下游绿洲生态安全变化分析[J].北京大学学报(自然科学版).2005,41(2):273-281.
    付爱红,陈亚宁,李卫红等.新疆塔里木河下游不同地下水位的胡杨水势变化分析[J].干早区地理.2004,27(2):207-211.
    高润宏,董智,张吴等.额济纳绿洲胡杨林更新及群落生物多样性动态[J].生态学报.2005,25(5):1019-1025.
    谷瑞升,蒋湘宁,郭仲琛.胡杨离体器官发生及试管无性系的建立[J].植物学报.1999,41(1):29-33.
    谷瑞升,蒋湘宁,郭仲琛.胡杨细胞和组织结构与其耐盐性关系的研究[J].植物学报.1999,41(6):576-579.
    谷瑞升,裴东,蒋湘宁.胡杨愈伤组织继代增殖和器官发生中蛋白分子标记的研究[J].林业科学.2002,38(3):1-6.
    龚斌.基于遥感技术的黑河下游水资源与生态环境[D].中国地质大学博士学位论文.2006.
    贾艳红,赵传燕,南忠仁.西北干旱区黑河下游植被覆盖变化研究综述[J].地理科学进展.2007,26(4):64-74.
    季凤玲,高海明.对黑河下游额济纳绿洲抢救与生态保护的思考[J].内蒙古水利.2001,86(4):34-35.
    季方,马英杰,樊自立.塔里木河冲积平原胡杨林的土壤水分状况研究[J].植物生态学报.2001,25(1):17-21.
    贾宝全,阎顺.绿洲—荒漠生态系统交错带环境演变过程初步研究[J].干旱区资源与环境.1995,9(3):58-64.
    李守波.黑河下游地下水波动带地下水时空动态GIS辅助模拟研究[D].兰州大学硕士学位论文.2007.
    李霞,侯平,董新光.塔里木河下游断流区胡杨密度调查与分析[J].新疆农业大学学报.2003,26(4):41-44.
    李毅.胡杨无性系苗期年生长动态分析[J].甘肃农业大学学报.1996,31(3):252-256.
    李银芳,王东,阿迪力.胡杨的初次灌溉效应[J].干旱区资源与环境.2005,19(1):179-182.
    李云玲,严登华,裴源生.黑河下游生态演化研究[J].人民黄河.2004,26(6):12-15.
    李志军,刘建平,于军等.胡杨、灰叶胡杨生物态学特性调查[J].西北植物学报.2003,23(7):1292-1296.
    刘建平,李志军.胡杨、灰叶胡杨P-V曲线水分参数的初步研究[J].西北植物学报.2004,24(7):1255-1259.
    刘建平,李志军,何良荣.胡杨、灰叶胡杨种子萌发期抗盐性研究[J].林业科学.2003,40(2):165-169.
    刘立诚,排祖拉,徐华君.新疆胡杨林下土壤形成特征及其系统分析[J].新疆大学学报(自然科学版).1999,16(3):86-91.
    刘群录,张旭家,李义.胡杨液泡膜微囊的纯化及其质子转运活性[J].西北植物学报.2002,22(3):1155-1159.
    罗晓云,崔长勇.内蒙古额济纳地区胡杨林退化原因的探讨—以“怪树林”为例[J].地质科技情报.2004,23(1):81-84.
    马焕成,陈绍良,王沙生.脱落酸与胡杨抗盐性的关系[J].西南林学院报.1998,18(1):8-14.
    马焕成,于沙生.胡杨对渗透胁迫和盐分胁迫的不同响应[J].西南林学院报.1998,18(1):1-7.
    马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院报.1998,18(1):15-23.
    马焕成,王沙生,蒋湘宁.胡杨气体交换特征[J].西南林学院报.1998,18(1):24-32.
    马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院报.1998,18(1):33-41.
    马焕成,王沙生.盐胁迫下胡杨的离子响应[J].西南林学院报.1998,18(1):42-47.
    马挺军,白根本,王沙生.胡杨悬浮细胞的生长及液泡膜微囊的制备[J].新疆农业大学学院报.2003,26(3):55-59.
    马挺军,向远寅,王沙生.盐胁迫对胡杨液泡膜H+-ATPase水解活性的影响[J].新疆农业大学学院报.2003,26(2):43-48.
    梅荣.现代空间信息技术支持下的额济纳湿地变化及其驱动因子探讨[D].内蒙古师范大学硕士学位论文.2004.
    潘世兵,路京选,张建立等.黑河流域额济纳绿洲生态保护措施及其效应分析[J].地理与地理信息科学.2006,22(3):106-112.
    齐善忠,王涛.黑河流域中下游地区土地沙漠化现状及其原因分析[J].水土保持学报.2003,17(4):98-109.
    石蒙沂,邹学政,王宣利.柴达木天然胡杨林的生境及起源[J].青海农业科技.2004年增刊:43-48.
