用户名: 密码: 验证码:
模拟酸雨与富营养化复合胁迫对水生植物氮吸收的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氮吸收能力较强的水生植物水芹、石菖蒲、三白草为研究对象,探讨模拟酸雨和富营养化复合胁迫对水生植物根系活力、叶片硝酸还原酶活力、多胺的含量及根系氮吸收能力的影响,探讨酸雨和富营养化复合胁迫对水生植物根系吸收不同形态氮素的机理,为选择适宜的植物用于浅水湖泊水生植被的恢复和重建提供科学依据。主要结果如下:
     1、石菖蒲的根系活力值不随酸雨处理次数的增加而降低。三白草的根系活力值随酸雨次数和酸度的增加呈下降趋势。酸雨和富营养化复合胁迫对三白草根系活力的影响显著,而对石菖蒲根系活力的影响较小。
     2、石菖蒲和三白草叶片的硝酸还原酶活力均随着富营养化程度的提高而呈降低趋势。pH2.0酸雨处理对石菖蒲和三白草叶片硝酸还原酶活力的影响均较大。三白草叶片硝酸还原酶活力随酸雨次数增多而下降。酸雨处理次数的增多可促使石菖蒲叶片硝酸还原酶同工酶谱增加,从而提高硝酸还原酶活力。
     3、受酸雨胁迫时,三白草腐胺含量增加,酸雨与富营养化对三白草无交互作用影响;石菖蒲叶片腐胺含量先增加,且随酸雨次数的增加而下降。石菖蒲叶片(Spd+Spm)/Put的比值均呈现先降后升的变化趋势,变化幅度较大,并均在第四次酸雨后达到最大值。而三白草叶片(Spd+Spm)/Put的比值呈现出升降波动变化趋势,变化幅度远小于石菖蒲叶片。
     4、水芹根部对NH_4~+和NO_3~-均有吸收偏好,三白草根部偏好吸收NH_4~+,石菖蒲根部则偏好吸收NO_3~-。
     5、不同强度酸雨处理后水芹根对NH_4~+的吸收明显降低;超富营养水平下酸雨处理后水芹根均外排NO_3~-。石菖蒲根部500μm处吸收NO_3~-,富营养水平的提高使石菖蒲根部对NO_3~-的吸收降低,而酸度的提高会增强石菖蒲根对NO_3~-的吸收;超富营养水平下pH3.5酸雨处理后石菖蒲在500μm和10000μm处吸收NH_4~+。随着富营养化程度的提高,三白草根部对NH_4~+的吸收减少;随离根尖距离的增加三白草根部对NH_4~+的吸收增加。
     6、富营养化与酸雨复合胁迫对水芹、三白草和石菖蒲根区NH_4~+和NO_3~-的离子通量均有显著的互作效应,且作用方式各异。
     7、石菖蒲宜在受酸雨影响的水域种植;三白草宜在酸雨和富营养化复合胁迫较严重的水域种植,尤其在NO_3~--N污染严重的水域成效明显;水芹则适宜在两者轻度污染水域种植。
Three aquatic plants, Oenanthe javanica,Acorus gramineus and Saururus chinensis wereselected as experimental materials with higher N uptake abilities. Effects of acid rain andeutrophication combined stress on N uptake of acquatic plants were investigated, including rootactivity, nitrate reductase(NR) activity, polyamines contents and N uptake ability and so on. Theresults could provide a reference for restoration and reconstruction of acquatic plants in lakeecosystems and understanding of different N uptake mechanisms of acquatic plants in thecontaminated water body. Main results are described as follows:
     (1)The root activity of A. gramineus was not reduced with increasing frequency of acid rain.Root activity of S. chinensis was reduced with increasing frequency and intensity of acid rain.The interaction of combined stress had significant influence on root activity of A. gramineus butfewer influence on that of S. chinensis.
     (2)NR activity was reduced with increasing degree of eutrophication both of A. gramineusand S. chinensis. The simulated acid rain with pH1.78had great influence on NR activity both ofA. gramineus and S. chinensis. NR activity of S. chinensis was reduced with increasing frequencyof acid rain. Increasing frequency of acid rain could induce the increase of bands of NR isozymeand increase NR activity of A. gramineus. Eutrophication and acid rain had interaction on NRactivity.
