用户名: 密码: 验证码:
牛粪好氧堆肥中微生物多样性及生产应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着畜禽饲养量不断提高,畜禽粪便对环境的污染问题日益凸显。好氧堆肥作为一种集畜禽粪便处理和资源化利用为一体的处理方法,具有生产成本低、污染少、改良土壤等众多优点。本研究从牛粪好氧堆肥菌剂的筛选、堆肥验证、规模化处理设备和参数优化到有机肥料应用并利用16SrRNA方法对微生物多样性分析和鉴定,得出如下主要结论:
     (1)从牛粪好氧堆肥过程中温度曲线、升温速度、堆肥高温期持续的天数、堆肥结束后的GI、纤维素、半纤维素降解率来看,筛选出单菌种HB1、HB2、HB3、HB4HB10、LB2、HB14、MB5、MF9、LF11、MC5、Mc9共12种菌为优势单菌种作为本次单菌种试验中筛选出的优势菌株。
     (2)采用16SrRNA PCR-DGGE方法从牛粪自然好氧发酵过程中分离出微生物共计417个,其中细菌类微生物177个,放线菌类微生物113个,真菌类微生物127个。细菌类是优势群体,生物多样性指数也是处于2.1以上;放线菌类微生物数量和种类都较少,多样性指数在1.4以下;真菌类微生物在数量和种类上处于中间价态,在降温期密度持续增加,对纤维素分解起到了决定性的作用,,是中后期的优势群体。
     (3)将(1)得出的优势单菌种按照复合菌种筛选原则进行组合应用,在牛粪好氧堆肥过程中,接种复合菌种处理1-8均明显高于CK处理,从纤维素类物质分解、温度和养分变化、发芽指数得出,处理2为最佳一蚀木链霉菌(Streptomyces Xylophagus)、嗜冷枯草芽孢杆菌(Psychrobacter sp)、嗜热单胞菌(Thermomonospora)、波茨坦芽孢杆菌(Brevibacillus)、卷枝毛霉菌(Mucor circinelloides)和钋青霉菌(Penicillium polonicum)。
     (4)在复合菌种堆肥反应过程中,细菌由15种减少至12种,波茨坦短芽孢杆菌(Brevibacillus borstelensis)消失;放线菌由5种增加到7种,在堆肥开始时成为优势群体:真菌6种增加到10种。复合微生物菌剂确定为:嗜冷枯草芽孢杆菌(Psychrobacter sp)、嗜热单胞菌(Thermomonospora)、蚀木链霉菌(Streptomyces Xylophagus)、卷枝毛霉菌(Mucorcircinelloides)和钋青霉菌(Penicillium polonicum)组成。
     (5)基于实验室小规模正交发酵参数,通过正交试验得出规模化生产最佳工艺条件为:含水率为65%,初始C/N为30:1,每天通风30min,有机质初始质量分数为80%,初始温度为30℃,pH值为8.0。
     (6)施用有机肥、化肥和不施肥对玉米种植比较得出,施用化肥除双穗率略低施用有机肥外,其他因子均高于施用有机肥和不施肥。从玉米根系来看,施用化肥的根茎大于施用有机肥和不施肥。在根系投影面积等数据方面,施用化肥处理均高于施用有机肥和不施肥;从根系直径分布直方图看出,施用有机肥处理在小于4mm直径范围的根系数量明显高于不施肥和施用化肥处理。
     (7)不同的施肥处理条件下,不同的土壤层呈现出不同的生物多样性指数和种类。不施肥和施用有机肥处理从表层至深层具有较高的多样性指数,化肥则相反。团聚体的含量随着粒级的增加呈现先增加后下降的趋势,2-0.25mm粒级团聚体为优势粒级。HS(腐殖物质)各组分以HM(胡敏素)的含量最高。随粒级的增加HS各组分含量没有明显变化。长期施用有机肥使2-0.25mm粒级团聚体中HA(胡敏酸)含量、HM含量、PQ值(某粒级HA占可提取物的百分数)和HS各组分的富集率均增加。
In recent years, with the continuous improvement of the livestock and poultry, livestock and poultry manure pollution of the environment has become increasingly prominent. As a approach of livestock manure treatment and resource use, aerobic composting has many advantages like low production costs, less pollution, soil improvement, and so on. Screening of this study, aerobic compost inocula from cow dung, compost validation, large-scale processing equipment and parameter optimization, the application of organic fertilizers and 16SrRNA method was used for microbial diversity analysis and identification, the main conclusions are:
     (1) From the temperature curve, heating rate, days of compost high temperature, the GI after compost, cellulose, hemicellulose degradation rate of cow dung aerobic composting process, we filtered out the single-strain HBi、HB2、HB3、HB4、HB10、LB2、HB14、MB5、MF9、LF11、MC5、MC9. All the 12 kinds of dominant single strain were screened in the single-strain tests.
     (2) 16SrRNA PCR-DGGE method was used to isolated 417 microorganisms from cow dung natural aerobic fermentation process. There are 177 bacteria microorganisms1113 actinomycetes microbial and 127 fungal microorganisms. Bacteria is the dominant groups, biodiversity index is more than 2.1; The number and types of actinomycetes microbial are less, and the diversity index is less than 1.4; The number and types of fungal microorganisms are in the central parity states, the density continues to increase in the cooling stage, and it played a decisive role in the cellulose decomposition. It's the advantaged groups in the late.
     (3) The advantage single strain derived from (1) was combinated according to the composite strain screening principles and was used in the process of cattle manure aerobic composting. Composite strain treatment 1-8 were significantly higher than the CK treatment. From the decomposition of cellulosic materials, changes in temperature and nutrients, germination index,we obtained:treatment 2 is the best-xylophagous Streptomyces (Streptomyces Xylophagus), addicted to cold Bacillus subtilis (Psychrobacter sp.), Thermophilic Aeromonas (Thermomonospora), Potsdam Bacillus bacilli (Brevibacillus), Volume sticks Mucor (Mucor circinelloides) and polonium Penicillium (Penicillium. polonicum).
     (4) In the compost reaction process of the composite strain, the kinds of bacteria reduced from 15 to 12, and the Potsdam short Bacillus (Brevibacillus borstelensis)was disappear; The kinds of actinomycetes increased from 5 to 7 and become the dominant groups at the beginning of compost; The kinds of Fungi increased from 6 to 10. Complex microbial are:psychrophilic Bacillus subtilis {Psychrobacter sp.), Thermophilic Aeromonas (Thermomonospora) the xylophagous Streptomyces {Streptomyces Xylophagus), volume branch mucormycosis (Mucorcircinelloides), and polonium Penicillium (Penicillium polonicum) composition.