    司建华,冯起,张小由等.热脉冲技术在确定胡杨幼树干液流中的应用[J].冰川冻土.2004,26(4):503-508.
    司建华,冯起,张小由等.黑河下游分水后的植被变化初步研究[J].西北植物学报.2005,25(4):631-640.
    苏培玺,张立新,杜明武.胡杨不同叶形光合特性、水分利用率及其对加富C02的影响[J].植物生态学报.2003,27(1):34-40.
    孙雪新,康向阳.胡杨现状及发展建议[J].世界林业研究.1993(4):48-51.
    孙雪新,康向阳.胡杨无性繁殖研究[J].甘肃林业科技.1993(1):27-30.
    孙雪新,李毅,康向阳.酒泉胡杨林的数量分类和排序[J].干旱区资源与环境.1994,8(4):61-67.
    王战,方振富,赵士洞等.中国植物志[D].1984,20(2):76-78.
    王志军,李康,处格鲁克艾尼.胡杨的组织培养[J]..新疆农业科学.1997 4:185-186.
    王东健,陈其凌,李铭.胡杨不同生长阶段的耐盐性[J].新疆林业.1998,84:9-10.
    干俊英,尹伟伦,夏新莉.胡杨锌指蛋白基因克隆及其结构分析[J].生物多样性.2005,27(2):245-248.
    王根绪,程国栋.干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J].生态学报,2000,20(3):363-368.
    王立明,张秋良,殷继艳.额济纳胡杨林生长规律及生物生产:力的研究[J].干旱区资源与环境.2003,17(2):94-99.
    王让会.胡杨资源信息管理系统的设计与实现[J].新疆环境保护.1999,21(4):32-38.
    王世绩.胡杨林[M].北京:中国环境科学出版社.1995.
    魏庆莒.胡杨[M].北京:中国林业出版社.1993.
    吴胜军.于早地区包气带中水分和盐份的分布运移及其对生态环境的影响[D].中国地质大学硕士学位论文.2002.
    鸟日根夫,战士宏,程继全等.额济纳旗天然胡杨林生物学、生态学抗旱机理与繁殖机理研究[J].内蒙古林业调查设计.2003,26(4):1-4.
    仵彦卿,慕富强,贺益贤等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J].冰川冻土.2000,22(1):73-77.
    徐海量,宋郁东,王强等.胡杨生理指标对塔里小河下游生态输水的响应[J].环境科学研究.2003,16(4):24-27.
    严登华,王浩等.黑河流域下游水分驱动下的生态演化[J].中国环境科学.2005,25(1):37-41.
    杨树德,郑文菊,陈国仓.胡杨披针叶形与阔卵叶形的超微结构与光合特性的差异[J].西北植物学报.2005,25(1):14-21.
    杨颖丽,张峰,张敏桂.胡杨愈伤组织质膜的两相分离法及其H+-ATPase的特性[J].西北植物学报.2003,23(11):1877-1881.
    袁书艳,胡青,蒋湘宁.茉莉酸在胡杨耐盐性中的作用[J].北京林业大学学报.2002,24(3):66-69.
    曾凡江,张希明.新疆策勒绿洲胡杨水分生理特性研究[J].干旱区研究.2002,19(2):26-30.
    曾会明,沈昕.胡杨(Populus euphratica)盐相关基因的克隆[J].内蒙古林业大学学报.2004,25(2):76-80.
    张光辉,刘少玉,张翠云等.黑河流域地下水循环演化规律研究[J].中国地质.2004,31(8):289-293.
    张华.基于生物量的黑河下游绿洲植被优势种生态需水估算[D].西北师范大学博士论文.2011.
    张吴.额济纳绿洲胡杨种群生活史对策研究[D].北京林业大学博士学位论文.2006.
    张玲,李广贺,张旭.土壤种子库研究综述[J].生态学杂志.2004,23(2):114-120.
    张丽.黑河流域下游生态需水理论与方法研究田[D].北京林业大学硕士学位论文.2004.
    张平东,康向阳,高鹏.胡杨离体培养分化增殖途径的比较研究[J].北京林业大学学报.2003,25(6):50-54.
    张小由,龚家栋,周茅先.胡杨树干液流的时空变异性研究[J].中国沙漠.2004,24(4):489-492.
    张小由,康尔泗,司建华.黑河下游胡杨林耗水规律研究[J].干旱区资源与环境.2006,20(1):195-197.
    张武文,王林和,李德平等.额济纳平原水资源特点与合理利用[J].干早区资源与环境(增 刊).2000,14(5):19-24.
    张应华,件彦卿,苏建平等.额济纳盆地地下水补给机理研究[J].中国沙漠.2006,26(1):96-102.
    赵传燕.黑河流域生态需水量机理及时空分布研究[D].中国科学院寒区早区环境与工程研究所博士后科研报告.2005.
