用户名: 密码: 验证码:
基于可逆性永生化人肝细胞的生物人工肝系统的评估和人工肝体外循环装置的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     肝衰竭发生时,肝脏会丧失其正常的解毒、生物合成和生物转化功能,其临床特征包括:凝血酶原时间延长、肝性脑病和黄疸。根据是否存在已知的或未知的慢性肝病病史,不同致病因素所引起的肝衰竭可被划分为两大类:急性肝衰竭和慢加急性肝衰竭,两者均伴随着高病死率。迄今为止,肝脏移植仍然是治疗终末期肝衰竭公认的最终解决方案,但世界性的供体短缺使其在临床实际应用中受到限制。在这种背景下,有研究者致力于体外人工肝支持系统的研发,以期为肝衰竭患者提供一种肝移植前的过渡治疗手段,或者为自体肝脏的恢复赢得机会。
     根据是否装载具有代谢活性的肝细胞,人工肝支持系统可分为非生物人工肝和生物人工肝。尽管非生物人工肝有改善肝衰竭患者的生化指标和临床症状的作用,但其在改善患者预后方面尚未达到预期的效果。目前公认的观点是,仅具备解毒功能的非生物人工肝不足以对肝衰竭患者提供全面的支持治疗,而在理论上,以载细胞生物反应器为核心的生物人工肝可提供大部分乃至全部的肝功能支持[7,8,10-16]。然而,我们不得不承认,生物人工肝的发展还不成熟,距离常规临床应用仍有距离。迄今,只有两篇文献报道了生物人工肝治疗治疗的随机对照临床试验,结果不如人意。在这种背景下,有学者认为理想的体外人工肝支持系统应该是载细胞生物反应器和多种非生物人工肝治疗手段的有机整合。
     为研发基于这种理念的体外人工肝支持系统,我们必须从以下三方面着手:1)选择合适的细胞源;2)设计制造能够为肝细胞提供近似体内环境的生物反应器;3)研发新的体外循环装置,该装置不仅可以控制载细胞的生物反应器,还可控制现有的大多数非生物人工肝治疗模式。
     最近,本研究团队设计制造了一种以装载海藻酸钠-壳聚糖(AC)微球包裹的原代猪肝细胞的漏斗形流化床式生物反应器为核心的生物人工肝支持系统,并证明该系统可显著延长D-氨基半乳糖诱导的急性肝衰竭猪的生存时间。然而,原代猪肝细胞有使患者罹患动物源性传染病的潜在风险。这促使我们去寻找一种更加适用于生物人工肝临床治疗的肝细胞源。近年来,本实验室致力于永生化肝细胞的研究。尽管这类细胞具有体外扩增能力,但猿猴病毒40大T抗原基因(SV40LT)的持续表达具有潜在的致瘤风险。为了解决这个问题,本团队应用他莫西芬介导的Cre/LoxP位点特异性重组,建立了一株可逆性永生化人肝细胞系(HepLi-4), SV40LT可以被程序性的切除。在此基础上,以可逆性永生化人肝细胞为细胞源对大型动物进行生物人工肝治疗的首次试验得以开展。
     困扰我们的另一个问题是,研究所用的人工肝治疗用体外循环装置大多依赖进口。例如,评价漏斗形流化床式生物反应器和HepLi-4细胞所用的体外循环装置是日本旭化成株式会社制造的Plasauto-iQ。而且,目前国外相关设备的功能较单一。在这种背景下,本团队进行人工肝治疗用体外循环装置的研发,该装置应不仅能够控制血浆置换(PE)、血浆吸附(PA)、血液透析(HD)等目前临床常规应用的非生物人工肝治疗模式和尚处于科研阶段的生物人工肝治疗(BAL)模式,而且,以上各种模式均可便捷的进行联合或序贯应用。本研究拟初步构建具备上
     述功能的原理机,为下一步的人工肝治疗研究提供一个可靠的平台。
     第一部分基于可逆性永生化人肝细胞的生物人工肝系统的动物实验评估
     目的:
     通过中国实验小型猪急性肝衰竭模型,对以可逆性永生化人肝细胞(HepLi-4)为肝细胞源的生物人工肝系统进行评估。
     方法:
     表达他莫昔芬依赖性Cre重组酶的HepLi-4细胞在转瓶中扩增后,通过在含有500nM的4-羟基他莫昔芬的培养液中培养5~7切除SV40LT基因。猪急性肝衰竭模型通过在无麻醉情况下静脉推注D-氨基半乳糖(1.5g/kg)诱导。包裹HepLi-4细胞的海藻酸钠-壳聚糖(AC)微球通过一步法制备。15只急性肝衰竭猪分为以下三组:1)生物人工肝治疗(BAL)组:实验动物接受装载微囊化的HepLi-4细胞的生物人工肝支持系统治疗(n=5);2)假治疗(Sham BAL)组:即设备对照,实验动物接入生物人工肝支持系统进行体外循环,但反应器内仅装入无细胞AC微囊(n=5);3)急性肝衰竭(ALF)组:即基线对照,实验动物仅接受监护但不接受治疗(n=5)。记录以上三组实验动物的生存时间以及三种干预过程前后实验动物的血液生化参数。生物人工肝治疗前后,进行微球完整性和细胞活力检测,同时,进行微囊化HepLi-4细胞内肝脏特异性基因的转录水平分析,正常成人肝组织作为对昭
     结果:
     干预后,相对于Sham BAL组和ALF组,BAL组动物的Fischer指数较高,血清间接胆红素相对低,差异具有统计学意义。BAL组动物的平均生存时间长于两个对照组,但差异不具有统计学意义。经历人工肝治疗后,进行微球完整性和细胞活力没有出现显著的下;同时,微囊化HepLi-4细胞内肝脏特异性基因的转录水平得以保持,但其相对于正常成人肝组织存在明显的变异。
     结论:
     尽管HepLi-4细胞在生物人工肝治疗过程中发挥了一些对急性肝衰竭猪有益的代谢功能,但HepLi-4细胞尚不能作为人工肝治疗用的理想细胞源。我们需要在维持肝细胞分化的研究中付出更多的努力。