     (5) Based on the parameters of the laboratory-scale orthogonal fermentation, the optimal conditions for large-scale production by orthogonal test are:water content was 65%, the initial C/N was 30:1, daily ventilation 30min, the initial mass fraction of organic matter was 80%, the initial temperature was 30℃, pH value 8.0.
     (6) The effect on maize under different treatment (organic manure, chemical fertilizer and no fertilization) were compared:the two-spike rate of treatment under chemical fertilizer was slightly lower than the treatment under organic fertilizer, but the other factors were higher than both of the treatment under organic manure and on fertilization. Maize rhizome of treatment chemical fertilizer was larger than the other two treatments. The number of roots less than 4mm diameter range of treatment organic fertilizer was significantly higher than the other two treatments.
     (7) Different soil layers showing different biological diversity index and species under different fertilization treatments. Treatments fertilization and organic fertilizer has a high diversity index from the surface to the deep, on the contrary of fertilizers. Content of aggregates first increased and then decreased with the increase of particle size,2-0.25 mm size aggregates was the dominant grain size. Content of HM was the highest in each components of HS. The content of each component in HS did not change significantly with the increase of particle size. Long-term application of organic fertilizer made of 2-0.25mm aggregates in HA content, HM content, PQ value and HS component enrichment rate increased.
引文
[1]北京市农业局.2010年北京市农业生态环境状况报告.2010,15-16.
    [2]鲍艳宇,周启星,颜丽,等.畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标[J].应用生态学报,2008,19(2):374-380.
    [3]陈世合.中国大陆城市生化垃圾堆肥技术概况[J].环境科学,1994,15(1):53-56
    [4]陈世和,张所明.城市垃圾堆放原理与工艺[M].上海:复旦大学出版社,1990
    [5]陈世和,张所明,宛玲等.城市生活垃圾堆肥处理的微生物特性研究[J].上海环境科学,1989,8(8):17-21
    [6]蔡磊,尹峻峰,杨丽萍等.儿种简便的木质素降解真菌定性筛选方法[J].微生物学通报,2002,29(1):67-69
    [7]陈世合,张所明.城市垃圾堆肥原理与工艺[J].上海:复旦大学出版社,1990
    [8]丁文川,李宏,郝以琼,等.污泥好氧堆肥主要微生物类群及其生态规律[J].重庆大学学报(自然科学版),2002,25(6):113-116
    [9]丁疆华.广州畜禽粪便养殖污染与防治对策[J].环境科学研究,2000,13(3):57-59.
    [10]戴芳,曾光明,吴小红等.生物表面活性剂在农业废物好氧堆肥中的应用[J].环境科学,2005,26(4):181-185.
    [11]付海燕,曾光明,黄国和等.堆肥过程中产生生物表面活性剂的细菌筛选[J].环境科学学报,2004,24(5):936-938.
    [12]高振魁,魏凤娟,高福平.3种类型肥料在蔬菜上的应用效果.安徽农业科学[J].2001,533.
    [13]顾希贤,许月蓉.垃圾堆肥微生物接种实验[J].应用与环境生物学报,1995(3):27-42
    [14]耿冬梅,宣世伟.高温好氧菌群用于接种垃圾堆肥的实验研究[J].上海环境科学,2003,22(10):699-701
    [15]耿冬梅,宣世伟,王鹏,等.高温好氧菌群用于接种垃圾发酵的实验研究[J].上海环境科学,2003,22(10):699-701
    [16]国家环境保护局.GB8172-1987.城市垃圾农用控制标准[S].北京:中国标准出版社,1988.2
    [17]胡天觉,曾光明,黄国和等.高温堆肥中微生物的生长特性及动力学建模[J].应用与环境生物学报,2004,10(5):651-654.
    [18]黄红丽,曾光明,黄国和等.堆肥中木质素降解微生物及其对腐殖质形成作用[J].中国生物工程杂志,2004,24(8):29-31.
    [19]黄丹莲,曾光明,黄国和等.白腐菌固态发酵条件越最优化及其在降解植物生物质的研究[J].2005a,25(2):232-237.
    [20]黄丹莲,曾光明,胡天觉等.白腐菌应用于堆肥处理含木质素废物研究[J].环境污染治理技术与设备,2005b,6(2):29-32.
    [21]韩润平,石杰,李建军等.生物材料对重金属离子的吸附富集作用[J].化学通报,2000,7:25-28
    [22]黄丹莲,曾光明,黄国和等.微生物接种技术应用于堆肥化中的研究进展[J].微生物学杂质,2005a,25(2):60-64
    [23]黄丹莲,曾光明,黄国和等.白腐菌固态发酵条件最优化及其降解植物生物质的研究[J].环境污染治理技术与设备,2005b,25(2):232-237
    [24]黄丹莲,曾光明,黄国和等.微生物产酶的不确定性因素确定化的一种方法[J].湖南大学学 报,2005c,32(4):89-93
    [25]黄丹莲,曾光明,胡天觉等.白腐菌应用于堆肥处理含木质素废物的研究[J].环境污染治理技术与设备,2005d,6(2):29-32
    [26]胡天觉,曾光明,黄国和等.有机固体废物好氧堆肥过程中微生物降解的主要因素[J].环境工程(增刊),2002,167-172
    [27]胡天觉,曾光明,黄国和等.仓式好氧堆肥中影响有机物发酵降解的主要因素[J].湖南大学学报,2004,31(5):31-35
    [28]郝文英.中国农业百科全书·土壤卷[M].北京:中国农业出版社,1996:385-400
    [29]黄昌勇.土壤学实验实习指导书[M].北京:农业出版社,1989
    [30]胡天觉,曾光明,黄国和等.有机固体废物好氧堆肥过程中微生物降解有机质的微观理论.环境工程,(增刊)2002,167~172
    [31]贾月慧,刘克锋,王红利,等.不同菌剂对猪粪腐熟中有机质含量的影响[J].北京农学院学报,2008,23(3):71-75
    [32]金淮,常志州,朱述钧.畜禽粪便中人畜共患病原菌传播的公众健康风险.江苏农业科学[J],2005(3):103~105
    [33]曹慧玲,王琦,胡青平,等.添加复合菌剂好氧发酵牛粪生产生物有机肥料得工艺优化[J].农业工程学报,2009,25(1):189-193
    [34]郝明德,王旭刚,党廷辉,等.黄土高原旱地小麦多年定位施用化肥的产量效应分析[J].作物学报,2004,30(11):1108~1112
    [35]李国学,张福锁.固体废物堆肥化与有机复混生产[M].北京:化学工业出版社.2000.