    赵传燕,李守波,贾艳红等.黑河下游地下水波动带地下水与植被动态耦合模拟[J1.应用生态学报.2008,19(12):2687-2692.
    赵传燕,李守波,冯兆东等.黑河下游地下水波动带地下水位动态变化研究[J].中国沙漠.2009,29(2):365-370。
    赵能,龚固堂.杨柳科植物的分类与分布[J].四川林业科技.1998,19(4):9-20.
    董智,姚云峰,李红丽.额济纳绿洲生态环境现状与综合治理对策[J].干旱区资源与环境.2000,14(5):1-4.
    高华君.我国绿洲的分布和和类型[J].干旱区地理.1987,10(4):23-25.
    龚家栋,董光荣.黑河下游额济纳绿洲环境退化综合治理[J].中国沙漠.1998,18(1):44-50.
    李博.生态学[M].北京:高等教育出版社,2000.
    李俊清,卢琦,褚建民等.额济纳绿洲胡杨林研究[M].北京:科学出版社,2009.
    刘钟玲,朱宗元,郝敦元.黑河流域地域系统的下游绿洲带资源—环境安全[J].自然资源学报与环境.2002,17(3):286-293.
    中元村,汪久文.中国绿洲[M].郑州:河南大学出版社,2003.
    王永兴,张小雷.绿洲地域关系及其演变规律的初步研究[J].干早区地理.1999,22(1):62-68.
    张华.基于生物量的黑河下游绿洲植被优势种生态需水估算[D].西北师范大学博士论文.2011.
    张丽,董增川,黄晓玲.干旱区典型植被生长与地下水位关系的模型研究[J].中国沙漠.2004,24(1):110-113.
    赵传燕,李守波,贾艳红等.黑河下游地下水波动带地下水与植被动态耦合模拟[J].应用生态学报.2008,19(12):2687-2692.
    钟华平,刘恒,王义等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展.2002,13(2):223-228.
    丛日春,胡稚君,刘洪庆.几种攀缘植物耐旱性研究[J].内蒙古林学院学报(自然科学版),1996,18(3):33-39.
    邓云,王冰.苏文华濒危植物云南金钱槭对光、水环境的适应性[J].生态学杂志,2008,27(6):888-893.
    何维明,钟章成.攀援植物绞股蓝幼苗对光照强度的形态和生长反应[J].植物生态学报,2000,24(3):375-378.
    华鹤良,田银芳,张建军等.不同类型水稻品种物质生产能力的差异及其解析[J].耕作与栽培,1998,3:3-16.
    霍常富,孙海龙,王政权等.光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响[J].林业科学,2009,45(7):38-44.
    姜青珍,张建平,李雁鸣.水分影响小麦光合物质生产模拟模型的初步研究[J].河北农业大学学报,1999,22(2):27-31.
    雷泽勇,张学丽,周风艳.沙地樟子松杭旱性的研究[J].林业科技通讯,1996,1:1-3.
    李冬林,向其柏.土壤水分状况对浙江楠幼苗的影响[J].南京林业大学学报,2006,30(5):112-114.
    刘铁梅,曹卫星,罗卫红等.小麦叶面积指数的模拟模型研究[J].麦类作物学报,2001,21(2):38-41.
    聂磊,刘鸿先,彭少麟.增强UV-B辐射对抽树苗生长和生理特性效应研究[J].生态科学,2001,20(3):31-38.
    蒲云海,黄运平,李伟.竹叶眼子菜(POTAMOGETON MALAIANUS MIQ.)叶面积测定及与栽培密度的关系初探[J].武汉植物学研究,2000,18(4):302-308.
    祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J].生态学报,2008,28(1):122-128.
    乔玉辉,宇振荣.冬小麦叶面积动态变化规律及其定量化研究[J].Chinese journal of Eco-Agriculture,2002,10:83-85.
    阮少艺,聂磊,刘鸿先.优康唑对柚树苗生长和一些生理特性的影响[J].广西师范大学学报2001,19(2):67-71.
    阮少艺,聂磊,刘鸿先.烯效唑对柚树苗生长和生理特性的效应研究[J].福建热作科技,2002,27(2):1-4.
    桑建荣,李疆.干旱荒漠区核果类果树叶片水分生理特性初步研究[J].新疆农业大学学报,2003,26(4):52-54.
    施纯淦,叶功富,赖文胜等.水分胁迫下木黄麻苗木的生长和形态特征的研究[J].防护林科技,2000,S3:151-154.
    孙存华.模拟干旱诱导对藜抗旱力的影响[J].应用生态学报,1999,10(1):16-18.
    孙谷畴和张厚华.全日光强下5种植物叶片的UV-B防护[J].热带亚热带植物学报,2005,13(1):13-16.