     第二部分人工肝体外循环装置的研发
     目的:
     构建可以控制现有的大部分非生物人工肝治疗模式和生物人工肝治疗模式的人工肝体外循环装置的原理机。
     方法:
     人工肝体外循环装置的原理机包含非生物部分和生物部分。体外循环装置的控制中枢由的工业用个人计算机,两个串行通讯端口和一个外设部件互连标准(PCI)数字输入/输出(DIO)卡组成。体外循环装置的大多数部件可通过RS485总线得到整合。该装置的软件为用户提供了操作指导和人机交流界面。同时,基于硬件和软件设计,该装置在运行过程中可实现实时状态监测和调节。此外,体外循环装置运行过程中的所有参数值都会被自动记录,便于事后分析。为了验证我们的设计中,我们对该原理机进行了体外测试和动物实验测试。
     结果:
     在体外测试和动物实验测试中,体外循环装置原理机的硬件和软件在所有治疗模式下均运行正常。该装置中所有部件的功能都得到了验证。此外,该装置可以实时监测到治疗中的异常情况。
     结论:
     体外循环装置的原理机具有良好的安全性和人性化的设计。可以为这种医疗设备的商品化提供可靠的研究平台,也可为培养相关技术人员提供一个模拟培训的平台。
Background:
     Liver failure is the inability of the liver to perform its normal detoxification, biosynthesis, and/or biotransformation functions. The clinical presentation of liver failure includes a prolonged prothrombin time, encephalopathy, and jaundice. Regardless of the etiology, liver failure can be divided into two categories:acute liver failure (ALF) or acute on chronic liver failure (AoCLF). Both are accompanied by high mortality. Liver transplantation is still the only ultimate solution for end stage liver failure, but its application is hampered by a world-wide scarcity of donor organs. In this context, extracorporeal artificial liver support systems have been expected to be a bridge to transplantation or to provide an opportunity for the native liver to regenerate.
     Depending on whether they are loaded with metabolically active hepatocytes or not, these systems can be roughly classified into two types:non-biological liver (NBL) or bioartificial liver (BAL). NBLs have proven to be useful for improving biochemical parameters and clinical symptoms in many cases, but the prognostic benefits have not yet been fully reflected. It is widely accepted that a NBL, which can only detoxify, is insufficient to support liver failure patients, while in theory an ideal hepatocyte-filled BAL based on hepatocyte-filled bioreactor could provide most or even all normal liver functions. However, until now, only two randomized controlled clinical trials exploring the effectiveness of BALs have been reported, and the results were not encouraging. Probably, BALs alone can not be competent for the job at the present level of technology. Future extracorporeal artificial liver support systems should be the combination of cell-filled bioreactors and NBL components.