    [36]李慧君,殷宪强,谷胜意等.污泥及污泥堆肥对改善士壤物理性质的探讨[J].陕西农业科学,2004,1:29-31
    [37]刘慧.现代食品微生物学实验技术[M].北京:中国轻工业出版社,2006
    [38]李国建,钱新东.堆肥腐熟度指标的探讨[J].城市环境与城市生态,1990,3(2):27-30
    [39]刘克锋,刘悦秋,雷增普,等,几种微生物应用于猪粪堆肥中的研究[J].北京农学院学报,2001,16(2)
    [40]刘悦秋.猪粪、垃圾发酵优良菌种筛选及初步应用研究:[硕十学位论文].北京:北京林业大学.2001
    [41]李庆康,吴雷,刘海琴,等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护,2000,19(4):251~254
    [42]林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料学报,1994,1(1):6-18
    [43]刘杏兰,高宗,刘存寿,等.有机一无机肥配施的增产效应及对土壤肥力影响的定位研究[J].土壤学报,1996,33(2):138-147
    [44]吕家珑,张一平,王旭东,等.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报,2001,12(4):569~572
    [45]鲁如坤.土壤农业化学分析方法.北京:农业科技出版社,2000
    [46]李凯,窦森.不同类型十壤胡敏素组成的研究.水土保持学报,2008,22(3):116-119
    [47]劳家柽.土壤农化分析手册.北京:农业出版社,1988:241-297
    [48]李国学,张福锁.固体废物堆肥化与有机复合肥生产[M].北京:化学工业出版社,2000
    [49]聂永丰.三废处理工程技术手册(固体废物卷)[M].北京:化学工业出版社,2000,25-26
    [50]庞金华,程平宏,余廷园.两种微生物制剂对猪粪堆肥的效果[J].农业环境保护,1998,17(271-73
    [51]朴哲.高温堆肥体系的物质降解机理及微生物学特性研究[D].北京:中国农业大学,2002
    [52]庞金华,程平宏,余廷园,等.两种微生物制剂对猪粪堆肥的效果[J].农业环境保护,1998,17(2):72-73.
    [53]彭新华,陆才正,杨英.快速堆肥的可控技术及温度模型研究[J].华东工学院学报,1992(62):80~84
    [54]孙伟,曾光明,魏万之等.F/M比在活性淤泥污水处理工艺中的概念扩展和相关关系的建[J].环境科学学报,2004,24(1):38-44
    [55]湛方栋,何永美,陈建军,等.3种培养基分离高温纤维分解菌及其酶活测定[J].安徽农业科学,2008,36(15):6171-6172
    [56]沈根祥,袁大伟,凌霞芬,等.Hsp菌剂在牛粪堆肥中的试验应用[J].农业环境保护,199918(2):62-64
    [57]盛力伟,李爱芹,刘俊杰,等.9FJ-5000型粪便发酵搅拌机的设计[J].农机化研究,2007,12:86~88
    [58]Stewart WM.谢玲,译.肥料对作物产量的贡献[J].农资科技,2003(3):31-33
    [59]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406~410
    [60]索东让.长期定位试验中化肥与有机肥结合效应研究[J].干旱地区农业研究,2005,23(2)71-75
    [61]田旸,杨凤林,刘丽芳等.堆肥技术处理有机污染土壤的研究进展[J].环境污染治理技术与设备,2002,3(12):31-37
    [62]汤江武,朱利中.不同堆肥条件对种子发芽指数影响的研究[J].浙江农业科学,2008,(5)583-585
    [63]唐娟,张波.牛粪好氧发酵堆肥设备的设计[J].广东农业科学,2009,12:199~201
    [64]吴淑杭,姜震方,俞清英.禽畜粪便处理技术与资源化途径[J].上海农业学报,2003,19(2)52-54.
    [65]王地,刘期松.长白山地区真菌降解木质素的研究[J].微生物学报,1990,30(4):296-304
    [66]王蔚,高培基.褐腐真菌降解木质纤维素基质的研究进展[J].微生物学通报,1994,30(4):90-93
    [67]王志超,陆文静,王洪涛.好氧堆肥中高温纤维素分解菌的筛选及性状研究[J].北京大学学报(自然科学版),2006,42(2):259-264
    [68]王志超,陆文静,王洪涛.好氧堆肥中高温纤维素分解菌的筛选及性状研究[J].北京大学学报(自然科学版),2006,42(2):259-264
    [69]王岩,李玉红,李清飞.添加微生物菌剂对牛粪高温堆肥腐熟的影响[J].2006,22(2):220-22
    [70]吴银宝,汪植三,廖新,等.猪粪堆肥腐熟指标的研究[J].农业环境科学学报,2003,22(2)189-193.
    [71]吴燕,迟绍丽,倪金凤.从白蚁中分离到具有纤维素酶活的贪噬菌.应用昆虫学报,2011,48(95-98
    [72]席北斗,孟伟,黄国和等.生活垃圾堆肥接种技术[J].环境科学,2003,24(1):157-160.
    [73]席北斗,孟伟,刘鸿亮等.垃圾堆肥高效纤维分解菌的筛选与培育技术[J].环境污染与防治,2002,24(6):339-342
    [74]席北斗,孟伟,黄国和,等.生活垃圾堆放接种技术[J].环境科学,2003,24(1):157~160
    [75]席北斗,赵越,魏自民,等.生活垃圾三阶段温度控制堆肥接种法对有机氮变化规律的影响[J].环境科学,2007,28(1):220~224
    [76]习沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999
    [77]薛红枫,孟庆翔.不同方法测定反刍动物饲料NDR 、ADF和木质素含量的比较[J].中国畜牧杂志,2006,42(19):41-45
    [78]徐明岗,于荣,孙小风,等.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465.
    [79]徐建文,左淑珍.保护性耕作对旱作玉米土壤微生物和酶活性影响的探讨[J].黑龙江农业科技,2009(8):113
    [80]许光辉,郑洪元.土壤微生物分析方法.北京:农业出版社。1986
    [81]于俊娥.牛粪堆肥中添加抑菌剂对大肠杆菌的杀灭效果及堆肥发酵的影响:[硕士学位论文].内蒙古:内蒙古农业大学,2007,7-10.