    田青,曹致中,王国宏.内蒙古多伦典型草原14种植物比叶面积对水分梯度变化的响应[J].草原与草坪,2008,130(5):23-26.
    王晓冬,叶生欣,沈海龙等.李长海不同土壤水分条件对真桦幼苗形态特征、生物量及光合生理特征的影响[J].东北林业大学学报,2008,36(5):22-24.
    汪自强,Simon Cheche,董明远等.不同熟期春大豆若干生长性状的比较研究[J].浙江农业大学学报,1995,21(3):284-288.
    汪自强,董明远,余樟土.春大豆的生育和干物质形成特性的研究[J].浙江农业学报,1996,8(2):86-90.
    韦福民,张晓燕,刘鹏等.不同海拔对七子花叶片色素含量、含水量及比叶面积的影响[J].亚热带植物科学,2007,36(1):1-4.
    韦兰英,袁维圆,焦继飞等.紫花苜蓿和菊苣比叶面积和光合特性对不同用量保水剂的响应[J].生态学报,2009,29(12):6772-6778.
    尉秋实,赵明,李昌龙等.不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征[J].生态学杂志,2006,25(1):7-12.
    温达志,孔国辉,林植芳等.光强对四种亚热带树苗生长特征影响的比较[J].热带亚热带植物学报,1999,7(2):125-132.
    吴晓成,张秋良,臧润国,雷庆哲,2009.额尔齐斯河天然杨树林叶面积指数及比叶面积的研究.西北林学院学报24,10-15.
    吴栋栋,周永斌,于大炮,戴冠华,2009.不同海拔长白山岳桦的生理变化.生态学报29,2279-2285.
    肖春旺,周广胜,赵景柱等.不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响[J].生态学报,2001,21(12):2136-2140.
    许中旗,黄选瑞,徐成立等.光照条件对蒙古栎幼苗生长及形态特征的影响[J].生态学报,2009,29(3):1121-1128.
    余纪柱,李建吾,王美平等.低温弱光对不同生态型黄瓜苗期若干测定指标及光合特性的影响[J].上海农业学报,2003,19(4):46-50.
    曾小平,赵平,蔡锡安等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26-31.
    战吉成,王利军,黄卫东.弱光环境下葡萄叶片的生长及其在强光下的光合特性[J].中国农业大学学报,2002,7(3):75-78.
    张林,罗天祥,2004.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报28,844-852.
    赵秀琴,赵明,陆军等.热带远缘杂交水稻高光效后代在温带的光合特性观察[J].中国农业大学学报,2002,7(3):1-6.
    Aguirrezabal, L., Bouchier-Combaud, S., Radziejwoski, A., et al.2006. Plasticity to soil water deficit in Arabidopsis thaliana: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes[J]. Plant, Cell and Environment, 29(12):2216-2227.
    Anyia, A. O., Herzog, H.2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought[J]. European Journal of Agronomy,20(4):327-339.
    Battaglia, M., Sands, P., White, D., et al.2004. CABALA:a linked carbon, water and nitrogen model of forest growth for silvicultural decision support[J]. Forest Ecology and Management,193(1):251-282.
    Corbeels, M., McMurtrie, R. E., Pepper, D. A., et al.2005. Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: a modeling analysis[J]. Forest Ecology and Management,217(1):1-18.
    Cornelissen, J. H. C., Lavorel, S., Gamier, E., Diaz, S. et al.2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany,51:335-380.
    Dai, L. M., Li, Q. R., Wang, M., et al.2003. Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress[J]. Journal of Forestry Research,14(3): 191-196.
    Davi, H., Barbaroux, C., Dufrene, E., et al.2008. Modelling leaf mass per area in forest canopy as affected by prevailing radiation conditions[J]. Ecological Modelling,211(3):339-349.
    Ellsworth, D. S., Reich, P. B.,1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest[J]. Oecologia 96,169-178.
    Garnier, E., Shipley, B., Roumet, C, et al.2001. A standardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Functional Ecology 15,688-695.
    Gazanchian, A., Hajheidari, M., Sima, N. K., et al.2007. Proteome response of Elymus elongatum to severe water stress and recovery[J]. Journal of Experimental Botany,58(2): 291-300.
    Gower, S. T., Kucharik, C. J., Norman, J. M.1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment,70:29-51.
    Jiang, X. L., Li, W. Q., Zhang, W. G.2009. Relationship between plant functional traits and productivity[J]. Journal of Lanzhou University,45(4):37-41.
    Kimball,B.A.,朱建国,程磊等.开放系统中农作物对空气C02浓度增加的响应[J].应用生态学报,2002,13(10):1323-1338.
    Kitajima, K., Poorter, L.2010. Tissue - level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species[J]. New Phytologist,186(3): 708-721.
    Landsberg, J. J., Waring, R. H.1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management,95(3):209-228.
