用户名: 密码: 验证码:
东亚副热带西风急流中期变化及其对梅雨异常的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨东亚副热带西风急流对长江中下游梅雨的中期预报意义,本文采用1960~2009年50年NCEP/NCAR再分析日平均资料、长江中下游梅雨数据以及中国714站20~20时日累计雨量观测资料,系统分析了梅雨期东亚副热带西风急流垂直结构和水平流型的气候态特征,构建了针对梅雨季节东亚副热带西风急流客观定量表征方法和长序列东亚副热带西风急流特征指数日资料历史数据集,以日、候时间尺度资料统计了东亚副热带西风急流经向活动、强度变化、中心纬向突变以及形态特征与梅雨的关系,探讨了东亚副热带西风急流影响梅雨降水异常和相关大型环流系统活动的机理,研究了东亚副热带西风急流斜压波波包传播特征。结果表明:
     (1)梅雨期东亚副热带西风急流的气候态特征分析表明,梅雨期东亚副热带急流空间分布特征不同于整个夏季背景场,表现出位置偏南、强度偏强、覆盖广、变率大等特征。梅雨期东亚副热带急流处于冬季型向夏季型转换的过渡阶段,急流经向活动、中心纬向突变以及强度瞬变涡动等都具有其独特的中期演变特征。急流在季节性持续向北移动过程中出现两次位置稳定时段和三次季节性北跳,两次位置稳定阶段分别对应华南前汛期和长江中下游梅雨雨季,急流第二和第三次季节性北跳分别对应梅雨的开始和结束,急流第二次北跳时间为6月7日,比梅雨入梅日提前10天,对于梅雨开始具有先兆性指示意义;急流第三次北跳和西太平洋上空中心消失与梅雨结束有一定的关联。
     (2)利用1960~2009年梅雨季节东亚副热带西风急流位置、强度和中心逐日资料,讨论了东亚副热带西风急流中期变化与梅雨的关系。结果发现,急流位置与雨带位置呈正相关,与梅雨强度呈反相关,即位置指数偏北(南),雨带位置偏北(南),梅雨强度偏弱(强)。急流强度与梅雨强度呈正相关,即急流强度偏强(弱),梅雨强度偏强(弱),但强度不及位置与梅雨的相关性好。丰梅年区域性暴雨主要出现在纬向型和东北-西南型形态的东亚副热带西风急流的右后方。东亚副热带西风急流中心位置西跳日与出梅日有很好的相关关系,大多数年份两者日期差小于5天。急流位置指数周期变化主要呈单周和双周特征,西风急流强度指数变化主要呈单周变化特征,说明在相对稳定的急流带上,有急流核以更高的变化频率东传。
     (3)异常丰梅年和空梅年东亚副热带西风急流中期变化特征差异显著。合成分析显示,丰梅年相对于空梅年西风急流强度偏强,急流带狭窄,质量与动量集中。从逐日变化情况来看,丰梅年,东亚副热带西风急流前北跳一般先于入梅日,后北跳与出梅几乎同步;入梅后,东亚副热带西风急流位置围绕气候态经向平稳摆动,关键区(110o~130oE,30o~37.5oN)纬向风强度偏强,最大中心主频次在125oE附近,靠近中国大陆并位于下风方。空梅年,东亚副热带西风急流一般不发生前北跳,一次性北跳至40oN以北地区,或者发生前北跳,但没有建立准稳定形势,急流位置偏北,经向移动幅度较大,急流强度总体偏弱,急流中心位置主要出现在日本岛及西太平洋上空,远离中国大陆。
     影响梅雨异常的物理机制分析表明,异常丰梅年,200hPa我国东部地区上空急流轴线、散度零线和散度距平零线在37.5oN重合,高空辐散中心区与辐散距平中心区在长江中下游地区上空亦重合,高空强辐散流出,对应低层有强辐合流入以及自低层到高层深厚的垂直上升运动,为梅雨提供了良好的动力环境场;高低空急流耦合作用,有利于低空西南风加强,为持续性降水提供了良好的水汽输送条件。高空副热带锋区和典型陡直梅雨锋区,有利于高空急流质量和动量的维持,也利于深对流发展。空梅年,情形相反。
     (4)异常丰梅年东亚副热带西风急流与副高、季风涌关系密切。200hPa东亚副热带西风急流强度偏强,经向移动相对稳定,主体偏西,则500hPa副高强度偏强,经向移动相对平稳,主体偏西,季风涌强度偏强;空梅年,情形相反。丰、空梅年东亚副热带西风急流位置与副高位置有很好的正相关关系,东亚副热带西风急流强度与季风涌纬向强度指数有很好的正相关关系,而且相关性丰梅年比空梅年好。
     影响副高、季风涌活动的机理研究表明,丰梅年,东亚副热带西风急流强度偏强,副高脊线以北至西风急流轴以南从低层到高层整层为负涡度距平,有利于副高强度偏强。副高脊线附近伴随的次级环流,即副热带季风环流圈(STMC),以及高层为辐合和下沉运动距平,非常有利于副高的强度偏强。副热带季风环流圈(STMC)通过低空西南风急流向北的经向运动在柯氏力作用下将增强其西风风速,而其东风急流的北侧向南的经向运动将增强其东风风速。由此增强了低空西南风急流和高空东风急流,并通过质量一动量调整有利于季风环流圈的维持。丰梅年,深对流降水引起高层凝结潜热释放,使得南北温度梯度进一步加大和维持,从而急流强度增强和维持,再通过动力作用促使副高强度增强,西伸脊点偏西,季风涌加强。空梅年,情形相反。
     (5)梅雨异常年东亚副热带西风急流斜压波波包传播特征分析表明,丰梅年200hPa传播的波包大值中心比较偏西偏南,空梅年传播的波包大值中心相对比较偏东偏北,丰梅年斜压波波包大值带弱于空梅年,波包传播群速度大于相速度,急流波动具有明显的下游频散效应。丰、空梅年在北半球的0o~180oE范围内,三条斜压扰动波波包大值带的强度变化和不同配置显示了丰、空梅年的差异,也可用来分析梅雨前、梅雨期和梅雨后的阶段性特征。即当波包大值带位于40o~50oN之间,且130oE以西的波包大值带增强,并85o~125oE高空急流出口区波包大值中心偏南至38o~42oN附近,同时西太平洋波包大值带ē减弱,长江流域就进入了梅雨期;当波包大值带尤其是高空急流出口区波包大值带偏北偏弱,而孟加拉湾波包大值带ē显著增强时,长江流域梅雨结束。三条波包大值带的不同配置和维系可能反映了副热带高空急流、季风环流系统的维系的过程。
By using a dataset during1960~2009including the reanalysis daily data provided by NCEP/NCAR,Meiyu data in the lower-middle reaches of the Yangtze River and24h (from20:00to the next20:00Beijing time) total precipitation data collected from714fiducial stations in China, this paper aims toinvestigate impact of the east Asian subtropical westerly jet (EASWJ)to middle-range forecasting of Meiyuin the lower-middle reaches of the Yangtze River. The vertical structure and spatial pattern of the EASWJare analyzed systematically in its climatic state. Objective and quantificational methods have also beenfound to characterize the EASWJ and as a result long time series EASWJ dataset has been built. Besides,influence mechanism of the EASWJ on abnormal Meiyu and activity of corresponding large scalecirculation systems is discussed, by analyzing relationship between Meiyu and meridional activities,intensity variation, zonal abrupt change of center and morphological characteristics of the EASWJ withdaily and Pentad data. At last, the EASWJ is studied in an aspect of its propagation characteristics ofbaroclinic wave energy. The major results are as follows:
     (1) Study on climatic character of the EASWJ shows that its space distribution during Meiyu period isdifferent from mean character in the whole summer, featuring with its southward location, strongerintensity, wide coverage and big variable rate. The Meiyu period is an important stage for the EASWJtransiting from winter to summer, when the EASWJ has unique middle-range evolution character inaspects of its meridional activity, zonal abrupt change of jet center and transient eddy of jet intensity.Generally, there are two stable stages and three northward shift stages of jet position when the EASWJseasonally moves to the north continuously. The two stable stages of the EASWJ are corresponding to thepre-flood season in south China and Meiyu over the lower-middle reaches of the Yangtze River valleyrespectively. The second and third seasonal north shifts of the EASWJ are corresponding to beginning andending of the Meiyu respectively. The second north jump of the EASWJ on June7th is10days ahead ofMeiyu beginning day, which has foreboding sense to forecast the beginning of Meiyu; the third jet northjump and jet center disappearing above the west Pacific are related to the ending of Meiyu.
     (2) Using daily data of position, intensity and center of the EASWJ during Meiyu period from1960to2009, relationship between middle-range variation of the EASWJ and Meiyu is discussed. The resultshows daily evolution of the EASWJ during Meiyu period indicates a negative relationship between jetposition and Meiyu intensity, that is to say, Meiyu intensity is weaker (stronger) when index of jet positionis northward (southward). Jet intensity is positively related to Meiyu intensity, namely, Meiyu intensity isstronger (weaker) when jet intensity is stronger (weaker), but relation of jet intensity to Meiyu is not asclose as that to jet position. Regional rainstorm in heavy Meiyu years mainly appears right and behind theEASWJ with zonal and northeast-southwest pattern. West jump day of the EASWJ is closely related to theend date of Meiyu, difference between west jump day of the EASWJ and the end date of Meiyu is less than5days in most years. Position index of the EASWJ varies periodically in a timescale of one week ordouble week. Intensity index of the EASWJ varies periodically in one week. Period of jet position andintensity indicates that there are jet cores propagating to the east with higher frequency in the relativelystable jet band.
     (3) Middle-range variation of the EASWJ is remarkablly different in abnormal heavy Meiyu years fromthat in light Meiyu years. The composite analysis shows that the jet intensity is stronger, jet band is morenarrow and mass and momentum of the EASWJ are more centralized in heavy Meiyu years than that inlight Meiyu years. From perspective in daily evolution of the EASWJ, in heavy Meiyu years, the secondnorth jump day of the EASWJ is usually earlier than the beginning date of Meriyu, the third EASWJ northjump day and the ending date of Meiyu is almost synchronous; after the beginning day of Meiyu, theEASWJ swings stably around its climatic longitude, zonal wind is stronger in key region(110o~130oE,30o~37.5oN), the jet centeris frequently around125oE which is near and in leeward side of Chinesemainland. In light Meiyu years, the EASWJ usually doesn’t happen the second north jump and moves tonorth of40oN directly; jet position is northward and moves with bigger amplitude along longitude, jetintensity is weaker, jet center is mainly present over the Japanese islands and west Pacific which is faraway from Chinese mainland.