     To develop such an extracorporeal artificial liver support system, three things are essential:1) an appropriate cell source;2) a bioreactor capable of providing in vivo-like environments for cells; and3) an extracorporeal circulation device which can control not only the cell-filled bioreactor, but also most types of existing NBL components.
     We recently designed a choanoid fluidized bed bioreactor filled with alginate-chitosan (AC) encapsulated primary porcine hepatocytes and proved it could prolong the survival of pigs with acute liver failure (ALF) induced by D-galactosamine injection. The potential risk of zoonotic transmission, however, might exist, which limits its clinical application. Therefore, developing a safe cell source for BAL is necessary. For several years, we have been dedicated to establishing immortalized hepatocyte line. Although these cell types have unlimited expansion capabilities in vitro, continuous expression of simian virus40large T antigen (SV40LT) might be tumorigenic. To solve this problem, we established a reversibly immortalized cell line (HepLi-4) by transfection of primary human hepatocytes with drug-medicated Cre/LoxP recombination. By doing so, the immortalizing Oncogene (SV40LT) can be excised programly. In order to demonstrate the clinical potential of HepLi-4cells in BAL, we carried out experiments on large animal models.
     Another problem facing us is all extracorporeal circulation device applied in our research were not domestic products. For example, the extracorporeal circulation device used to evaluate our choanoid fluidized bed bioreactor and HepLi-4cells is Plasauto-iQ (Asahi Medical, Japan). Also, functions of these commercial devices are rather limited. This is our motivation to develop a novel extracorporeal circulation device which can control not only most of the existing modes of NBL, such as plasma exchange (PE), hemodialysis (HD) and plasma adsorption (PA),but also BAL treatment modes. Also, all treatment modes can be applied either jointly or sequentially. To build the prototype of such a device is the first step.
     Part I Evaluation of a bioartificial liver system loaded with reversibly immortalized human hepatocytes in pigs
     Objective:
     To evaluate the bioartificial (BAL) system loaded with our newly established reversibly immortalized cell line (HepLi-4) in Chinese experiment miniature pigs with acute liver failure (ALF).
     Methods:
     HepLi-4cells expressing Tamoxifen-dependent Cre recombinase were expanded in roller bottles and SV40LT genes were removed by keeping the cells in culture media containing500nM4-hydroxytamoxifen for5-7days. Alginate-chitosan (AC) microbeads containing HepLi-4cells were produced via single-stage procedure. ALF was induced in Chinese experiment miniature pigs with intravenous injection of D-galactosamine at a dose of1.5g/kg body weight. Fifteen ALF pigs were allocated to three groups:a BAL group, receiving BAL treatment with encapsulated HepLi-4cells (n=5); a sham BAL group (device control), receiving cell-free BAL treatment (n=5); a ALF group (baseline control), receiving intensive care only (n=5). Survival time and biochemical parameters of pigs were measured. Before and after BAL, microbead integrity and cell viability were tested, also, expression of liver-specific genes in HepLi-4cells was analyzed, adult human liver acted as a reference.
     Results:
     In BAL group, Fischer index was higher and serum indirect bilirubin level was lower compared with two control groups. Survival time in BAL group is longer than that in two control groups, but the difference is not statistically significant. After BAL, microbead integrity and cell viability did not decrease significantly. Gene expression analysis showed that the transcript levels of liver-specific genes in HepLi-4were retained after BAL, but significant variations were observed between HepLi-4and adult human liver.
     Conclusion:
     HepLi-4showed beneficial metabolic effects on ALF pigs in BAL, but is still not an appropriate cell source for BAL. More insights into interpreting the conditions for hepatocyte differentiation are needed.
     Part Ⅱ Development of an extracorporeal circulation device of artificial liver system
     Objective:
     To develop the prototype of an extracorporeal circulation device of artificial liver system which can control most of the existing modes of non-biological liver (NBL) and bioarticial liver (BAL) support treatment.