    Li, C., Berninger, F., Koskela, J., et al.2000. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin[J]. Australian Journal of Plant Physiology,27(3):231-238.
    Marcelis, L. F. M., Heuvelink, E., Goudriaan, J.1997. Modelling of biomass production and yield of horticultural crops: a review[J]. Scientia Horticulturae,74(1):83-112.
    Medhurst, J. L., Battaglia, M., Cherry, M. L., et al.1999. Allometric relationships for Eucalyptus nitens (Deane and Maiden) Maiden plantations[J]. Trees-Structure and Function,14(2): 91-101.
    Nautiyal, P. C., Rachaputi, N. R., Joshi, Y. C.2002. Moisture-deficit-induced changes in leaf-water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area[J]. Field Crops Research,74(1):67-79.
    Pierce, L. L., Running, S. W., Walker, J.1994. Regional scale relationships of leaf area index to specific leaf area and leaf nitrogen content[J]. Ecological Applications,4(2):313-321.
    Pinkard, E. A., Battaglia, M., Mohammed, C. L.2007. Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus[J]. Tree physiology,27(7):1053-1063.
    Retuerto, R., Woodward, F. I.1993. The influences of increased CO2 and water supply on growth, biomass allocation and water use efficiency of Sinapisalba L. grown under different wind speeds[J]. Oecologia,94(3):415-427.
    Roderick, M. L., Berry, S. L., Noble, I. R.2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves[J]. Functional Ecology,14(4):423-437.
    Sands, P. J., Landsberg, J. J.2002. Parameterisation of 3-PG for plantation grown Eucalyptus globulus[J]. Forest Ecology and Management,163(1):273-292.
    Sun, X. Y., Lu, Z. H., Li, P. H., et al.2006. Ecological adaptation of Eupatorium adenophorum populations to light intensity[J]. Journal of Forestry Research,17(2):116-120.
    Tardieu, F., Granier, C., Muller, B.1999. Modelling leaf expansion in a fluctuating environment: are changes in specific leaf area a consequence of changes in expansion rate?[J]. New Phytologist,143(1):33-43.
    Turner, N. C., Schulze, E. D., Nicolle, D., et al.2008. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species[J]. Physiologia Plantarum,132(4): 440-445.
    Whitehead, D., Beadle, C. L.2004. Physiological regulation of productivity and water use in Eucalyptus:a review[J]. Forest Ecology and Management,193(1-2):113-140.
    White, J. D., Scott, N. A.2006. Specific leaf area and nitrogen distribution in New Zealand forest species independently respond to intercepted light[J]. Forest Ecology and Management,226(1-3):319-329.
    Wilson, P., Thompson, K., Hodgson, J.1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist,143:155-162.
    Yan, C. R., Han, X. G., Chen, L. Z.2000. The relationship between the ecophysiological features and leaf characteristics of some woody plants in Beijing mountain zone[J]. Acta Ecologica Sinica,20 (1):53-60.
    顾振芳,王卫青,朱爱萍等.黄瓜对霜霉病的抗性与叶绿素含量、气孔密度的相关性[J].上海交通大学学报(农业科学版).2004,22(4):381-384.
    桂连友,龚信文,孟国玲等.茄子叶片气孔密度与侧多食跗线螨发生数量的关系[J].园艺学报.2001,28(2):170-172.
    韩正敏,尹佟明.杨树过氧化物酶活性、气孔密度和大小与黑斑病抗性的关系[J].南京林业大学学报.1998,22(4):91-94.
    贺静,胡进耀,杨冬生等.不同生境的巴山水青冈幼苗气孔密度比较研究[J].绵阳师范学院学报.2007,26(11):71-73.
    何若天,吕成群.若干阔叶树树冠各层叶气孔密度及光照条件对气孔密度的影响[J].广西农业大学学报.1995,14(4):311-316.
    贺新强,林月惠,林金星等.气孔密度与近一个世纪大气C02浓度变化的相关性研究[J].科学通报.1998,43(8):860-862.
    华劲松,罗飞.遮光率与芸豆叶片气孔密度及单株产量相关性初[J].探耕作与栽培.2008(4):7-8.
    李海波,李全英,陈温福等.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响[J].沈阳农业大学学报.200,34(5):340-343.
    李志英,梁艳荣,胡晓红.梨不同系统叶气孔的密度、大小与起源地气象因子的关系[J].内蒙古农业科技.1994(5):31-32.
    李海英,倪红涛,杨庆凯.大豆叶片结构与灰斑病抗性的研究[J].中国油料作物学报.2001,23(3):52-56.
    李志军,刘建平,于军等.胡杨、灰叶胡杨生物生态学特性调查[J].西北植物学报.2003,23(7):1292-1296.
    刘丽霞,程红卫,陈温福.水稻叶片气孔分布与气孔密度的研究[J].沈阳农业大学学报.2000,31(4):313-317.