    [82]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程,2003,23(10):57-61.
    [82]郁红艳,曾光明,黄国和等.木质素降解真菌的筛选及产酶特性研究[J].应用与环境生物学报,2004,10(5):639-642.
    [83]郁红艳,曾光明,黄国和等.简霉素Penicillium simplicissimum木质素降解能力研究[J].环境科学,2005,26(2):167-171.
    [84]张汉月,陈登甲.猪场粪便资源化利用研究.养猪,2002,(2):38-39.
    [85]张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829.
    [86]余群,董红敏,张肇鲲.国内外堆肥技术研究进展[J].安徽农业大学学报,2003,30(1):109-112
    [87]杨朝辉,曾光明,袁兴中等.微生物选育技术在生活垃圾堆肥处理中的应用[J].环境卫生工程,2003,11(3):115-118
    [88]于淑玲.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报,2003,27(5):519-522
    [89]郁红艳,曾光明,黄国和等.简霉素Pencilliu simplicissimum木质素降解能力研究[J].环境科学,2005,26(2):167-171
    [90]郁红艳,曾光明,牛承岗等.细菌降解木质素的研究进展[J].环境科学与技术,2005,28(2):104-106
    [91]严力蛟,陈国林,沈秀芬,等.利用EM和OL处理猪粪的效果研究[J].应用生态报,2002,13(2):255-256
    [92]中华人民共和国环境保护部.《第一次全国污染源普查公报》.2010.
    [93]邹荣松,刘克锋,王红利等.9种嗜热菌处理猪粪堆肥对一串红生长的影响[J].中国农学通报,2008,24(2):261-264.
    [94]张丹,刘耀平,徐慧等OLAND生物脱氮系统中硝化菌群16SrDNA的DGGE分析[J].生物技 术,2003,,13(5):1-3.
    [95]赵由才.生活垃圾资源化原理与技术[M].北京:化学工业出版社.2002,141-145
    [96]张国庆.垃圾填埋渗滤液处理技术及应用[J].市政技术,2005,23(1):28-31
    [97]中国科学院南京土壤微生物研究所.士壤微生物研究法[M].北京:科学出版社,1985
    [98]赵京音,姚政.微生物制剂EM控制鸡粪堆制过程恶臭的研究[J].农村生态环境,1995,11(4):54-56
    [99]中华人民共和国农业部.NY-525-2002.中华人民共和国农业行业标准-有机肥料[S].北京:中国标准出版社,2002.12
    [100]中华人民共和国农业部.NY/T 304-1995.中华人民共和国农业行业标准-有机肥料有机物总量的测定[S].北京:中国标准出版社,1996.5
    [101]郑瑞生,封辉,刘泓,等.畜禽粪便高温好氧堆肥的NH3挥发及其调控[J].亚热带农业研究,2006,2(1):65~68.
    [102]中华人民共和国农业部.NY/T 304-1995.中华人民共和国农业行业标准-有机肥料有机物总量的测定[S].北京:中国标准出版社,1996.5
    [103]中华人民共和国农业部.NY-525-2002.中华人民共和国农业行业标准-有机肥料[S].北京:中国标准出版社,2002.12
    [104]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002.258-259.
    [105]张志剑,于光火.嘉兴地区水稻土磷素状况与环境效应评价[J].科技通报,1999,15(5):377-381
    [106]周斌,王周琼.长期定位施肥对灰漠土养分的影响及评价[J].干旱地区农业研究,2003,21(4):35~39
    [107]邹琦.植物生理生化试验指导[M].北京:中国农业出版社,1995:30-31
    [108]张美玉.城市生活垃圾无害化综合处理[J].中国建材,1999(8):58~61
    [109]Augenstein D., WiseD.L., DatN.X., et al. Composting of Municipal solid waste and sewage siudge Potential for fuel Gas Production in A Developing County[J]. Resources, Conservation and Recycling,1996,16:265-279
    [110]Amann R I, Ludwig W, Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol, Rev.,1995,59(1):143-169
    [111]Andrew J M, Robert G B, Carl R C et al. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms [J]. Appl. Environ.Micrbiol.,2003, 69(1):177-185
    [112]Agassi M, Hadas A, Benyamini Y et al. Nulching effects of composted MSW on water perolation and compost degradation rate[J]. Compost Science and Utilization,1998,6(3):34-41
    [113]Andrews J E, Graef S P. Dynamic modeling and simulation of the anaerobic digestion process. Anaerobic Biological Treatment processes Advance in Chemisty Series[M]. Washington D C, USA:American Chemical Society,1971,126-162
    [114]Aoyama M, Nozawa T. Microbial biomass and mineralization-immobilization processes of nitrogen in soils incubated with warious organic materials[J]. Soil Sci. Plant Nutr.,1993, 39(1):23-32
    [115]Anthony L, Pometto, Crawford D L. Effects of pH on lignin and cellulose degradation by Streptomyces viridosporvs[J]. Appl. Environ. Mrcrobiol.,1986,52(2):246-250
    [116]Asther, M. Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12[J]. Enzyme. Microb. Technol.,1987,32(9):245-249
    [117]Aref S, Wander M M. Long-terra trends of corn yield and soil organic matter in different crop sequences andsoil fertility treatments on the morrow plots[J]. Advances in Agronomy.1998,62: 153-161
    [118]Andreevska S. Municipal solid waste management by composting in Bulgaria. Resources Conservation and Recycling,1990,4(1/2):183-192
    [119]Bestoldi M.D., Civilini M. and Comi G..MSW. Compost Standards in European Community[J]. Biocycle,1990,8:60-62
    [120]Bimova Pavla, R. Pokluda. Influence of Alternative Organic Fertilizers on the Antioxidant Capacity in Head Cabbage and Cucumber[J]. Nor. Bor. Hort. Agrobor.Cluj,2008,36(1):63-67.