     The physical mechanism of influence of the EASWJ on abnormal Meiyu shows that, in heavy Meiyu years,200hPa jet axis, zero line of divergence and zero line of divergence departure overlap at37.5oN over eastChina, divergence center in upper level also coincides with center of divergence departure over thelower-middle reaches of the Yangtze River. Strong divergent flow in upper levels cooperating with strongconvergent flow in lower levels and deep vertical ascending movement from ground level to upper levelscan provide favorable dynamic condition for Meiyu to happen; Coupling between upper and lower jetstreaks is in favor for lower southwesterly to strengthen, as a result southwest water vapor flux departureexists in the south of lower-middle reaches of the Yangtze River, which could provide favorable warmvapor transport condition for durative rainfall. Upper frontal zone and typical steep Meiyu frontal zone are helpful for deep convection to develop by favoring mass and momentum of upper jet to maintain. In lightMeiyu years, situation is opposite.
     (4) In abnormal heavy Meiyu years, the EASWJ is closely related to west pacific subtropical high andmonsoon surge. If the EASWJ at200hPa is characterized with stronger intensity, comparably stablemeridional movement and westward main part, the west pacific subtropical high shows the same characterat500hPa and the monsoon surge is stronger. In light Meiyu years, situation is opposite. Position of theEASWJ is closely related to position of the west pacific subtropical high, intensity of the EASWJ isclosely related to zonal intensity index of monsoon surge in both heavy and light Meiyu years, andhowever, such relationship is closer in heavy Meiyu years than that in light Meiyu years.Study in influence mechanism on activity of the west pacific subtropical high and monsoon surge showsthat, in heavy Meiyu years, intensity of the EASW is stronger, negative vorticity departure exists in thewhole levels from bottom level to the upper levels expanding from north of ridge line of subtropical highto south of westerly jet axis, which is helpful for subtropical high to be stronger. Subtropical monsooncirculation (STMC) which is accompanying around ridge line of subtropical high and upper convergentdeparture are both helpful for subtropical high to be stronger. Ascending part of the STMC is in south ofthe EASWJ and north of southwest jet in lower level, while submerging part of the STMC is in north oftropical easterly. In that way, the STMC enhances westerly speed of lower southwesterly jet by Coriolisforce though its meridional movement to the north, easterly speed has also been enhanced thoughmeridional movement from north of easterly jet to the south. As a result, westerly jet in lower level andeasterly in upper level are enhanced, monsoon circulation is holden by means of mass-momentumadjustment. In heavy Meiyu years, latent heat of condensation releasing from deep convective precipitationleads to increasing and maintaining of north-south temperature gradient, thus jet intensity becomesstronger and keeps maintaining, this effect coordinating dynamic effect make intensity of subtropical highto be strengthened and west ridge point of subtropical high to be westward, so that monsoon surge can beenhanced also. In light Meiyu years, situation is opposite.
     (5) Analysis on propagating character of baroclinic wave packets of the EASW in abnormal Meiyu yearsshows that center of wave packets with great values is inclined to the westward and southward at200hPain heavy Meiyu years. However, center of wave packets with great values is inclined to the eastward andnorthward in light Meiyu years. Band of baroclinic wave packets with great values is weaker in heavyMeiyu years than that in light Meiyu years. In heavy Meiyu years, propagating speed of wave packets isbigger than phase velocity, indicating jet wave has development effect to downstream area. There are threedistinct great value zones of baroclinic disturbance wave packet persisting a period of2~7d. Intensityvariation and different collocation of the center of these three wave packets with great values couldrepresent the difference in heavy and light Meiyu years. This result could also be used to investigate stage characteristics of precipitation before Meiyu, during Meiyu and after Meiyu. That is, the Meiyu seasonbegins in the Yangtze River basin when band of wave packets with great values is located between40oNand50oN, band of wave packets with great values west of130oE enhances, center of wave packets withgreat values in exit region of85o~125oE moves to the south around38o~42oN, contemporary with bandē of wave packets with great values weakens in west Pacific. The Meiyu season ends in the YangtzeRiver basin when band of wave packets with great values especially band of wave packets with greatvalues in exit region is inclined to the northward and be weaker, band ē of wave packets with greatvalues enhances observably in the Bay of Bengal. Different collocation and maintenance of these threewave packets zone with great values may reflect the course of maintenance between subtropicalupper-level jet and monsoon circulation.
引文
1. Ambrizzi Tercio, and Hoskins B. J. Rossby Wave Propagation and Teleconnection Patternsin the Austral Winter. Journal of the atmospheric sciences,1995,52(21):3661-3672.
    2. BerggrenR.,Gibbs W.J., and Newton C. W. Observational characteristics of the jetstream.A survey of the literature.1958,N No.19.
    3. CHANG E. K. M. Characteristics of wave packets in the upper troposphere part II:Seasonal and hemispheric variations[J].Journal of the atmospheric sciences,1999,56(11):1729-1747.