    刘丽霞,程红卫,陈温福.不同类型水稻剑叶气孔长、宽度与气孔密度的研究[J].水稻栽培.2001a,2(2):5-8.
    刘丽霞,程红卫,陈温福.水稻剑叶气孔密度的研究[J].辽宁农业科学.2001b(2):8-11.
    刘丽霞,程红卫,陈温福.不同类型水稻品种抽穗后上三片功能叶气孔密度的比较[J].辽宁农业科学.2001c(3):1-3.
    刘照斌,宁俊,吕建洲.S3307处理对草地早熟禾叶片气孔密度和开度的影响[J].沈阳农业大学学报.2009,40(4):488-490.
    逯永满,姜彦成.中国海罂粟属(Glaucium L.)叶片特征及其抗旱性[J].新疆农业科学.2010,47(10):2063-2067.
    马之胜,贾云云,王建学等.桃树叶片气孔密度的研究[J].江西农业学报.2008,20(5):30-31.
    孟雷,李磊鑫,陈温福等.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J].沈阳农业大学学报.1999,30(5):477-480.
    那日,杨生,黄洪云.电场处理后白沙蒿气孔密度及分布对沙地干旱胁迫的响应[J].干旱地区农业研究.2005,23(4):151-154.
    王润佳,高世铭,张绪成.高大气C02浓度下C3植物叶片水分利用效率升高的研究进展[J].干旱地区农业研究.2010,28(6):190-195.
    吴J.气孔的构造及类型在生理上的意义.九江师专学报(自然科学版)[J].1997,15(6):39-43.
    吴强盛,夏仁学,张琼华.果树对水分胁迫反应研究进展[J].亚热带植物科学.2003,32(2):72-76.
    乌日根夫,战士宏,程继全等.额济纳旗天然胡杨林生物学、生态学抗旱机理与繁殖机理研究[J].内蒙古林业调查设计.2003,26(4):1-4.
    闫文芝.对影响小麦气孔密度变化因素初探[J].内蒙古农业科技.1997(3):39-12.
    杨树德,郑文菊,陈国仓.胡杨披针叶形与阔卵叶形的超微结构与光合特性的差异[J].西北植物学报.2005,25(1):14-21.
    尹秀玲,于金霞,段志青等.小麦气孔密度及日变化规律研究[J].中国农学通报.2006,22(5):237-242.
    尹秀玲,温静,刘欣等.蔷薇科12属代表植物叶片气孔密度研究[J].北方果树.2008(1):4-6
    于海秋,武志海,沈秀瑛等.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化[J].吉林农业大学学报.2003,25(3):239-242.
    张立荣,牛海山,汀诗平等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报.2010,30(24):6961-6969.
    张耀甲,于海峰,卢云霞等.国产水龙骨科植物的气孔器类刑及其系统学意义.兰州大学学报[J].1999,35(1):130-139.
    赵瑞霞,张齐宝,吴秀英等.干旱对小麦叶片下表皮细胞、气孔密度及大小的影响[J].内蒙古农业科技.2001(6):6-7.
    郑凤英,彭少麟,赵平.两种山黄麻属植物在近一世纪里气孔密度和潜在水分利用率的变化[J].植物生态学报.2001,25(4):405-409.
    郑淑霞,上官周平.近一世纪黄十高原区植物气孔密度变化规律[J].生态学报.2004,24(11):2457-2463.
    郑淑霞,上官周平.辽东栎叶片气孔密度及δ13C值的时空变异[J].林业科学.2005,41(2):30-36.
    Camposeo, S., Palasciano, M., Vivaldi, G.A., et al.2011. Effect of increasing climatic water deficit on some leaf and stomatal parametersof wild and cultivated almonds under Mediterranean conditions [J]. Scientia Horticulturae,127:234-241.
    Ceulemans, R., VanPraet, L., Jiang, X. N.1995. Effects of CO2 enrichment, leaf position and clone on stomatal index and epidermal cell density in poplar (Populus) [J]. New Phytologist, 131(1):99-107.
    Chaves, M. M., Maroco, J. P., Pereira, J. S.2003. Understanding plant responses to drought from genes to the whole plant [J]. Functional Plant Biology,30(3):239-264.
    Elias, P.1995. Stomatal density and size of apple tree growing under irrigated and non-irrigated conditions [J]. Biol. Plant,50(3):115-118.
    Fraser, L. H., Grenall, A. G., Carlyle, C., et al.2009. Adaptive phenotypic plasticity of Pseudoroegneria spicata:response of stomatal density, leaf area and biomass to changes in water supply and increased temperature [J]. Ann. Bot.103,769-775.
    Foster, A. S., Gifford, E. M.维管植物比较形态学[M].科学出版社.1963.