     (3)Under acid rain stress, the Put content of S. chinensis increased. Eutrophication and acidrain combined stress had no interaction on it. On the other hand, the Put content of A. gramineusincreased firstly,then decreased with increasing frequency of acid rain.
     The ratio of (Spd+Spm)/Put rose firstly and then falled,with a great fluctuation. It reachedthe peak value after the fourth acid rain treatment in A. gramineus. The ratio of (Spd+Spm)/Putpresented different trend, with less degree of change in S. chinensis than that in A. gramineus.
     (4)The root of O. javanica could both absorb more NH_4~+and NO_3~-, the root of S. chinensisprefer more NH_4~+, and the root of A. gramineus prefer more NO_3~-.
     (5)The absorption of NH_4~+by root of O. javanica could be definitely reduced after differentintensitied of acid rain treatments. They even exhausted NO_3~-under hyper eutrophication level.The root of A. gramineus absorbed more NO_3~-at500μm, and reduced it with increasing degree ofeutrophication, but increased with increasing intensity of acid rain. After pH3.5acid raintreatment with hyper eutrophication level, the root of A. gramineus could absorb NH_4~+at both500μm and10000μm. The absorption of NH_4~+by S. chinensis could be reduced with increasingeutrophication level,and increased with increasing distance from the tip of its root.
     (6) Eutrophication and acid rain combined stress has significant interaction and differentaction ways on the fluxes of NH_4~+and NO_3~-by O. javanica, A.gramineus and S. chinensis.
     (7) A.gramineus could be planted in waterbodies with acid rain pollution. S. chinensis couldbe planted in lake wetlands with serious acid rain and eutrophication pollution. O. javanica couldbe planted more suitably in lightly polluted wetlands.
引文
1刘嘉麒.降水背景值与酸雨定义研究[J].中国环境监测,1996,12(5):5-9
    2Barbara W., Stanislaw D., Jerzy S. The impact of acid rain on calcium and magnesium status in typicalsoils of the Wielkopolski National Park[J]. The Science of the Total Environment,1998,(220):115-120
    3Jacobson J.S. Effects of acid precipitation on Terrestrial Ecosystem [J]. Biochemtry,1980,151-160
    4冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学,2000,2(9):5-11,28
    5张新民,柴发合,王淑兰等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532
    6曾梅,酸沉降影响下韶山森林硫与氮动态过程及临界负荷研究[D].长沙:湖南大学,2006
    7张华,李娟英,张雁秋.我国酸雨污染现状、成因分析及防治措施[J].煤炭环境保护,2000,14(5):24-26
    8万玉山,王皖蒙.中国酸雨污染现状·成因分析及防治措施[J].安徽农业科学,2010,38(34):19420-19421,19425
    9张峰.我国酸雨污染现状对策[J].上海化工,2005,30(2):1-6
    10张燕,刘立进.我国酸雨分布特征及控制对策[J].陕西环境,1998,5(4):39-40
    11王玮.模拟酸雨处理的青菜显微和亚显微结构观察及部分生理指标测定[J].环境科学,1989,9(3):12-17
    12王玮.模拟酸雨对青菜叶片若干显微结构和生理变化影响的初步研究.上海农学院学报,1986,5(4):267-272
    13Bruno Francisco Sant’Anna-Santos, Luzimar Campos da Silva, et al. Effects of simulated acid rain onthe foliar micromorphology and anatomy of tree tropical species [J]. Environmental and ExperimentalBotany,2006(58):158-168
    14Carandang VQ, Tolentino EL, Cruz RVO, et al. Effect of simulated acid rain on the germination and earlyseedling growth of Betis [Madhuca betis (Blanco) MacBride], Antipolo [Artocarpus blancoi (Elmer) Merr.]and Kalantas (Toona calantas Merr.&Rolfe) in two soil types in Laguna, Philippines[J]. Asia Life Scie-nces,2011,20(1):243-262