    4. CHANG E. K. M. The structure of baroclinic wave packets[J].Journal of the atmosphericsciences,2001,58(13):1694-1713.
    5. CHANG E. K.M. Wave packets and life cycles of troughs in the upper troposphere:Examples from the southern hemisphere summer season of1984/85[J].Monthly WeatherReview,2000,128(1):25-50.
    6. Chang E. K. M, Yu Daniel B. Characteristics of wavepackets in the upper troposphere.Part I: Northern Hemisphere winter.Journal of the atmospheric sciences,1999,56(11):1708-1728.
    7. Charney J. and G.and Eliassen, A. A numerical method for predicting the perturbationsof the middle latitude westerlies. Tellus,1949,1,38-54.
    8. Chen Gang, Pablo Zurita-Gotop. The Tropospheric Jet Response to Prescribed ZonalForcing in an Idealized Atmospheric Model. Journal of the atmosphericsciences,2008,65:2254-2271.
    9. Cressman G. P. Circulation of the West Pacific jet stream. Monthly Weather Review,1981,109:2450-2463.
    10. Cressman G. P. Energy transformation in the East Asia-West Pacific jet stream. MonthlyWeather Review,1984,112:563-574.
    11. Dayton G. Vincent,Ken-chung Ko,and Jon M.Schrage. Subtropical Jet Streaks over theSouth Pacific. Monthly Weather Review,1997,125:438-447.
    12. DU Yin, ZHANG Yao cun,and XIE Zhiqing. Impacts of the Zonal Position of the East AsianWesterly Jet Core on Precipitation Distribution During Meiyu of China.ActaMeteorologica Sinica,2009,23(4):506-516.
    13. Edmon H J, Hoskins B J, McIntyer M E. Eliassen-Palm cross section for the troposphere.Journal of the atmospheric sciences,1980,37:2600-2616
    14. Elmar R., Abele Nanla. Jet-Stream Structure and Clear-Air Turbulence(CAT). Journalof applied meteorology,1964,3:247-260.
    15. Emily Shuckburgh, Francesco D ovidio, Bernard Legeras. Local Mixing Events in theUpper Troposphere and Lower Stratosphere. Part II: Seasonal and InterannualVariability. Journal of the atmospheric sciences,2009,66:3695-3706.
    16. Endlich R. M., Mclean G. S., The structure of the jet atream core. J. Metero.,1957,14,543-552.
    17. Guo Lanli, Zhang Yaocun, and Wang Bin et al. Simulations of the East Asian SubtropicalWesterly Jet by LASG/IAP AGCMs. Advances in atmospheric sciences,2008,25(3):447-457.
    18. Haines K., P. Malanotte-Rizzoli. Isolated Anomalies in Westerly Jet Streams: A UnifedApproach.Journal of the atmospheric sciences,1991,48(4):510-526.
    19. Honskins B. J.,and Hollingsworth Anthony. On the Simplest example of the BarotropicInstability of Rossby Wave Motion. NOTES AND CORRESPONDENCE.1973,30:150~153.
    20. Hoskins B. J., Karoly D J. The steady linear response of a spherical atmosphere tothermal and orographic forcing. J Atmos Sci,1981,38(6):1179–1196
    21. Hoskins, B. J., T. Ambrizzi. Rossby wave propagation on a realistic longitudinallyvarying flow.Journal of the atmospheric sciences,1993,35,1661-1671.
    22. Kalnay, E.,and Coauthors. The NCEP/NCAR40-year reanalysis project, Bull.Amer.Meteor.Soc.,1996,77,437-471.
    23. Krishnan, R., M. Sugi. Baiu rainfall and variability and associated monsoonteleconnections, J.Meteor.Soc.Japan,2001,79,851-860.
    24. Kuang Xueyuan, Zhang Yaocun. Seasonal Variation of the East Asian Subtropical WesterlyJet and Its Association with the Heating Field over East Asia.Advances in AtmosphericSciences,2005,22(6):831-840.
    25. Lau K. M., Boyle J. S.Tropical and Extratropical Forcing of the Large-ScaleCirculation:A Diagnostic Study. Monthly Weather Review,1986,115:400-428.
    26. Lau K.-M.,and Weng H.Y.. Recurrent teleconnection patterns linking summertimeprecipitation variability over East Asia and North America.J.Meteor.Soc.Japan,2002,80,1309-1324.
    27. Lau K-M, Li M. The monsoon of East Asia and its global associations: a survey. BullAmer. Meteor. Soc.,1984,65:114-125
    28. Liang,X.-Z.,and W.-C.Wang. Associations between China monsoon rainfall andtropospheric jets,Quart.J.Roy.Meteor.Soc.,1998,124,2597-2623.
    29. LIN Zhongda,and LU Riyu. Interannual Meridional Displacement of the East AsianUpper-tropospheric Jet Stream in Summer. Advance in AtmosphericSciences,2005,22(2):199-211.
    30. Lu R.,Jai-oh OH,and Beak-Jo Kim. A teleconnection pattern in upper-level meridionalwind over the North Africa and Eurasian continent in summer.Tellus,2002,54A,44-55.