     Methods:
     The prototype of the extracorporeal circulation device consisted of a nonbiological section and a biological section. The control center was composed of an industrial personal computer, two serial communication ports and a peripheral component interconnect (PCI) digital input and output (DIO) card. Most components are integrated via the RS485buses. The software provided users an operation guide and a human-machine communication interface. Based on hardware and software design, real time status monitoring and regulation could be realized. Also, all parameter values during the treatment can be recorded for post hoc analysis. To verify our design, we tested the prototype of extracorporeal circulation device both in vitro and on miniature pigs.
     Results:
     The hardware and software of the prototype of the extracorporeal circulation device runned normally in all treatment modes. Functions of all components were verified. Also, timely detection of abnormal conditions in the clinical treatment could be fulfilled.
     Conclusion:
     The prototype of the extracorporeal circulation device has a good safety and user-friendly design.It can provide a reliable research platform for commercialization of the device. Also, it can act as a simulation training platform for relevant technical staff.
引文
1. Polson J, Lee WM. AASLD position paper:the management of acute liver failure. Hepatology 2005;41:1179-1197
    2. Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure:consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int 2009;3:269-282
    3. Mas A, Rodes J. Fulminant hepatic failure. Lancet 1997;349:1081-1085
    4. Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure:a systematic review. JAMA 2003;289:217-222
    5. Polson J, Lee WM. AASLD position paper:the management of acute liver failure. Hepatology 2005;41:1179-1197
    6. Du WB, Li LJ, Huang JR, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359-4364
    7. Carpentier B, Gautier A. Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690-1702
    8. Pless G. Artificial and bioartificial liver support. Organogenesis 2007:3:20-24
    9. Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science 2002;295:1005-1009
    10. McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28:210-217
    11. Sechser A, Osorio J, Freise C, Osorio RW. Artificial liver support devices for fulminant liver failure. Clin Liver Dis 2001;5:415-430
    12. van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004;240:216-230
    13. Adham M. Extracorporeal liver support:waiting for the deciding vote. Asaio J 2003;49:621-632
    14. Demetriou AA. Hepatic assist devices. Panminerva Med 2005;47:31-37
    15. Santoro A, Mancini E, Ferramosca E, Faenza S. Liver support systems. Contrib Nephrol 2007;156:396-404
    16. Rozga J. Liver support technology--an update. Xenotransplantation 2006; 13: 380-389
    17. Ellis AJ, Hughes RD, Wendon JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451
    18. Demetriou AA, Brown RJ, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239:660-667,667-670
    19. Lv G, Zhao L, Zhang A, et al. Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnol Bioeng 2011; 108:2229-2236
    20. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3:282-286
    21. Yang Q, Liu F, Pan XP, et al. Fluidized-bed bioartificial liver assist devices (BLADs) based on microencapsulated primary porcine hepatocytes have risk of porcine endogenous retro viruses transmission. Hepatol Int 2010;4:757-761
    22. Kanai H, Marushima H, Kimura N, et al. Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 2007;31:148-151
    23. Enosawa S, Miyashita T, Fujita Y, et al. In vivo estimation of bioartificial liver with recombinant HepG2 cells using pigs with ischemic liver failure. Cell Transplant 2001:10:429-433
    24. Enosawa S, Miyashita T, Tanaka H, et al. Prolongation of survival of pigs with ischemic liver failure by treatment with a bioartificial liver using glutamine synthetase transfected recombinant HepG2. Transplant Proc 2001;33:1945-1947
    25. Wang N, Tsuruoka S, Yamamoto H, et al. The bioreactor with CYP3A4- and glutamine synthetase-introduced HepG2 cells:treatment of hepatic failure dog with diazepam overdosage. Artif Organs 2005;29:681-684