    Konrad, W., Roth-Nebelsick, A., Grein, M.,2008. Modelling of stomatal density response to atmospheric CO2 [J]. Journal of Theoretical Biology,253:638-658.
    Li, W. H., Zhuang, L., Gong, W. C., et al.2009. Ultramicroscopic Structure of Populus euphratica Leaves Related to Environmental Heterogeneity in the Lower Reaches of Tarim River[J]. Journal of Desert Research,29:680-687. (in Chinese with English abstract)
    Liu, S. P., Liu, J. M., Cao, J. Y, et al.2006. Stomatal distribution and character analysis of leaf epidermis of Jujube under drought stress [J]. Journal of Anhui Agricultural Sciences,34(7): 1315-1318.
    Liu, G. X., Zhou, W., Chen, T., et al.2009. Gender-specific carbon discrimination and stomatal density in the dioecioustree of Hippophate rhamnoides [J]. South African Journal of Botany, 75:268-275.
    Marti nez, J. P., Silva, H., Ledent, J. F., et al.2007. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.) [J]. European Journal of Agronomy,26(1):30-38.
    Qiang, W, Y., Wang, X. L., Chen, T., et al.2003. Variations of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountains [J]. Trees, 17:258-262.
    Spence, R. D., Wu, H., Sharpe, P. J. H., et al.1986. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells [J]. Plant, Cell & Environment,9(3): 197-202.
    Ticha, I.1982. Photosynthetic characteristics during ontogenesis of leaves.7. Stomata density and sizes [J]. Photosynthetica,16(2):375-471.
    Vahram, E., Susan S.H., William J.M.2006. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity [J]. Environmental Pollution,140:395-405.
    Wang, Y., Chen, X., Xiang, C. B.2007. Stomatal density and bio-water saving [J]. Journal of Integrative Plant Biology,49(10):1435-1444.
    Willmer,C., Fricker, M.1996. Stomata:topics in plant functional biology [M]. Chapman and Hall, London.
    Xu, Z. Z. and Zhou, G. S.2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. Journal of Experimental Botany, 59:3317-3325.
    Yan, C. R., Han, X. G., Chen, L. Z.2000. The relationship between the ecophysiological feature and leaf characteristics of some woody plants in Beijing mountain zone [J]. Acta Ecologica Sinica,20:53-60. (in Chinese with English abstract)
    Yang, H. M., Wang, G. X.2001. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment [J].Acta Phytoecologica Sinica,25(3):312-316.
    Yang, L. M., Han, M., Zhou, G. S., et al.2007. The changes in water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect [J]. Acta Ecologica Sinica, 27(1):16-23.
    Zhang, L., Dong, Z. C., Huang, X. L.2004. Modeling on relation between major plants growth and groundwater depth in arid area [J]. Journal of Desert Research,24(1):110-113.
    陈锦石,陈文正.碳同位素地质学概论[M].北京:地质出版社,1983.
    陈世苹,白永飞,韩兴国,2002.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报26,549-560.
    陈世苹,白永飞,韩兴国,2004.沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化[J].植物生态学报28,515-522.
    陈英华,胡俊,李裕红等.2004.碳稳定同位素技术在植物水分胁迫研究中的应用[J].生态学报24,1027-1031.
    丁访军,王兵,郭浩等.中亚热带毛竹和杉木的稳定碳同位素组成及其对水分利用效率的指示[J].江西农业大学学报.2011,33(1):52-57.
    黄雅娟,张成君,殷树鹏等.兰州市大气中S02对植物碳同位素组成的影响[J].安徽农业科学.2008,36(34):15170-15171.
    李嘉竹,王国安,刘贤赵等.贡嘎山东坡C3植物碳同位素组成及C4植物分布沿海拔高度的变化[J].地球科学.2009,39(10):1387-1396.
    李玉梅,刘东生.升温处理对植物碳同位素测试结果的影响[J].岩矿测试.2005,24(1):23-30.
    李志军,刘建平,于军等.胡杨、灰叶胡杨生物生态学特性调查[J].西北植物学报.2003,23(7):1292-1296.
    刘贤赵,王国安,李嘉竹等.中国北方农牧交错带C3草本植物δ13C与温度的关系及其对水分利用效率的指示[J].生态学报.2011,31(1):123-136.
    宁有丰,刘卫国,曹蕴宁.植物生长过程中碳同位素分馏对气候的响应[J].海洋地质与第四纪地质.2002,22(3):105-108.
    苏波,韩兴国,2000.中国东北样带草原区植物d13C值及水分利用效率对环境梯度的响应[J].植物生态学报.24,648-655.
    王国安,韩家愁,刘东生.中国北方黄土区C-3草本植物碳同位素组成研究[J].中国科学(D辑).2003,33(6):550-556.
    王谋,李勇,黄润秋等.青藏高原腹地植物碳同位素组成对环境条件的响应[J].山地学报.2005,23(3):274-279.