    31. Lu R.. Associations among the components of the East Asian summer monsoon system inthe meridional direction. J.Meteor.Soc.Japan,2004,82,155-165
    32. Ninomiya K I. Mesoscale modification of synoptic situations from thunderstormdevelopment as revealed by ATS ē and aerological data. J. Appl. Meteor.,1971,10:1103-1121.
    33. Patrick Koch. Novel Perspectives of Jet-Stream Climatologies and Events of HeavyPrecipitation on the Alpine Southside. A dissertation submitted to the Swiss FederalInstitute of Technology (ETH) Zurich. June2004
    34. Petterssen S, Smebye S. J. On the development of extratropical cyclones[J]. QuartJ Roy Meteor Soc,1971,97(2):457-482.
    35. Ran Lingkun, Gao Shouting, Lei Ting. Effect of a new Eliassen-Palm flux on barotropicbasic flow. Chinese Phys.Lett.,2004,21(5):980~982
    36. Song Yang,K.-M.Lau,and S.-H.Yoo. Upstream Subtropical Signals Preceding the AsianSummer Monsoon Circulation. Journal of climate,2004,17:4213-4229.
    37. Takeaki Sampe,and Shang-Ping Xie. Large-Scale Dynamics of the Meiyu-BaiuBand:Environmental Forcing by the Westerly Jet.2009,1-55.
    38. Terao,T..Relationships between quasi-stationary Rossby waves in the subtropical jetand the mass and heat transport in the northern periphery of the Tibetanhigh.J.Meteor.Soc.Japan,1999,77,1271-1286.
    39. Terao,T..The zonal wavelength of the quasi-stationary Rossby wave trapped thewesterly jet.J.Meteor.Soc.Japan,1999,77,687-699.
    40. Uccellini L. W and Johnson D. R. The coupling of upper and lower tropospheric jetstreaks and implication for the development of severe convective storm. Mon. Wea.Rev,1979,107:682-703
    41. Uccellini L. W. On the role of upper tropospheric jet streaks and leeside cyclogenesisin the development of low-level jets in the Great Plain. Mon. Wea. Rev,1998,108:1689-1696.
    42. Walter A. Robinson. On the Self-Maintenance of Midlatitude Jets. J.Atmos.Sci.2006,63:2109-2122.
    43. Xuan S., Zhang Q., and Sun S.,2011: Anomalous midsummer rainfall in YangtzeRiver-Huaihe River Valleys and its associations with the East Asia westerly jet. Adv.Atmos. Sci.,28(2),387-397.
    44. Xue K., and Y. Zhang,2005: Seasonal variation of the East Asian subtropical westerlyjet and its association with the heating fields over East Asia. Adv. Atmos. Sci.,22,831-840.
    45. Yang Gui-Ying and Brian J. Hoskins. Propagation of Rossby Waves of Nonzero Frequency.J.Atmos.Sci.,1996,53(16):2365-2378.
    46. Yang,S.,K.-M.Lau,and K.-M.Kim. Variations of the East Asian Jet Stream andAsian-Pacific-American winter climate anomalies. J.Climate,2002,15,306-325.
    47. Yang,S.and P.J.Webster. The effect of summer tropical heating on the location andintensity of the extratropical westerly jet streams.J.Geophys.Res.,1990,95.NoD11,18705-18721.
    48. Zeng Qingcun. The evolution and structure of a Rossby-wave packet in forced meanflow[J]. Scientia Sinica,1983,25(8):872-881.
    49. Zhang jijia, and Zhou Shuntai. The interaction between eddy flux and zonal averagedflow in June Sudden Change. Acta Meteorologica Sinica,1989,3(1):1-9.
    50. Zhang Yaocun, Kuang Xueyuan,and Guo Weidong.Seasonal evolution of theupper-tropospheric westerly jet core over East Asia. Geophysical researchletters.Val.33,L11708,doi:10.1029/2006GL026377,2006.
    51. Zhang Yaocun, Masaaki TAKAHASHI,and LanLi. Analysis of the East Asian SubtropicalWesterly Jet Simulated by CCSR/NIES/FRCGC Coupled Climate System Model. Journal ofthe Meteorological Society of Japan,2008,86(2):257-278.
    52. Zhang Yaocun,and Guo Lanli. Relationship between the simulated East Asian westerlyjet biases and seasonal evolution of rainbelt over eastern China. Chinese ScienceBulletin,2005,50(14):1503-1508.
    53.鲍名.从中期天气过程看近几年长江中下游梅雨偏少的原因[J].大气科学.2009,33(4):708~718
    54.晁淑懿,王秀文,孙除荣.亚洲偶极子阻高与江淮梅雨[J].大气科学,1995,19(6):713~721.
    55.陈菊英,王江玉,王文.1998及1999年乌山阻高突变对长江中下游大暴雨过程的影响[J].高原气象,2001,20(4):388~394.
    56.陈隆勋,朱乾根,罗会邦等.东亚季风[M].北京:气象出版社,1991:28~49,162~191
    57.陈隆勋.东亚季风系统的结构及其中期变化[J].海洋学报,1984,1(6):744~758.
    58.陈秋士,林本达.北半球冬季副热带高压带维持的涡度机制[J].气象学报,1965,35(3):364~370.
    59.陈艺敏,钱永甫.116a长江中下游梅雨的气候特征[J].南京气象学院学报,2004,27(1):65~
    72.