    15Hou B. F., Wang Y.H. Effects of simulated acid rain on germination, foliar damage, chlorophyll contentsand seedling growth of five hardwood species growing in China[J]. Forest Ecology and Management,2000(126):321-329
    16Silva LC,Oliva MA,Azevedo AA,et al. Micromorphological and anatomical Aletartions caused by simul-ated acid rain in Restinga plants:Eugenia unifloara and Clusia hilariana. Water Air and Soil Pollution,2005,168(1-4):129-143
    17唐鸿寿.模拟酸雨对油菜生长的影响[J].农业环境保护,1999,15(6):261-263
    18周青,黄晓华,王冬燕等.稀土元素La对酸雨损伤腊梅的影响[J].生态学杂志,1997,16(6):59-61
    19陈美华,欧世金,蒋德书.模拟酸雨对芒果生长及土壤的影响[J].广西农业大学学报,1995,14(4):300-304
    20Yu J,Ye S,Huang L.Eeffets of Simulated Acid Precipitation on Photosynthesis, Chlorophyll Fluorescenee,and Antloxidative Enzymes in Cucumis sativus L..Photosynthetica,2002,40(3):331-335
    21Solomonson, L. P&A.M. Spehar. Model fox regulation of nitrate assimilation[J]. Nature,1997,266:373-379
    22V. Velikova, I. Yordanov, A. Edreva. Oxidative stress and some antioxidant systems in acid rain-treatedbean plants protective role of exogenous polyamines[J]. Plant Science,2000(151):59–66
    23严重玲,洪业汤,林鹏等.菠菜对酸雨胁迫的响应及稀土元素的作用[J].园艺学报,1999,26(1):45-51
    24Bellani L.M., Rinallo C., Muccifora S., et al. Effects of simulated acid rain on pollen physiology andultrastructure in the apple[J]. Environmental Pollution,1997,95(3):357~362
    25Rinallo C., Modi G. Fruit yield of field-grown pear Pyrus communis L. exposed to different levels of rainacidity inTuscany[J]. Journal of the Science of Food and Agriculture,1995,68(1):43~50
    26邱栋梁,刘星辉.模拟酸雨对龙眼幼果多胺含量的影响研究[J].中国生态农业学报,2007,15(1):102-104
    27Anna Wyrwicka, Maria Sk odowska. Influence of repeated acid rain treatment on antioxidative enzymeactivities and on lipid peroxidation in cucumber leaves[J]. Environmental and Experimental Botany,2006(56):198–204
    28Lee Y, Park J, Im K, et al. Arabidopsis leaf necrosis caused by simulated acid rain is related to the salic-ylic acid signaling pathway[J].Plant Physiology and Biochemistry,2006,44(l):38-42
    29宋玉芝,秦伯强,杨龙元等.太湖北部典型乔木冠层对酸性降雨的中和作用[J].湖泊科学,2005,17(2):157-161
    30孙崇基.酸雨[M].北京:中国环境科学出版社,2001:2-16
    31Mari ITO, Myron J, Charles T, Karen M. Nitrogen input-output budgets for lake-containing watersheds inthe Adirondack region of New York[J]. Biogeochemistry,2005,(72):283-314
    32Brian K, Brian F, John P. Long-term lake acidification trends in high-and low sulphate deposition regionsfrom Nova Scotia, Canada[J]. Hydrobiologia,2007,(586):261-75
    33史秀华,刘予宇,浮田正夫.日本酸雨及其对环境生态系统的影响[J].内蒙古农业大学学报,2000,21(4):109-114
    34王云飞,朱育新,尹宇等.地表水酸化的研究进展及其湖泊酸化的环境信息研究[J]地球科学进展,2001,16(3):421-426
    35郝吉明,谢绍东,段雷等.酸沉降临界负荷及其应用[M].北京:清华大学出版社,2001:1-26
    36彭金良,严国安,沈国兴等.酸雨对水生态系统的影响[J].水生生物学报,2001,25(3):282-288
    37吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象,2006,24(2):70-77
    38David W, Peter J, Hans S. A review of anthropogenic sources of nitrogen and their effects on Canadianaquatic ecosystems [J]. Biogeochemistry,2006,(79):25-44
    39张修峰,何文珊,陆健健.酸雨对温州三土羊湿地水体氮营养盐数量的影响[J].应用生态学报,2005,16(2):333-336.