    26. Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant 2006;15:873-880
    27. Nyberg SL, Remmel RP, Mann HJ, et al. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 1994;220:59-67
    28. Pan X, Du W, Yu X, et al. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 2010;42:1899-1906
    29. Li J, Li LJ, Cao HC, et al. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. Asaio J 2005;51:262-268
    30. Kobayashi N, Westerman KA, Tanaka N, Fox IJ, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 2001;6:293-300
    31. Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature 1999;400:464-468
    32. Woodworth CD, Kreider JW, Mengel L, et al. Tumorigenicity of simian virus 40-hepatocyte cell lines:effect of in vitro and in vivo passage on expression of liver-specific genes and oncogenes. Mol Cell Biol 1988;8:4492-4501
    33. Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000:287:1258-1262
    34. Totsugawa T, Yong C, Rivas-Carrillo JD, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007;47:74-82
    35. Li LJ, Du WB, Zhang YM, et al. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol 2006;44:317-324
    36. Chen YS, Wu ZW, He JQ, et al. The curative effect of ALSS on 1-month mortality in AoCLF patients after 72 to 120 hours. Int J Artif Organs 2007;30:906-914
    37. Li LJ, Liu XL, Xu XW, et al. Comparison of plasma exchange with different membrane pore sizes in the treatment of severe viral hepatitis. Ther Apher Dial 2005;9:396-401
    38. Sauer IM, Kardassis D, Zeillinger K, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003; 10:460-469
    39. Xue YL, Zhao SF, Luo Y, et al. TECA hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001;7:826-829
    40. Ding YT, Qiu YD, Chen Z, et al. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 2003;9:829-832
    41. Pless G. Bioartificial liver support systems. Methods Mol Biol 2010;640:511-523
    42. Dore E, Legallais C. A new concept of bioartificial liver based on a fluidized bed bioreactor. Ther Apher 1999;3:264-267
    43. Coward SM, Legallais C, David B, et al. Alginate-encapsulated HepG2 cells in a fluidized bed bioreactor maintain function in human liver failure plasma. Artif Organs 2009;33:1117-1126
    44. Desille M, Fremond B, Mahler S, et al. Improvement of the neurological status of pigs with acute liver failure by hepatocytes immobilized in alginate gel beads inoculated in an extracorporeal bioartificial liver. Transplant Proc 2001;33:1932-1934
    45. David B, Dufresne M, Nagel MD, Legallais C. In vitro assessment of encapsulated C3A hepatocytes functions in a fluidized bed bioreactor. Biotechnol Prog 2004;20:1204-1212
    46. Pan X, Du W, Yu X, et al. Treatment of Common Bile Duct Ligation-induced Liver Failure in Rats with reversibly Immortalized human Hepatocytes. Fifth International and the National Conference of liver failure and artificial liver 2009:71
    47. Xue WM, Yu WT, Liu XD, et al. Chemical method of breaking the cell-loaded sodium alginate/chitosan microcapsules. Chemical Journal of Chinese Unversities 2004;25:1342-1346
    48. Haque T, Chen H, Ouyang W, et al. In vitro study of alginate-chitosan microcapsules:an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 2005;27:317-322
    49. Donato MT, Castell JV, Gomez-Lechon MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices:comparison with other hepatic cellular models. J Hepatol 1999;31:542-549
    50. Kalpana K, Ong HS, Soo KC, Tan SY, Prema RJ. An improved model of galactosamine-induced fulminant hepatic failure in the pig. J Surg Res 1999;82:121-130
    51. Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci 1991;36:770-774
    52. Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation:effect on mechanical properties and on long-term viability. Biopolymers 2006;82:570-579
    53. Yu CB, Lv GL, Pan XP, et al. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs 2009;32:272-281
    54. Hoekstra R, Chamuleau RA. Recent developments on human cell lines for the bioartificial liver. Int J Artif Organs 2002;25:182-191
    55. Deurholt T, van Til NP, Chhatta AA, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009;9:89
    56. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20:327-335
    57. Tang NH, Wang XQ, Li XJ, Chen YL. Ammonia metabolism capacity of HepG2 cells with high expression of human glutamine synthetase. Hepatobiliary Pancreat Dis Int 2008;7:621-627