    60.仇永炎.中期天气顶报[M].北京:科学出版杜,1985,225~256.
    61.丁一汇,沈新勇.对称扰动与纬向基流的相互作用I.倾斜E-P通量理论.大气科学,1998,22:735~743
    62.丁一汇,村上树人.东亚季风[M].北京:气象出版社,1994,263,419pp.
    63.丁一汇,赵深铭,傅秀琴.5-10月全球热带和副热带200hpa多年平均环流的研究(二)—行星风系[J].大气科学.1988.12(3):242~249.
    64.丁一汇.1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社.1993.69~106.
    65.丁一汇.高等天气学[M].北京:气象出版社,1991,792pp
    66.董广涛,张耀存.青藏高原隆升影响东亚副热带西风急流的数值试验[J].南京大学学报(自然科学),2007,43(2):199~211.
    67.董丽娜,郭品文,王鹏祥等.7月东亚高空西风急流变化对我国雨带的影响[J].高原气象,2010,29(2):286~296.
    68.董丽娜,郭品文,张福颖.初夏至盛夏东亚副热带西风急流突变早晚与东亚环流异常的关系[J].大气科学学报,2009,32(4):543~552.
    69.董敏,余建锐.东亚西风急流变化与热带对流加热关系的研究[J].大气科学.1999,23(1):62~
    70.
    70.董敏,朱文妹,魏凤英.欧亚地区500hPa上纬向风特征及其与中国天气的关系[J].气象科学研究院院刊,1987,2(2),166~173.
    71.杜银,张耀存,谢志清.东亚副热带急流位置变化及其对中国东部夏季降水异常分布的影响[J].大气科学,2009,33(3):581~592.
    72.杜银,张耀存,谢志清.高空西风急流东西向形态变化对梅雨期降水空间分布的影响[J].气象学报,2008,66(4):566~576.
    73.方晓洁,曾晓枚,陈雪芹.东亚夏季200hPa西风急流时空分布特征与我国夏季降水关系的初步分分析[J].气象与环境科学,2009.32(2):11~15.
    74.符淙斌等.北半球副高带长期变化影响[J].气象,1980,3(7):3~7.
    75.高守亭,陶诗言,丁一汇.表征波与流相互作用的广义E-P通量.中国科学(B),1989,7:774~784
    76.高守亭,陶诗言,丁一汇.寒潮期间高空波动与东亚急流的相互作用[J].大气科学,1992,16:718~724
    77.高守亭,陶诗言.大中尺度波流相互作用理论的研究[J].中国科学院院刊,2001,16:126~129
    78.高守亭,陶诗言.高空急流加速与低层锋生[J].大气科学,1991,15:11~21
    79.高由禧,徐淑英.东亚季风进退与雨季的起讫.见:高由禧院士文集.广州:中山大学出版社,1999.170-179
    80.高由禧.从对流层的温度分析来探讨我国上空冬半年西风环流.气象学报,1952,23(1-2):48-60
    81.管兆勇,徐建军,郭品文等.亚洲夏季风结构和变动与大气运动的斜压和正压特征:斜压模分析[J].气象学报,1997,55(2):146~153.
    82.管兆勇,徐建军,皓承智.亚洲夏季风结构和变动与大气运动的斜压和正压特征:正压模分析[J].气象学报,1997,55(5):513~520.
    83.何金海,周兵,温敏等.关于西北太平洋副热带高压的垂直环流结构和年际变动特征及其机制[J].暴雨灾害,2000,(4):24~35.
    84.侯青,许健民.卫星导风资料所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系[J].应用气象学报,2006,17(2):138~144.
    85.胡国权,丁一汇.1991年江淮暴雨时期的能量和水汽循环研究[J].气象学报,2003,61(2):146-163.
    86.黄安丽,高坤.对流层高低空急流耦合作用的动力学分析[J].杭州大学学报,1982,9(3):256~364.
    87.黄菲,姜治娜.欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系[J].青岛海洋大学学报:自然科学版,2002,32(2):186~192.
    88.黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J].大气科学(特刊),1988,107~116.
    89.黄荣辉,魏科,陈际龙等.东亚2005年和2006年冬季风异常及其与准定常行星波活动的关系[J].大气科学,2007,31(6):1033~1048.
    90.黄荣辉.球面大气中行星波的波作用守恒方程及用波作用通量所表征的定常行星波传播波导[J].中国科学B辑,1984,8月,766~775.
    91.黄士松,汤明敏.论东亚夏季风体系的结构[J].气象科学,1987,3(1):1~13.
    92.黄士松,余志豪.副热带高压结构及其同大气环流有关若干问题的研究[J].气象学报,1962,31(4),339~359.
    93.黄士松.副热带高压位置一年中南北变动的一些特征及意义[J].南京大学学报,1962,2
    94.黄士松.决定副热带高压东西向移动及其预报问题的研究[J],气象学报,1963,33(3):320~332.
    95.黄士松.有关副热带高压活动及其预报问题的研究[J].大气科学,1978,2,159~168.
    96.金荣花,陈涛,鲍媛媛,王秀文等.2007年梅汛期异常降水的大尺度环流成因分析[J].气象,2008,34(4):79~85.