    40李晶,林初夏,吴永贵等.广州南沙滨海湿地公园水质状况及模拟酸雨影响效应[J].农业环境科学学报,2007,26(增刊):390-393
    41文军,罗献宝,骆东奇等.千岛湖区域酸雨污染成因分析[J].水土保持研究,2005,12(2):42-45
    42文军,罗献宝,骆东奇等.千岛湖区域酸雨污染及其管理对策[J].水土保持研究,2005,12(1):189-192
    43Payne Richard J. Testate amoeba response to acid deposition in a Scottish peatland [J]. Aquatic Ecology,2011,44(2):373-385
    44Gauci V, Dise N B, Howell G. Suppression of rice methane emission by sulfate deposition in simulatedacid rain[J]. Journal of Geophysical Research Biogeoscience,2008,(113)
    45Gauci V,Chapman S J. Simultaneous inhibition of CH4efflux and stimulation of sulphate reduction inpeat subject to simulated acid rain [J]. Soil Biology&Biochemistry,2006,38(12):3506-3510
    46Jeremiason J D, Engstrom D R, Swain EB. Sulfate addition increases methylmercury production in anexperimental wetland [J]. Environmental Science&Technology,2006,40(12):3800-3806
    47Donald D B, Hunter F G,Sverko E. Mobilization of pesticides on an agricultural landscape flooded by atorrential storm[J]. Environmental Toxicology and Chemistry,2005,24(1):2-10
    48Karen L, Hans W, John M, Jeremy S. Nutrients in precipitation and the phytoplankton responses toenrichment in surface waters of the Albemarle Peninsula, NC, USA after the establishment of a large-scale chicken egg farm [J]. Hydrobiologia,2011,(671):181-191
    49陈静生.长江中上游水质变化趋势与环境酸化关系初探[J].环境科学学报,1998,18(3):265-270
    50宋玉芝,秦伯强,杨龙元等.太湖沿岸湿沉降的化学特性及水体酸化的趋势[J].南京气象学院学报,2005,28(5):593-600
    51杨龙元,秦伯强,吴瑞金.酸雨对太湖水环境潜在影响的初步研究[J].湖泊科学,2001,13(2):135-142
    52Liancong Luo,Boqiang Qin, Longyuan Yang,Yuzhi Song. Total inputs of phosphorus and nitrogen bywet deposition into Lake Taihu, China[J]. Hydrobiologia,2007,(581):63-70
    53杨龙元,秦伯强,吴瑞金.酸雨对太湖水环境潜在影响的初步研究[J].湖泊科学,2001,13(2):135-142
    54薛建辉,阮宏华,刘金根等.太湖流域水岸生态防护林体系建设技术与对策[J].南京林业大学学报:自然科学版,2008,32(5):13-18
    55杨志峰,崔保山,黄国和等.黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J].地球科学进展,2006,21(11):1119-1126
    56Moss B.Ecology of Fresh Waters:Man and Medium, Past to Future [M]. Oxford: Blackwell Science,1998
    57Chorus I., Bartram J. Toxic Cyanobacteria in Water: A guide to their public health consequences,monitoring and management [J]. London: E&FN Spon.1999:41-111.
    58史丹.我国湖泊富营养化问题及防治对策[J].资源开发与市场.2005,21(1):17-18,27
    59魏丽萍,梁美生.我国湖泊富营养化问题概述[J].化工文摘.2008,6:38-40
    60金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001,1-224
    61Scheffer M. Alternative attractors of shallow lakes[J]. The Scientific World,2001,1,254-263
    62Bachmann R W, Hoyer M V, Canfield D E. Internal heterotrophy following the switch from macrophytesto algae in Lake Apopka, Florida[J]. Hydrobiologia,2000,418:217-227
    63S ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallowlakes[J].Hydrobiologia,2003,506–509:135-145
    64S ndergaard M, Jesenn J P&Jeppesen E. Seasonal response of nutrients to reduced phosphorus loadingin12Danish lakes[J]. Freshwater Biology,2005,50,1605-1615
    65陈荷生,张永健.太湖重污染底泥的生态疏浚[J].水资源研究,2004,25(4):29-31
    66Scheffer M, Egbert H. van Nes. Shallow lakes theory revisited: various alternative regimes driven byclimate, nutrients, depth and lake size[J]. Hydrobiologia,2007,584:455–466