    58. Enosawa S, Miyashita T, Suzuki S, et al. Long-term culture of glutamine synthetase-transfected HepG2 cells in circulatory flow bioreactor for development of a bioartificial liver. Cell Transplant 2000;9:711-715
    59. Strassburg CP, Kalthoff S, Ehmer U. Variability and function of family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A). Crit Rev Clin Lab Sci 2008;45:485-530
    60. Falkenhagen D, Strobl W, Vogt G, et al. Fractionated plasma separation and adsorption system:a novel system for blood purification to remove albumin bound substances. Artif Organs 1999;23:81-86
    61. Koivusalo AM, Teikari T, Hockerstedt K, Isoniemi H. Albumin dialysis has a favorable effect on amino acid profile in hepatic encephalopathy. Metab Brain Dis 2008;23:387-398
    62. Fischer JE, Rosen HM, Ebeid AM, et al. The effect of normalization of plasma amino acids on hepatic encephalopathy in man. Surgery 1976;80:77-91
    63. Kobayashi N. Life support of artificial liver:development of a bioartificial liver to treat liver failure. J Hepatobiliary Pancreat Surg 2009; 16:113-117
    64. Poyck PP, van Wijk AC, van der Hoeven TV, et al. Evaluation of a new immortalized human fetal liver cell line (cBALl 11) for application in bioartificial liver. J Hepatol 2008;48:266-275
    65. Dalgetty DM, Medine CN, Iredale JP, Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009;297:G241-G248
    66. Kung JW, Forbes SJ. Stem cells and liver repair. Curr Opin Biotechnol 2009;20:568-574
    67. Yeh JH, Chiu HC. Therapeutic apheresis in Taiwan. Ther Apher 2001;5:513-516
    68. Ash SR, Blake DE, Carr DJ, et al. Clinical effects of a sorbent suspension dialysis system in treatment of hepatic coma (the BioLogic-DT). Int J Artif Organs 1992;15:151-161
    69. Tan HK. Molecular adsorbent recirculating system (MARS). Ann Acad Med Singapore 2004;33:329-335
    70. Rifai K, Ernst T, Kretschmer U, et al. Prometheus--a new extracorporeal system for the treatment of liver failure. J Hepatol 2003;39:984-990
    71. Chamuleau RA. Future of bioartificial liver support. World J Gastrointest Surg 2009;1:21-25
    72. Mazariegos GV, Kramer DJ, Lopez RC, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. Asaio J 2001;47:471-475
    73. van de Kerkhove MP, Di Florio E, Scuderi V, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25:950-959
    74. Ding YT, Shi XL. Bioartificial liver devices:Perspectives on the state of the art. Front Med 2011;5:15-19
    1. Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure:a systematic review. JAMA 2003;289:217-222
    2. Polson J, Lee WM. AASLD position paper:the management of acute liver failure. Hepatology 2005:41:1179-1197
    3. Du WB, Li LJ, Huang JR. et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc 2005;37:4359-4364
    4. Mas A, Rodes J. Fulminant hepatic failure. Lancet 1997;349:1081-1085
    5. Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science 2002;295:1005-1009
    6. Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009;58:1690-1702
    7. Pless G. Artificial and bioartificial liver support. Organogenesis 2007;3:20-24
    8. McKenzie TJ, Lillegard JB, Nyberg SL. Artificial and bioartificial liver support. Semin Liver Dis 2008;28:210-217
    9. Sechser A, Osorio J, Freise C, Osorio RW. Artificial liver support devices for fulminant liver failure. Clin Liver Dis 2001;5:415-430
    10. van de Kerkhove MP, Hoekstra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg 2004;240:216-230
    11. Adham M. Extracorporeal liver support:waiting for the deciding vote. Asaio J 2003;49:621-632
    12. Demetriou AA. Hepatic assist devices. Panminerva Med 2005;47:31-37
    13. Santoro A, Mancini E, Ferramosca E, Faenza S. Liver support systems. Contrib Nephrol 2007;156:396-404
    14. Rozga J. Liver support technology--an update. Xenotransplantation 2006; 13:380-389
    15. Chamuleau RA. Future of bioartificial liver support. World J Gastrointest Surg 2009; 1:21-25
    16. Sussman NL, Kelly JH. Improved liver function following treatment with an extracorporeal liver assist device. Artif Organs 1993;17:27-30
    17. Millis JM, Cronin DC, Johnson R, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation 2002;74:1735-1746
    18. Ellis AJ, Hughes RD, Wendon JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 1996;24:1446-1451