    97.金荣花,矫梅燕,徐晶等.2003年淮河多雨期西太平洋副高活动特征及其成因分析析[J].热带气象学报,2006,22(1):60-66.
    98.况雪源,张耀存,刘健.对流层上层副热带西风急流与东亚冬季风的关系[J].高原气象,2008,27(4):701~712.
    99.况雪源,张耀存.东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报,2006,64(5):564-575.
    100.况雪源,张耀存.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象,2006,25(3):382~389.
    101.李崇银,王作台,林士哲等.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J],大气科学,2004,28:641~658.
    102.李双林,纪立人,倪允琪.夏季乌拉尔山地区大气环流持续异常[J].科学通报,2001,46(9):753~758.
    103.李威,王启炜,王小玲.北半球阻塞高压实时监测诊断业务系统[J].气象,2007,33(4):77~81.
    104.李维京.1998年环流异常及其对中国气候异常的影响[J].气象,1999,25:20~25.
    105.李振军,赵思雄.高空急流加速与中低层锋生函数[J].应用气象学报,1994,5(1):57~61.
    106.廖清海,陶诗言,王会军.东亚地区夏季7~8月大气环流季节演变异常的内部动力学过程[J].地球物理学报.2006,49(1):28~36.
    107.廖清海,高守亭,王会军.北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的关系[J].地球物理学报,2004,47(1):10~18.
    108.廖清海,陶诗言.东亚地区夏季大气环流季节循环进程及其在区域持续性降水异常形成中的作用[J].大气科学.2004,28(6):835~846.
    109.廖荃荪,赵振国.东亚阻塞形势与西太平洋副高的关系及其对我国降水的影响.见:长期天气预报理论、方法和资料库建立研究项目总课题组编,长期天气预报论文集.北京:气象出版社.1990,125~135.
    110.林之光.我国东部地区季风雨带进退规律的进一步研究[J].气象科学技术集刊,北京:气象出版社,1987:24~31.
    111.刘飞,何金海,董国青.东亚夏季西风急流变化与中国夏季降水的相关分析[J].中国气象学会2006年年会.138~152.
    112.刘杰,况雪源,张耀存.对流层上层东半球副热带西风急流与副热带(南亚)高压的关系[J].气象科学,2010,30(1):34~41.
    113.陆艳艳,张耀存.P-σ区域气候模式对东亚副热带西风急流的数值模拟[J].高原气象,2007,26(2):213~224.
    114.吕克利,钱滔滔.高空西风急流核低空南风急流中的冷锋环流[J].大气科学,1996,679~690.
    115.毛睿,龚道溢,房巧敏.冬季东亚中纬度西风急流对我国气候的影响[J].应用气象学报,2007,18(2):137~146.
    116.梅士龙,管兆勇.1998年长江中下游梅雨期间对流层上层斜压波包的传播[J].热带气象学报,2009,25(3):300~306.
    117.缪锦海,肖天贵,刘志远.波包传播诊断的理论基础和计算方法[J].气象学报,2002,60(4):461-467.
    118.倪允琪,周秀骥,张人禾等.我国南方暴雨的试验与研究[J].应用气象学报,2006,17(6):690~704.
    119.冉令坤,高守亭,雷霆.高空急流区内纬向基本气流加速与EP通量的关系[J].大气科学,2005,29:409~416
    120.史有瑜,张耀存.东亚副热带西风急流变化与华北夏季降水之间的关系[J].中国气象学会2008年年会,625~634.
    121.司东,丁一汇,柳艳菊.中国梅雨雨带年代际尺度上的北移及其原因[J].科学通报,2010,55(1):68~73.
    122.斯公望,杜立群.南亚高压北缘的高空气流发散与梅雨锋暴雨发展的关系[J].杭州大学学报,1987,14(2):233~244
    123.斯公望.论东亚梅雨锋的大尺度环流及其次天气尺度扰动[J].气象学报,1989,47(3):312~323
    124.孙凤华,张耀存,郭兰丽.中国东部夏季降水与同期东亚副热带急流年代际异常的关系[J].高原气象,2009,28(6):1308~1315.
    125.谭杰丽,江静,袁俊鹏.副热带高空急流各中心强度时间变化及分析[J].气象科学.2009,29(4):482~489.
    126.陶诗言,赵思雄,周晓平等.天气学和天气预报的研究进展[J],大气科学,2003,27:451~467.
    127.陶诗言,赵煜佳,陈晓敏.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J],气象学报,1958,29:119~213.
    128.陶诗言,陈隆勋.夏季亚洲大陆上空大气环流的结构[J].气象学报,1957,28(3):234~247.
    129.陶诗言,卫捷.再论夏季西太平洋副热带高压的西伸北跳[J].应用气象学报,2006,17:513~525.
    130.陶诗言,徐淑英,郭其蕴.夏季东亚热带和副热带地区经向和纬向环流型的特征[J].气象学报,1962,32(2):91~103.
    131.陶诗言,徐淑英.夏季江淮流域持久性旱涝现象的环流特征[J].气象学报,1962,32(1):1~10.
    132.陶祖钰,黄伟.大暴雨过程中与急流相关气块的三维运动分析[J].气象学报,1994,52(3),359~367
    133.王栋枉,智协飞.一个新的冬季东亚西风急流指数与相联系的东亚冬季风异常[D].南京:南京信息工程大学,2007.