    67Bachmann R W, Hoyer M V&Canfield D E. Evaluation of recent limnological changes at Lake Apopka[J].Hydrobiologia,2001,448:19-26
    68James R T, James M, Wool T et al. A sediment resuspension and water quality model of Lake Okeechobee[J].Journal of The American Water Resources Association,1997,33(3):661-680
    69Kleeberg A, Kohl J G. Assessment of the long-term effectiveness of sediment dredging to reduce benthicphosphorus release in shallow Lake Müggelsee (Germany)[J]. Hydrobiologia,1999,394:153-161
    70颜昌宙,许秋瑾,赵景柱等.五里湖生态重建影响因素及其对策探讨[J].环境科学研究,2004,17(3):44-47
    71Meijer M L, Boois I, Scheffer M. Biomanipulation in shallow lakes in The Netherlands:an evaluation of18case studies[J]. Hydrobiologia,1999,408/409:13-30
    72Kasprzak P, Benndorf J, Mehner T, et al. Biomanipulation of lake ecosystems: an introduction [J]. Fresh-water Biology,2002,47:2277-2281
    73Moss B, Barker T, Stephen D, et al. Consequences of reduced nutrient loading on a lake system in alowland catchment: deviations from the norm?[J]. Freshwater Biology,2005,50:1687-1705
    74Scheffer M, Carpenter S R. Catastrophic regime shifts in ecosystems: linking theory to observation[J].Trends in Ecology and Evolution,2003,18(12),648-656
    75刘健康,谢平.揭开武汉东湖蓝藻水华消失之迷[J].长江流域资源与环境,1999,8(3):312-318
    76Moss B, Barker T, Stephen D, et al. Consequences of reduced nutrient loading on a lake system in alowland catchment: deviations from the norm?[J]. Freshwater Biology,2005,50:1687-1705
    77成小英,李世杰,濮培民.城市富营养化湖泊生态恢复—南京莫愁湖物理生态工程试验[J].湖泊科学,2006,18(3):218-224
    78Van Donk, E. Planktonic interactions: developments and perspectives [J]. Verh. Internat. Verein. Limnol.2005.29(1):61-72
    79Moss B. The art and science of lake restoration [J]. Hydrobiologia,2007,581:15-24
    80侯文华,宋关玲,汪群慧.浮萍在水体污染治理中的应用[J].环境科学研究,2004,17:70-73
    81Moss B.Engineering and biological approaches to the restroration from eutrophication of shallow lakesin which aquatic plant communities are important components[J].Hydrobiologia,1990,200/201:367-377
    82Scheffer M, Egbert H. van Nes. Mechanisms for marine regime shifts: can we use lakes as microcosmsfor oceans?[J]. Progress in Oceanography,2004,60:303-319
    83Scheffer M, Carpenter S R, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature,2001,413:591-596
    84秦伯强.湖泊生态恢复的基本原理与实现[J].生态学报,2007,27(11):4848-4858
    85李文朝.东太湖茭草植被改造实验研究[J].中国环境科学,1997,17(3):244-246
    86陈开宁,包先明,史龙新等.太湖五里湖生态重建示范工程-大型围隔试验[J].湖泊科学,2006,18(2):139-149
    87程忠刚.多胺的研究进展[J].饲料研究,1998,5:16-19
    88Drolet G., Dumbroff E. B., Legg R., et al. Radical Scavenging Properties of Polyamines[J]. Phytochem-istry,1986,25(2):367-371
    89Kasukabe Y.,He L.,Nada K., et al. Over expression of spermidine synthase enhances tolerance to mu1ti-pu1enviormeant streses and up-regulates the expression of various stress regulated genes in transgenicArabidopsis thaliana[J].Plant Cell Physiology,2000,45(6):712-722
    90Tassoni A., Van Buren M., Francescheti M., et al. Polyamine content and metabolism in Arabidopsisthaliana and effect of spermidine on plant development [J]. Plant Physiology and Biochemistry,2000,38:383-393
    91张春梅.多胺与逆境胁迫关系综述[J].河西学院学报,2010,26(2):47-50