    [121]Bains W, Smith G C, A novel method for mucleic acid sequence detemiation[J].Theor, Biol,1988,135(3):303-307
    [122]Bellemare G, Potvin C, Bergeron D, High-yield method for directional cDNA library construction[J].Gene,1991,98(3):231-235
    [123]Buijsman E, Maas H F M, Asman W A H. Anthropogenic NH3 emissions in Europe,[J]. Atmospheric Environment,1987,21(5):1009-1022
    [124]Beck-Friis B, Smars S, Jonsson H et al. Emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different remperaturre regimes [J]. Journal of Agricultural Engineering Research,2001,78(4):423-430
    [125]Bolta S V, Mihelic R, Lobnik F, et al. Microbial community structure during composting withandwithout mass inocula[J]. Compost Seience and Utilization,2003,11 (1):6-15
    [126]Barkdoll A W, Nordsedt R A, Mithell D J. Large-scale utilization and composting of yard waste. CIR 1027:1~15. Agricultural and Biological Engineering Department, Florida Cooperatine Extension Service, Institute of Food and Agricultural Sciences, University of Florida,2002
    [127]Bekboelet M. Photocatalytic detoxificaton with the thin filn fixed-bed reactor (TFFBR):Clean-up of highly polluted landfill effents using an ovel TiO2-photocatalyst. Solar Energ.,1996,56(3): 455~469
    [128]Brink N. Composting of food waste with straw and other carbon sources for nitrogen catching. Acta Agiculture Scandinavica Section B Soil and Plant Science,1995,45:118~123
    [129]Cang Long. Wang Yu-jun, Zhou Dong-mei. Heavymetals pollution in poultry and livestock feeds and manures under intensive fanning in jiangsu province, China[J]. Journal of Environmental Sciences,2004,16(3):371-374
    [130]Carola B, Stefan W. Evaluation of the use of PCR and reverse transcriptase PCR for detection of pathogenic bacteria in biosolids from anaerobic digestors and aerobic composters[J]. Appl.Environ.Microbile,2003,69(8):4618-4627
    [131]Chen Yao-ming, Zeng Guang-ming, Huang Guo-he et al. Effect of fermentation conditions on the process of cellulase production. Proceedings of the EneEnv'2003 Conference[J]. Beijing and New YORK:Science Press,803-808
    [132]Chen Yao-ming, Zeng Guang-ming, Paitoon P T et al. Factors affecting process of celluose production by Trichoderma sp[J]. TNMSC,14(Special):2004,98-103
    [133]Cross T. Thermophilic actinomycetes. Journal of Applied Bacteriol,1968,31:36-53
    [134]Cho K S, Hirai M, Shoda M. Removal degradation characteristics of hydrogen sulfide methanethiol dimethyl sulfide and dimethyl disulfide by thiobacillus thioparus DW44 isolated from peat biofilter. J. Ferment Bioeng.,1991,71(6):384~390
    [135]Chang Y. The fungi of wheat straw compost:II Biochemical and physiological and studies. Transactions of the British Mycological Society,1967,50(4):667~667
    [136]Diaz L.F, Savage G.M., EggethL.L., et al. Composting and Recycling Municipalsolid waste[M]. Lew is Publishers.1993,121-174
    [137]De Bectololi M., Ferranti M.P. and Zucconi F. Compost:Production, Quality and use[M]. Elsevier. Applied Science,1987,52-60
    [138]Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable mauure[J]. J. Agricultural Science,1996,127(4):501-509
    [139]Dean S M, Jin Y. Phenanthrene degradation in soils co-inoculated with phenanthrene-degra-dation and biosurfactant-producing bacterial[J]. Jourmal of Evironmental Quality,2001, 30:1126-1133
    [140]Delong E.F, Diversity of naturally occurring prokaryotes In:Colwell RR, Simidu U, Ohwada K eds., Microbial diversity in The and Space. New York:Plenum Press,1996,125-133
    [141]Dong Y.J., Glasner D., Blarttner F.R. Genomic interspecies microarray hybridization:Rapid discovery of there thousand genes in the Maize Endophyte, Klesiella pneumoiate by microarray hybridization with E. coli K_12 open reading frames. Applied and Environmental Microbiology, 2001,67:1911-1921
    [141]Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16SrRNA genes. Appl Env Microbiol.,1996, Vol.62,766~771
    [142]Doran j W, Sarrantonio M, Liebig M A. Soil health and sustainability[J]. Advances in Agronomy,1996,56:1~54
    [143]Dewes T. Ammonia emissions during the initial phase of microbial degradation of solid and liquid cattle manure. Bioresource Technology,1999,70(3):245~248
    [144]Ebune A, Al-Asheh S, Duvnjak Z. Effect of phosphate, surfactants and glucose on phytase producton and hydrolysis of phytic acid in canola by Aspergillus ficuum during solid-state fermentaton[J]. Bioresource Technology,1995,54(3):241-247
    [145]Embley T.M., Stackebr E. The molecular phylogeny and systematics of the actinomycetes. Annu. Rev. Microbiol.1994,48:257~289
    [146]Eriksson K E L, Blanchette R A, Ander P. Microbial and enzymatic degradation of wood and wood components, Berlin Germany,1990
    [147]Frederick Green m, Terry L, Highley. Mechanism of brown-rot decay:paradigm or paradox [J].Biodeterioration and Biodegradation,1997,39(2):113-124
    [148]Fantroussis E.I., Urakawa H., Berhard A.E. Direct profiling of environmental microbial populations by thermal dissociation analysis of native ribosomal RNAs hybridized to oligoncleotide microarrays, Applied and Environmental Microbiology,2003,69:2377~2382
    [158]Fabian E E, Richard T L, Kay D, et al. Agricultural composting:A feasibility study for New York farms. Cornell University, USA:Cornell Composting,1993,1~50
    [159]Goen Ho, Liang Qiao. Chromium speciation in municipal solid waste:effects of clay amen-dment and composting [J]. Wat. Sci. Tech.,1988,38(2):17-23
    [160]Garcia-Junco M, Olmedo E D, Ortega-Calvo J J. Bioavailability of solid and non-aqueous phase liquid(NAPL)-dissolved phenanthrene to the biosurfactant producing bacterium Pseudomonas aeruginosa 19SJ[J]. Environ. Microbiol.,2001,3(9):561-569
    [161]Guschin D.Y., Mobarry B.K., Proudnikow D. Succession of microbial communnities during hot composting as detected by PCR-SSCP genetic profile of small-subunit rRNA genes. Applied and Environmental Microbiology,1997,63:2397-2402
    [162]Guschin D.Y1., Mobarry B.K., Proudnikow D. Succession of microbial communities during hot composting as detected by PCR-SSCP genetic profile of small-subunit rRNA genes. Applied and Environmental Microbiology,1997,63:2397~2402
    [163]Gao XJ, HuXF, Wang S P, et al. Nitrogen losses from flooded rice field[J]. Pedosphere, 2002,12(2):151~157
    [164]Garcia C, Hernandezt, Costa F, et al. Evaluation of the maturity of municipal waste compost using simple chemical parameters. Communicatons in Soil Science and Plant Analysis,1992b, 23(13-14):1501~1512
    [165]Godden B, Ball A S, Helvenstein P. et al. Towards elucidation of the lignin degradation pathway in actinomycetes. J. Gen. Microbiol,1992(138):2441~2448
    [166]Hang R.T. and Davis B. Composting Results in los Angeles [J]. Biocycle,1981,22(6):19-20
    [167]Hall J E. Soil ingestion of sewage sludge and animal slurries[J]. Fertilizer,1988,4:63-68