    134.王小曼,丁治英,张兴强.梅雨暴雨与高空急流的统计与动力分析[J].南京气象学院学报,2002,25(1):111~117.
    135.魏凤英,张京江.近百年长江中下游梅雨变化的统计特征分析[J].应用气象学报,2004,15(3):313~321.
    136.吴国雄,蔡雅萍,唐晓菁.湿位涡和倾斜涡度发展[J],气象学报,1995,53(4),387~405
    137.吴国雄,蔡雅萍.风垂直切变和下滑涡度发展[J],大气科学,1997,21(3),273~282
    138.吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展[J],气象学报,1999,57(1),1~13
    139.谢坤,任雪娟,向洋.冬季东亚-西太平洋西风急流基本机构及其异常的诊断分析[J].热带气象学报,2008,24(2):156~162.
    140.徐海明,何金海,周兵.长江中游大暴雨过程中天气系统的共同特征[J].应用气象学报,317~326.
    141.徐海明,何金海,周兵.倾斜高空急流轴在大暴雨过程中的作用[J].南京气象学院学报,2001,24(2):155~161.
    142.徐群,杨义文,秋明.近116年长江中下游的梅雨(一)[J].暴雨灾害,2001(1):44~53.
    143.徐群.近46年江淮下游梅雨期的划分和演变特征[J].气象科学,998,8(4):316~329.
    144.徐群.近80年长江中下游的梅雨[J].气象学报,1965,35(4):509~518.
    145.宣守丽,张庆云,孙淑清.夏季东亚高空急流月际变化与淮河流域降水异常的关系[J].气候与环境研究,2011,16(2):231-241.
    146.杨莲梅,张庆云.夏季东亚西风急流Rossby波扰动异常与中国降水[J].大气科学.2007,31(4):586~595.
    147.姚文清,徐祥德,冉令坤.江淮流域旱涝年夏季E-P通量特征分析[J].气象,2004,30:11~14
    148.叶笃正,陶诗言,李麦村.在六月和十月大气环流的突变现象[J].气象学报,1958,29(4):249~263.
    149.叶笃正,邓根云.1950年平均经圈环流与角动量的平衡[J].气象学报.1956,27(4)307~321.
    150.叶笃正,黄荣辉.长江黄河流域旱涝规律和成因研究[M].济南:山东科学技术出版社,1996:387.
    151.游性恬,熊廷南,朱禾等.关于西风急流在强迫扰动中作用的数值试验[J].高原气象,1992,11(1):23~30.
    152.于秀晶,谢今范.春季东亚高空西风急流变异与东亚夏季副热带季风活动遥相关特征[J].地理科学,2007,27supp.91~96.
    153.俞樟孝,李法然,杨厥正等.一次高空急流中心引起的梅雨锋暴雨分析[J].杭州大学学报,1981,8(1):104~113.
    154.喻世华,潘春生.一次西太平洋副高中期进退过程环流机制的分析[J].热带气象,1989,5(3):220-226.
    155.喻世华,王绍龙.西太平洋副热带高压中期进退的环流机制[J].海洋学报,1989,11(3):372-377.
    156.喻世华,杨维武.副热带季风环流圈的特征及其与东亚夏季环流的关系[J].应用气象学报,1991,2(3):242-247.
    157.喻世华,杨维武.季节内西太平洋副高异常进退的诊断研究[J].热带气象学报,1995,11(3):214-222.
    158.张恒德,陆维松,陶丽.北半球E-P通量分析及其与副热带高压的关系[J].南京气象学院学报,25:587~594
    159.张庆云,陶诗言.夏季西太平洋副热带高压异常时的东亚大气环流特征[J].大气科学,2003,27(3),369-380
    160.张庆云,陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水[J].应用气象学报,1998,9(增刊),16-23
    161.张庆云,陶诗言.夏季西太平洋副热带高压北跳及异常的研究[J].气象学报,1999,57(4):539-548
    162.张顺利,陶诗言,张庆云等.长江中下游致洪暴雨的多尺度条件[J].科学通报.2002,47(6):466~473.
    163.张耀存,郭兰丽.东亚副热带西风急流偏差与中国东部雨带季节变化的模拟[J].科学通报.2005,50(13):1394~1399.
    164.张耀存,况雪源.东亚副热带西风急流季节变化突变特征及其与东亚夏季风建立的联系[J].第六次全国动力气象学术会议,2005,P:18.
    165.张耀存,王东阡,任雪娟.东亚高空温带急流区经向风的季节变化及其与亚洲季风的关系[J],气象学报,2008,66(5):707~715.
    166.章基嘉,周顺泰.六月突变中的波纬相互作用[J].气象学报,1988,46(1):1~8.
    167.郑成均.副热带急流在西藏高原上的结构和季节性的活动[J].气象学报,1963,33(4),459~
    471.
    168.周兵,韩桂荣,何金海.高空西风急流对长江中下游暴雨影响的数值试验[J].南京气象学院学报,2003,26(5):595~604.
    169.朱乾根,周伟灿,张海霞.高低空急流耦合对长江中游强暴雨形成的机理研究[J].南京气象学院学报,2001,24(3):208~314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700