    19. Sussman NL, Gislason GT, Conlin CA, Kelly JH. The Hepatix extracorporeal liver assist device:initial clinical experience. Artif Organs 1994;18:390-396
    20. Millis JM, Cronin DC, Johnson R, et al. Bioartificial liver support:report of the longest continuous treatment with human hepatocytes. Transplant Proc 2001;33:1935
    21. Pitkin Z, Mullon C. Evidence of absence of porcine endogenous retro virus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999;23:829-833
    22. Samuel D, Ichai P, Feray C, et al. Neurological improvement during bioartificial liver sessions in patients with acute liver failure awaiting transplantation. Transplantation 2002;73:257-264
    23. Demetriou AA, Whiting J, Levenson SM, et al. New method of hepatocyte transplantation and extracorporeal liver support. Ann Surg 1986;204:259-271
    24. Demetriou A A, Brown RJ, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 2004;239:660-667,667-670
    25. Mullon C, Pitkin Z. The HepatAssist bioartificial liver support system:clinical study and pig hepatocyte process. Expert Opin Investig Drugs 1999;8:229-235
    26. Demetriou AA, Rozga J, Podesta L, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl 1995;208:111-117
    27. Mazariegos GV, Patzer JN, Lopez RC, et al. First clinical use of a novel bioartificial liver support system (BLSS). Am J Transplant 2002;2:260-266
    28. Patzer JN, Mazariegos GV, Lopez R, et al. Novel bioartificial liver support system: preclinical evaluation. Ann N Y Acad Sci 1999;875:340-352
    29. Mazariegos GV, Kramer DJ, Lopez RC, et al. Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. Asaio J 2001;47:471-475
    30. van de Kerkhove MP, Di Florio E, Scuderi V, et al. Bridging a patient with acute liver failure to liver transplantation by the AMC-bioartificial liver. Cell Transplant 2003;12:563-568
    31. Flendrig LM, la Soe JW, Jorning GG, et al. In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally wound nonwoven polyester matrix for hepatocyte culture as small aggregates. J Hepatol 1997;26:1379-1392
    32. van de Kerkhove MP, Di Florio E, Scuderi V, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs 2002;25:950-959
    33. Sauer IM, Kardassis D, Zeillinger K, et al. Clinical extracorporeal hybrid liver support--phase I study with primary porcine liver cells. Xenotransplantation 2003; 10:460-469
    34. Sauer IM, Zeilinger K, Pless G, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis--treatment of a patient with primary graft non-function. J Hepatol 2003;39:649-653
    35. Sauer IM, Zeilinger K, Obermayer N, et al. Primary human liver cells as source for modular extracorporeal liver support--a preliminary report. Int J Artif Organs 2002;25:1001-1005
    36. Morsiani E, Pazzi P, Puviani AC, et al. Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 2002;25:192-202
    37. Morsiani E, Brogli M, Galavotti D, et al. Long-term expression of highly differentiated functions by isolated porcine hepatocytes perfused in a radial-flow bioreactor. Artif Organs 2001;25:740-748
    38. Xue YL, Zhao SF, Luo Y, et al. TEC A hybrid artificial liver support system in treatment of acute liver failure. World J Gastroenterol 2001;7:826-829
    39. Ding YT, Qiu YD, Chen Z, et al. The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 2003;9:829-832
    40. Donato MT, Castell JV, Gomez-Lechon MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices:comparison with other hepatic cellular models. J Hepatol 1999;31:542-549
    41. Cowan PJ, D'Apice AJ. The coagulation barrier in xenotransplantation: incompatibilities and strategies to overcome them. Curr Opin Organ Transplant 2008;13:178-183
    42. Kanai H, Marushima H, Kimura N, et al. Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 2007;31:148-151
    43. Enosawa S, Miyashita T, Fujita Y, et al. In vivo estimation of bioartificial liver with recombinant HepG2 cells using pigs with ischemic liver failure. Cell Transplant 2001;10:429-433
    44. Enosawa S, Miyashita T, Tanaka H, et al. Prolongation of survival of pigs with ischemic liver failure by treatment with a bioartificial liver using glutamine synthetase transfected recombinant HepG2. Transplant Proc 2001;33:1945-1947