    [168]Hamoda M F, Abu Qdais H A, Newham J. Evaluation of municipal solid waste composting kinetics[J]. Resources, Conservation and Recycling,1998,23(4):209-223
    [169]Hua Z Z, Chen J, Lun S Y et al. Influence of biosurfactans produced by Candida Antarctica on surface properties of microorganism and biodegradation of n-alkanes[J]. Wat. Res.,2003, 37(17):4143-4150
    [170]Haug R. T. Compost Engineering:Priciples and Pratice[J]. Ann. Arbor Science, Michigan.1980
    [171]Hart TD, De Leij F aam, Kinsey G, etal. Strategies for the isolation of cellulolytic fungi for composting of wheat straw[J]. World Journal of Microbiology&Bioteehnology,2002, (18): 471-480
    [172]Holben W.E., Jansson J.K, Chelm B. DNA probe method for the detetion of microorganism in the soil bacterial community. Appl. Environ. Microbiol.1988,54:703-711
    [173]Heuer H., Krsek M., Baker P., Smalla K., and EM Wellington. Analysis of actinomycete communities by specific amplification of genes encoding 16SrRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology,1997,63(8): 3233-3241
    [174]Krsek M., Baker P., Smalla K.., and EM Wellington. Analysis of actinomycete communities by specific amplification of genes encoding 16SrRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiogy,1997,63(8):3233-3241
    [175]Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO. "A new phylum of Archaea represented by a nanosized hyperthermophilic svmbiont"(http://dx.doi.org/l 0.1038 /417063a) Nayure 417(6884):63-7.
    [176]http://www.hmpdacc.org/tools_protocols.php#sequencing
    [177]Harada Y. Practical aspects of animal waste composting. In:Lecture of international training course on microbial fertilizers and composting. Rural Development Administration(Repub-lic of Korea) and Food and Fertilizer Technology Center for Asian and Pacific Racific Region,1995, 64-86
    [178]Hassen A, Belguith K, Jedidi N. Microbial characterization during composting of municipal solid waste. Bioresour. Technol,2001(80):217~225
    [179]Huang Dan-lian, Zeng Guang-ming, Hu Tian-jue et al. Preliminary study on the application of Phanerochaete chrysosporium in composting of lignin waste, Proceedings of EnerEnv'2003 Conference. Beijing and New York; Science Press,2003,907-912
    [180]Ishii K, Fukui M, Takii S. Microbial succession durinng a composting process as evaluated by denaturing gradient gel electrophoresis analysis[J]. J. Appl.. Microbiol.,2000,89(5): 768-777
    [181]Imran Maqsood, Guohe Huang, Yuefei Huang et al. An interval-parameter two-stage optimization model for stochastic planning of water resources systems[J]. Stochastic Environmental Research and Risk Assessment,2005,19(2):125-133
    [182]Impact of 16SrRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and In fectious Diseases(http://dx.doi.org/10.1128/CMR.17.4.840-862.2004) J.E. Clarrideg m, Clin Microbiol Rev.2004 October; Vol.17 Issue 4 pages 840~862
    [183]Ibuki T. Examples of dairy manure compostingin Japan.//Proceedings of international training workshop on microbialfertilizers and composting. Taiwan Agricultural Research Institute and Food and Fertilizer Technology Center for Asian and Pacific Region,1996,142-153
    [184]Inbar Y, Chen Y, Hadar Y, et al. New app roaches to compostmaturity [J]. B iocycle,1990,12: 64-68.
    [185]Juck D, Charls T, Whyte L G et al. Polyphasic microbial communities analysis of petroleum hydrocarbon-con-taminated soils from two northern Canadian communities [J]. FEMS Microbiol.Ecol,2000,33(3):241-249
    [186]Jimenex E I, Garcia V P. Relationship between carbon and total organic matter in municipal solid waste city refuse compost[J]. Bioresource Technology,1992,41(3):209-223
    [187]Juan C M, Jeffrey K, Alba T. High-performance liquid chromatography method for the characterization of rhzmnolipid mixtures produced by Pseusomonas aeruginosa UG2 on corn oil[J]. Chromatogy. A.,1999,864(2):211-220
    [188]Johnson A R, Karlson U. Evaluation of bactegies strategies to promote the bioavailability of polycyclic aromatic hydrocarbons[J]. Appl. Microbiol. Biotechnol,2004,63(4):1274-1278
    [189]Kaperanios E G. Compost production from green domestic refuse[J]. Bioresource Technology, 1993,44(1):13-16
    [190]Klamer M, Baath E. Microbial community dynamies during composting of straw material studied using Phospholipid fatty acid analysis[J]. FEMS Microbiology Eeology,1998,27 (1):9-20
    [191]Kennedy K J, Lentz E M. Treatment of landfill leachate using sequencing batch and continuous flow up flow anaerpbic sludge blanket(UASB) reactors. Wat. Res.,2000,34(14):3640~3656
    [192]LaMontagne M G, Michel Jr F C, Holden P A et al. Evaluation of extraction and purification methods for obtainingPCR-amplifiable DNA from compost for microbial community analysis[J]. 2002,49(3):255-264
    [193]Logemann S, Schand J, Bijvank S et al. Molecular microbial diversity in nitrifying reactor system without sludge retention[J]. FEMS Microbiol. Ecol.,1998,49(3):255-264
    [194]Liesack W., Stackebtandt E. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J.Bacteriol,1992, 17(4):5072~5078
    [195]Lin C W, Composting of livestock feces. Composting technology. In:Special Bulletin No.88 of Taiwan Agricultural Research Institute, COA, Taiwan of China,1999,107~141
    [196]Lin C W, Chien S Y. The research of using agricultural waste to produce compost. Proceedings of the techniques of reasonably using orgainc fertilizers. Tauoyang District Agricultural Improvement station, Republic of China,1995,43~58
    [197]Michael H, William C G, Larry P W. A quantitative analysis of DNA extraction and purification from compost[J]. J.Microbiol. Meth.,2003,54(1):37-45
    [198]Myuzer G, Brinkhoff T, Ulrich N et al. Denaturing gradient gel electrophoresis(DGGE) in microbial ecology[J]. Mol. Microbiol Ecol. Manual,1998,3(1):1-27
    [199]Martin M A, Raposo F, Borja R et al. Kinetic study of the anaerobic digestion of vinasse pretreated with ozone, ozone plus ultraviolet light, and ozone plus ultraviolet light in the presence of titanium dioxide[J]. Process Biochemistry,2002,37:699-706
    [200]Macgregor S T. Composting process control based on interaction between microbial, heat output and temperature[J]. Appl. Environ. Microbial.,1981,41(6):1321-1329
    [201]Michael H. Willian C. G., Larry P.W. A quantiative analysis of DNA extraction and purification from compost. Journal of Moicrobiological Methods,2003,54:37-45
    [202]Melntyre A. Application of dispersion modeling to odor assessment:a practical tool of a complex trap. Wat. Sci. Tech.2000,41(1):81~89
    [203]MacGregor S T, Miller F C, Psarianos K M, et al. Composting process control based on interaction between microbial heat output and temperature[J]. Applied and Environm entalM icrobiology,1981,41 (6):1321-1330
    [204]Manser A G R, Keeling A A. Practical handbook of p rocessing and recyclingmunicipalwa-ste[M]. New York:Lewis Publishers,1996.