    92Erja T. Polyamine and glutathione metabolism in N fertilize scots pine seedling during cold hardening [J].Plant Physiology,1999,154(2):179-184
    93Koening H., Goldston A., Chung Y L. Polyamines regulate calcium fluxes in rapid plasma membrane res-ponse. Nature,1983,305(6):530-534
    94李六林,张绍铃.多胺在植物花发育中的作用[J].西北植物学报,2006,26(6):1282-1289
    95张小冰.多胺在植物生长发育过程中的生理作用[J].生物学教学.2007,32(10):9-10
    96赵维峰,孙光明,李绍鹏等.多胺与植物的抗逆性[J].广西农业科学,2004,(6):443-447
    97蔡秋华,张积森,郭春芳等.高等植物体内多胺的生理功能及其分子生物学研究进展[J].福建教育学院学报,2006,(10):118-124
    98Flores H.E.,Galston W.A. Analysis of Polyamine in higher plants by high performance liquid chromat-ography [J]. Plant Physiology,1982,69:701-706
    99Flores H. E.,Galston A.W. Polyamines and plant stress:cultivation of putrescine biosynthyesis by osmoticshock [J]. Seience,1982,217:1259-1261
    100戴尧仁.多胺的生物学作用以及高等植物中精氨酸脱羧酶的调节[J].植物生理生化进展(第四辑),1986,59-64
    101Smith T. A. Polyamines [J]. Plant Physiology,1985,36:117
    102Chatterjee S., Choudhuri M.M., Ghosh B.Changes in polyamine contents during root and nodule growthof Phaseolus mungo [J]. Phytochemistry,1983,22:1553-1556
    103刘宽灿,梁秋芬,赵丽红等.多胺在植物生长发育过程中的生理作用氨基酸和生物资源[J].2005,27(l):22-26
    104Fan H., Feng S. The correlation of polyamine with Cl of peach and pear and treatments for alleviatingCl[J]. China Agriculture,1995:40-43
    105Young N. D., Galston A. W. Putrescine and acid stress [J]. Plant Physiology,1983,71:767-771
    106Young N. D., Galston A. W. Physiological control of arginine decarboxylase activity in potassium defi-cient oat shoots [J]. Plant Physiology,1984,76:331-335
    107Guarino L. A., Cohen S. S. Mechanism of toxicity of putrescine in Anacystis nidulans [J]. Proceedingsof the National Academy of Science,1979,76:3660-3664
    108刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系[J].植物生理与分子生物学学报,2004,30(2):141-146
    109刘俊,张艳艳,章文华等.大麦根中多胺含量和转化与耐盐性的关系[J].南京农业大学学报,2005,28(2):7-11
    110杨建昌,张亚洁,张建华等.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J].作物学报,2004,30:1069-1075
    111关军锋,刘海龙,李广敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化[J].植物生态学报,2003,27:655-660
    112周小梅,赵运林,张擎等.分蘖期水分胁迫对水稻生长及多胺含量的影响[J].湖南城市学院学报(自然科学版),2010,19(1):50-53
    113李如铁,沈惠娟,李梅枝.酸胁迫对几种林木体内脯氨酸及腐胺含量的影响[J].南京林业大学学报,1995,3:88-93
    114Young N. D., Galston A. W. Putrescine and acid stress [J]. Plant Physiology,1983,71:767-771
    115邱栋梁,刘星辉.模拟酸雨对龙眼幼果多胺含量的影响研究[J].中国生态农业学报,2007,15(1):102-104
    116陆新华,孙光明,习金根等.不同营养元素处理下剑麻叶片内源多胺和水杨酸的动态变化[J].中国农学通报,2010,26(7):120-123
    117Yordanova R. Y., Alexieva V. S., Popova L. R. Influence of root oxygen deficiency on Photosynthesisand antioixdant satus In barley plant [J]. Russion Journal of plant Physiology,2003,50(2):163-167
    118贾永霞,郭世荣,王素平等.根际低氧胁迫下外源亚精胺对黄瓜幼苗多胺和抗氧化系统的影响[J].园艺学报,2007,34(6):1547-1550
    119汪耀富,王佩,宋世旭等.渗透胁迫对不同供钾水平烤烟叶片多胺含量的影响.南京农业大学学报,2008,31(l):133-136
    111李林锋,年跃刚,蒋高明.人工湿地植物研究进展[J].环境污染与防治,2006,2(8):616-620
    112朱斌,陈飞星.利用水生植物净化富营养化水体的研究进展[J].上海环境科学,2002,21(9):564-567
    113Brix H.Functions of macrophytes inconstructed wetland[J].Water Science and Technology,1994,29(4):71-78