    45. Wang N, Tsuruoka S, Yamamoto H, et al. The bioreactor with CYP3A4- and glutamine synthetase-introduced HepG2 cells:treatment of hepatic failure dog with diazepam overdosage. Artif Organs 2005;29:681-684
    46. Enosawa S, Miyashita T, Saito T, Omasa T, Matsumura T. The significant improvement of survival times and pathological parameters by bioartificial liver with recombinant HepG2 in porcine liver failure model. Cell Transplant 2006;15:873-880
    47. Nyberg SL, Remmel RP, Mann HJ, et al. Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 1994;220:59-67
    48. Mavri-Damelin D, Damelin LH, Eaton S, et al. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 2008;99:644-651
    49. Werner A, Duvar S, Muthing J, et al. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. Biotechnol Bioeng 2000;68:59-70
    50. Werner A, Duvar S, Muthing J, et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system. Ann N Y Acad Sci 1999;875:364-368
    51. Kobayashi N, Miyazaki M, Fukaya K, et al. Establishment of a highly differentiated immortalized human hepatocyte cell line as a source of hepatic function in the bioartificial liver. Transplant Proc 2000;32:237-241
    52. Kobayashi N, Noguchi H, Watanabe T, et al. A tightly regulated immortalized human fetal hepatocyte cell line to develop a bioartificial liver. Transplant Proc 2001;33:1948-1949
    53. Deurholt T, van Til NP, Chhatta AA, et al. Novel immortalized human fetal liver cell line, cBAL111, has the potential to differentiate into functional hepatocytes. BMC Biotechnol 2009;9:89
    54. Poyck PP, van Wijk AC, van der Hoeven TV, et al.Evaluation of a new immortalized human fetal liver cell line (cBAL111) for application in bioartificial liver. J Hepatol 2008;48:266-275
    55. Kobayashi N, Westerman KA, Tanaka N, Fox IJ, Leboulch P. A reversibly immortalized human hepatocyte cell line as a source of hepatocyte-based biological support. Addict Biol 2001:6:293-300
    56. Kobayashi N. Life support of artificial liver:development of a bioartificial liver to treat liver failure. J Hepatobiliary Pancreat Surg 2009;16:113-117
    57. Kobayashi N, Fujiwara T, Westerman KA, et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000;287:1258-1262
    58. Totsugawa T, Yong C, Rivas-Carrillo JD, et al. Survival of liver failure pigs by transplantation of reversibly immortalized human hepatocytes with Tamoxifen-mediated self-recombination. J Hepatol 2007;47:74-82
    59. Dalgetty DM, Medine CN, Iredale JP, Hay DC. Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 2009;297:G241-G248
    60. Dan YY, Yeoh GC. Liver stem cells:a scientific and clinical perspective. J Gastroenterol Hepatol 2008;23:687-698
    61. Chamuleau RA, Deurholt T, Hoekstra R. Which are the right cells to be used in a bioartificial liver? Metab Brain Dis 2005;20:327-335
    62. Ding YT, Shi XL. Bioartificial liver devices:Perspectives on the state of the art. Front Med 2011;5:15-19
    63. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10:1093-1095
    64. Hay PD, Veitch AR, Smith MD, Cousins RB, Gaylor JD. Oxygen transfer in a diffusion-limited hollow fiber bioartificial liver. Artif Organs 2000;24:278-288
    65. Hay PD, Veitch AR, Gaylor JD. Oxygen transfer in a convection-enhanced hollow fiber bioartificial liver. Artif Organs 2001;25:119-130
    66. Chen G, Palmer AF. Perfluorocarbon facilitated O(2) transport in a hepatic hollow-fiber bioreactor. Biotechnol Prog 2009;25:1317-1321
    67. Chen G, Palmer AF. Mixtures of hemoglobin-based oxygen carriers and perfluorocarbons exhibit a synergistic effect in oxygenating hepatic hollow fiber bioreactors. Biotechnol Bioeng 2010;105:534-542
    68. Chen G, Palmer AF. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor. Biotechnol Bioeng 2009;102:1603-1612
    69. Remy B, Deby-Dupont G, Lamy M. Red blood cell substitutes:fluorocarbon emulsions and haemoglobin solutions. Br Med Bull 1999;55:277-298
    70. Seghatchian J, de Sousa G. An overview of unresolved inherent problems associated with red cell transfusion and potential use of artificial oxygen carriers and ECO-RBC:current status/future trends. Transfus Apher Sci 2007;37:251-259
    71. Natanson C, Kern SJ, Lurie P, Banks SM, Wolfe SM. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death:a meta-analysis. JAMA 2008;299:2304-2312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700