    [205]Morel T L, Colin F, Germon J C, et al. Methods for the evaluation of the maturity of municipal refuse compost. In:Gasser J K R. Composting of agriculture and other wastes. London & New York:Elsevier Applied Science publishers,1985:56~72
    [206]Mouchacca J. Thermophilic fungi:Bildivesity and tasonomic status. Cryptogamie Mycol. 1968(18):19-69
    [207]Noordman W H, Wachter J H J, Boer G J de et al. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginsa varies with substrate availability[J]. J. Biotechnol.,2002, 94(2):195-212
    [208]Nakasaki K, Sasaki M, Shoda M, et al. Characteristic of mesophilic bacteria isolates isolated during thermophilic composting of sewage sludge. Appl. Environ. Microbiol,1985(49):42-45
    [209]PolprasectC. Organic Waste Recycling[M]. John wiley & Sons.1989,63-104
    [210]Prabhu Y, Phale P S. Biodegradation of phenanthrene by Pseudomonas sp. strain PP2:novel metalbolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation[J]. Appl. Microbiol, Biotechnol.,2003,61(4):342-351
    [211]Peter F S. Effect of temperature on bacterial species diversity in thermophilic solid waste composting[J]. Appl. Environ. Microbiol.,1985,50(4):899-905
    [212]Page C A, Bonner J S, McDonald T J et al. Enhanced solubility of petroleum hydrocarbons using various biosurfactants[J]. In:Allemann B C, Leeson A L. In Situ and On-Site Biorem-ediation. Columbus, Richland:Battelle Press.1997,569-574
    [213]Peter F.S. Identification of Thermophilic Bacteriain Solid-Waste Composting. Applied and Environmental Microbiology. Oct.1985,906-913
    [214]Parlanti E, Morin B, Vacher L. Combined 3D-spectrofluorometry, high performancce liquid chromatography and capillary electrophoresis for the characterization of dissolved organic matter in natural wasters. Org. Geochem.2002,33(3):221~236
    [215]Rao M S, Singh S P, Singh A K et al. Bioenergy conversion studies of the organic fraction of MSW:assessment of ultimate bioenergy production potetial of municipal garbage[J]. Applied Enegy,2000,66(1):75-87
    [216]Rahman K S M, Rahman T J, Kourkoutas Y et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients [J]. Bioresource Technol,2003,90(2):159-168
    [217]Rodriguez A, Falcon M A, Carnicero A et al. Laccase activities of Penicilliun chrysogenum in relation to lignin degradation[J]. Appl. Microbiol. Biotechnol.,1996,45(1):399-403
    [218]Regalado V, Rodriguez A, Perestele et al. Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum[J]. Applied and Eenvironmental Microbiology,1997, 63(9):3716-3718
    [219]Roelck M, Han Y, Schleef K H, et al. Recent trends and recommendations for nitrogen fertilization in intensive ag-ricuhure in eastern China[J]. Pedosphere,2004,14(4):449~460
    [220]Sullivan E R. Molecular genetics of biosurgactant production[J]. Curr. Opin. Biothch.,1998, 9(3):263-269
    [221]Southam G, Whitney M, Knickerbocker C. Structural characterization of the hydrocarbon degrading bacteria-oil interface:implications for bioremediation[J]. Int. Biodeter.,2001, 47(4):197-201
    [222]Sanchez-Monedero M A, Roig A, Paredes C et al. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures[J]. Bioresource Technology,2001,78(3):301-308
    [223]Smars S, Gustafsson L, Back-Friis B et al. Improvement of the composting time for household waste during an initial low pH phase by mesophilic temperature control[J]. Bioresource Technology,2002,84(3):237-241
    [224]Shimazono H. Oxalic acid decarboxylase a new enzyme from the mycelium of wood destroying fungi[J]. J. Biochen.,1955,42(3):321-340
    [225]Seifer K. Chemical changes in beechwood cell walls by sofu rot{Chaetomium globosum)[J]. Holz Roh-u. Werkst.,1966,24(1):185-189
    [226]Steffan R.J., DNA amplification to enhance detetion of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol.1988,54:2185-2541
    [227]Suylen G M H, Stefess G C, Kuenen J G. Chemolithotrophic potential of a hyphomicrobium species capable of growth on methylated sulphur compounds. Arch. Microbiol.,1986,146(2): 192-198
    [228]Stentiford E I. Recent developments in composting. In:de Bertoldi M, Ferranti M, L Hermite P, Zucconi F. (Eds.). Compos, Production, Quality and Use. Elsevier, London,1987,52~60
    [229]Strom P F. Effects of temperature on bacterial species diversity in thermophilic solid waste composting. Appl. Environ. Microbiol,1985a(50):899-905
    [230]Strom P F. Identiffication of thermophilic bacteria in solid waste composting. Appl. Environ. Microbiol,1985b,50:907~913
    [231]Strauch D. Occurrence of microorganisms pathogenic for man and animals in source separated biowaste and compost importance, control, limits and epidemiology. The Sciences of Composting, Blacki Academic and Professional, Glasgow, UK:1996,224~232
    [232]Torsvik V, Sorheim R, Goksoyr J. Total bacterial diversity in soil and sediment communities [J]. J, Ind. Microbiol,1996,17(3):170-178
    [233]Temp U, Eggert C, Eriksson K L. A small-scale method for screening of lignin-degrading microorganisms [J]. Appl. Microbiol Biotechnol,1998,64(4):1548-1549
    [234]Tiquia S M, Tan N F Y. Elimination of phytotoxicity during composting of spent pig-manure sawdust litter and pigs ludge[J]. Bioresowrce Techndogy, 1998.65:4-49
    [235]TiquiaSM, WanJHC, TamNFY. Microbial PoPulation dynamics and enzyme activities during composting[J].ComPostScienceandUtilization,2002,10,(2):150-161