    乌日根夫,战士宏,程继全等.额济纳旗天然胡杨林生物学、生态学抗旱机理与繁殖机理研究[J].内蒙古林业调查设计.2003,26(4):1-4.
    杨树德,郑文菊,陈国仓.胡杨披针叶形与阔卵叶形的超微结构与光合特性的差异[J].西北植物学报.2005,25(1):14-21.
    郑淑霞,上官周平.2005.辽东栎叶片气孔密度及d13C值的时空变异.林业科学41,30-36.
    Anderson, J. E., Kriedemann, P. E., Austin, M.P., et al.2000. Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment[J]. Australian Journal of Botany 48,759-775.
    Baertschi, P.,1957. Messung und Deutung relativer Haufigkeitsvariationen von 18O and 13C in Karbonatgesteinen und Mineralien[J]. Schweiz. Mineral. Petrogr. Mitt 37,73-152.
    Bowling, D. R., McDowell, N. G, Bond, J. R., et al.2002. d13C content of ecosystemrespiration is linked to precipitation and vapor pressure deficit[J]. Oecologia 131(1):113-124.
    Ceulemans, M., Adams, F. C.,1995. Evaluation of sample preparation methods for organotin speciation analysis in sediments--focus on monobutyltin extraction[J]. Analytica chimica acta 317,161-170.
    Chen, S. P., Bai, Y. F., Han, X. G.2002. Variation of water-use efficiency of Leymus chinensis and Cleistogenes squarrosa in different plant communities in Xilin River Basin, Nei Mongol[J]. Acta Botanica Sinica,44(12):1484-1490.
    Craig, H.1953. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta 3,53-92.
    Elias, P.1995. Stomatal density and size of apple tree growing under irrigated and non-irrigated conditions[J]. Biol. Plant,50,115-118.
    Farquhar, G. D., O'Leary, M. H., Berry, J. A.1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology 9,121-137.
    Farquhar, G D., Ehleringer, J. R., Hubick, K. T.1989. Carbon isotope discrimination and photosynthesis[J]. Annual review of plant physiology and plant molecular biology 40, 503-537.
    Feng, Z. D., Wang, L. X., Ji, Y. H., et al.2008. Climatic dependency of soil organic carbon isotopic composition along the S-N transect from 34°N to 52°N in central-east Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,257(3):335-343.
    Knight, J. D., Livington, N. J., Vankessel, C.1994. Carbon isotope discrimination and water-use efficiency of six crops grown under wet and dry land conditions[J]. Plant, Cell and Environment,17:173-179.
    Kogami, H., Hanba, Y. T., Kibe, T., et al.2001. CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes[J]. Plant, Cell and Environment,24(5):529-538.
    Lee, X. W., Feng, Z. D., Guo, L. L., et al.2005. Soil and plant-d13C variations along a N-S (32-55°N) transect in east central Asia[J]. Global Biogeochemical Cycles 19(3):1-8.
    Liu, E, Stuzel, H.2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress[J]. Scientia Horticulturae,102(1):15-27.
    Ma, J. Y., Chen, K., Xia, D. S., et al.2007. Variation in foliar stable carbon isotope among populations of a desert plant, Reaumuria soongorica (Pall.) Maxim. in different environments[J]. Journal of Arid Environments,69(3):365-374.
    Murphey, B. E, Nier, A. O.1941. Variations in the relative abundance of the carbon isotopes[J]. Phys. Rev,59,771.
    Nier, A. O., Gulbrandsen, E. A.1939. Variations of the relative abundance of the carbon isotopes[J]. J. Am. Chem. Soc.,61,697.
    Parker, P. L.,1964. The biogeochemistry of the stable isotopes of carbon in a marine bay[J]. Geochimica et Cosmochimica Acta 28,1155-1164.
    Picon-Cochard, C., Coll, L., Balandier, P.2006. The role of below-ground competition during early stages of secondary succession: The case of 3-year-oldscots pine (Pinus sylverstris L.) seedlings in an abandoned grassland[J]. Oecologia,148:373-383.
    Rafter, T. A.1955.14C variations in nature and the effect on radiocarbon dating[J]. New Zealand Journal of Science and Technology B 37(1),20-38.
    Sun, Z. J., Livington, N. J., Guy, R. D.1996. Stable carbon isotope as indicators of increased water use efficiency and productivity in white spruce (Piceaglauca Voss) seedlings[J]. Plant, Cell and Environment,19:887-894.
    Ticha, Ⅰ.1982. Photosynthetic characteristics during ontogenesis of leaves.7. Stomata density and sizes[J]. Photosynthetica,16(2):375-471.
    Wickman, F. E.,1952. Variations in the relative abundance of the carbon isotopes in plants[J]. Geochimicaet Cosmochimica Acta 2,243-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700