    [236]Tatsi A A, Zouboulis A I, Matis K et al. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere,2003,53(7):727-744
    [237]Thambirajah J J, Kuthubutheen A J. composting of palm press fibre. Biol. Wastes,1989(27): 257-269
    [238]Universal Bacterial I dentification by PCR and DNA Sequencing of 16SrRNA Gene. PCR for Clinical Microbiology,2010, Part 3,209~214
    [239]Vlyssides A G, Karlis P K. Thermal-alkalization solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion[J].2004,91(2):210-206
    [240]Vikman M, Karjomaa S, Kapane A et al. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions[J]. Appl. Microbiol Biotechnol.,2002, 59(4):591-598
    [241]Tuomela M, Annele H, Raiskila S et al. Biodegradation of radiolabelled synthentic lignin('4C-DHP) and mechanical pulp in a compost environment[J]. Appl. Microiol. Biotechnol., 2001,55(4):492-499
    [242]Tuomela M, Vikman M, Hatakka A et al.. Biodegradation of lignin in compost enviroment:a review[J]. Bioresource Technology,2000,72(2):169-183
    [243]Ward D M, Bateson M M, Weller R et al. Ribosomal RNA analysis of microorganisms as they occur in nature[J]. Adv. Mcirob. Ecol.,1992,12(2):219-286
    [244]Woese, C W R, Gutell R et al. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids[J]. Microbol. Rev.,1983,47(4):621-669
    [245]Wang Z, Banks C J. Accelerated hydrolysis and acidification of municipal solid waste(MSW) in a flushing anaerobic bio-reactor using treated leachate recirculation[J]. Waste Manageme-nt and Research,2000,18(3):215-223
    [246]Willson G B. Manual for composting sewage sludge by the Beltsville aerared-pile method[J]. Joint USD A-EPA Publication, U.S. Department of Agriculture, Beltsville, Md 1980
    [247]Witter E, Kirchmann H. Peat zeolite and badalt as absorbents of ammoniacal nitrogen during manure decomposition[J]. Plant and Soil,1989,115(1):43-52
    [248]Wilson K.H., Wilson W.J., Radosevich J.L. DNA amplification to enhace detection of genetically engineered bacteria in environmental samples. Applied and Envionmental Microbiology,2002, 68:2535-2541
    [249]Ward D.M., Wellr R., Bateson M.M.16SrRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature(London),1990,345:63-65
    [250]Ward D.M., Wellr R., Bateson M.M.16SrRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature(London),1990,345:63-65
    [251]Waksman S A, Cordon T C, Hulpoi N. Influence of temperature upon the micrpbiological population and decomposition processes in composts of stable manuer. Soil Sci,1939(47):83-114
    [252]Wilkinson K, Paulin R, Tee E et al. Grappling with compost quality down-under. Proceedin-gs of the international symposium on composium and compost utilizaton. Columbus, Ohio:2002, 227-239
    [253]Xi Bei-dou, Liu Hong-liang, Zeng guang-ming et al. Conposting MSW and sewage sludge with effective comliex microorganisms[J]. Journal of Environmental Sciences(China),2002, 14(2):264-268
    [254]Xin-TaoHe, Terry J Logasn, Samuel JTraina. Physical and chemical characteristics of selected U.S. municipal solid waste composts[J]. Environ Qual,1995,24:543-552.
    [255]Xi B D,Liu H L, Huang G H, et al. Study on inoculation technology of comp lex microbial community for composting enhancement[J].Environ Poll Prot,2003,25 (5):262-264
    [256]Xin-Tao He, Terry J Logasn, Samuel J Traina. Physical and chemical characteristics of selected U. S. municipal solid waste composts[J].Environ Qual,1995,24:543~552
    [257]Xi B D, Huang G H, Qin X S, et al. Two-stage kinetics of municipal solid waste inoculation composting processes, Journal of Environmental Sciences,2004,16(3):520~524
    [258]Xi B D, Liu H L. Effect of Bio-surfactant on Municipal Solid Waste Composting Process. Journal of Environmental Sciences,2005, Journal of Environmental Science,2005b,17(3):409-413
    [259]Xi B D, Zhang G J, Liu H L. Process kinetics of inoculation composting of municipal solid waste. Joural of Hazardous materials,2005a, B124:165~172
    [260]Yeon-Koo J, Jin-Soo K. A new method for conservation of nitrogen in aerobic composting processes[J]. Bioresour. Technol.,2001,79(2):129-133
    [261]Yadav R L, Yadav D S, Singh R M, et al. Long term effects of inorganic fertilizer inputs on crop productivity in a rice-wheat cropping system[J]. Nutrient Cycling in Agroeeosystems,1998,51: 193~200
    [262]Zorpas A A, Constantinides T. Heavy metal uptake by natural zeolite and metal partitinging in sewage sludge compost[J]. Bioresource Technology,2000,72:113-119
    [263]Zorpas A A, Vassilis I. Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite chinoptilolite[J]. Colloid and Interface Science,2002,250:1-4
    [264]Zacchi L, Burla G, Zuolong D, Harvey P J. Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture with enhanced production of lignin peroxidase[J]. Journal of Biotechnology,2000,78(2):185-192
    [265]Zouboulis A I, Matis K A, Lazaridis N K et al. The use of biosurfactants in flotation:application for the removal of metal ions[J].2003,16(6):1231-1236
    [266]Zucconi F, Forte M, Monac A, et al. Evaluating toxicity of immature compost[J]. Biocycle, 1981,22:54-57
    [267]Zhang L, Hirai M, Shoda M. Removal characteristics of dimethyl sulfide methanethiol and hydrogen sulfide by hyphomicrobium sp.155 isolated from peat biofilter. J. Ferment Bioeng., 1991,72(5):392-396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700