    114Cooper P.The design and performance of a nitrifying vertical flow reed bed treatment system [J].WaterScience Technology,1997,35(5):215-221
    115Philip A. m, Bachand. Denitrification in constructed free-water surface wetland:Effect of vegetation andtemperature[J]. Ecological Engineering,2000,14:17-32
    116濮培民.健康水生生态系统的退化及其修复——理论、技术及应用.湖泊科学,2001,13(3):193-203
    117袁东海,任全进,高士祥等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341
    118吴振斌,陈辉蓉,贺峰等.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-35
    119何池全,赵魁义,叶居新.石菖蒲净化富营养化水体的研究[J].南昌大学学报(理科版),1999,23(1):73-76
    129Zhao S.P., Zhao X.Q., Shi W.M. Advance in Research on Molecular Mechanism for Nitrogen Absorptionin Higher Plants [J]. Soils,2007,39(2):173-180
    130贾莉君,范晓荣,尹晓明等.微电极法测定水稻叶片液泡中硝酸根离子的再调动[J].中国农业科学,2005,38(7):1379-1385
    131Yin X.M., Fan X.R., Jia L.J., et al. Effects of ammonium uptake on the changes of plasma membranepotential of rice roots[J].Plant Nutrition and Fertilizing Science,2005,11(6):769-773
    132童依平,李继云,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究Ⅰ.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277
    133Babourina O, Voltchanskii K, McGann B, Newman I, Rengel Z. Nitrate supply affects ammonium trans-port in canola roots[J]. Journal of Experimental Botany,2007,58(3):651-658
    134陈永亮.不同氮源处理对红松苗木根际pH及养分有效性的影响[J].南京林业大学学报(自然科学版),2004,28(1):42-46
    135Hawkins B J, Boukcim H, Plassard C. A comparison of ammonium, nitrate and proton net fluxes alongseedling roots of Douglas fir and lodgepole pine grown and measured with different inorganic nitrogensources[J]. Plant, Cell and Environment,2008,(31):278-287
    136Li Q., Li B.H., Herbert J, Shi W.M. Root growth inhibition by NH4+in Arabidopsis is mediated by the roottip and is linked to NH+4efflux and GMPase activity[J]. Plant, Cell and Environment,2010,33:1529-1542
    137李川,薛建辉,苏莹莹等.不同pH条件下铜对固定化小球藻除氮效果的影响[J].南京林业大学学报(自然科学版),2009,33(4):105-108
    138Cedergreen N, Madsen TV. Nitrogen uptake by the floating macrophyte Lemna minor[J]. New Phytolo-gist,2002,155:285-292
    139Cedergreen N, Madsen TV. Light regulation of root and leaf NO3-uptake and reduction in the floatingmacrophyte Lemna minor [J]. New Phytologist,2003,161:449-457
    140Fang Y. Y., Babourina O, Rengel Z, Yang X. E., Pu P. M. Ammonium and Nitrate Uptake by the FloatingPlant Landoltia punctata[J]. Annals of Botany,2007,99:365-370
    141李勇,周毅,郭世伟等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298
    142常会庆,李娜,徐晓峰.三种水生植物对不同形态氮素吸收动力学研究[J].生态环境,2008,17(2):511-514
    143周晓红,王国祥,杨飞等.空心菜对不同形态氮吸收动力学特性研究[J].水土保持研究,2008,15(5):84-86
    144汪晓丽,封克,盛海君等.不同水稻基因型苗期NO3-吸收动力学特征及其受吸收液中NH4+的影响[J].中国农业科学,2003,36(11):1306-1311
    145赵越,马凤鸣,张多英.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报,2006,37(3):294-298
    146张晓勇,王振红.当前酸雨形势和治理对策[J].环境科学与管理,2007,32(8)85-88,107
    147杨晓红.南太湖地区酸雨现状及防治对策[J].湖州师范大学学报,2001,23(3):68-72
    148杨龙元,秦伯强,吴瑞金.酸雨对太湖水环境潜在影响的初步研究[J].湖泊科学,2001,13(2):135-142
    149宋玉芝,秦伯强,杨龙元.太湖沿岸湿沉降的化学特性及水体酸化的趋势[J].南京气象学院学报,2005,28(5):593-600
    150Chen Y., Qin B., Teubner K., Dokulil M.T. Long-term dynamics of phytoplankton assemblages:Microcystis-domination in Lake Taihu, a large shallow lake in China [J]. Journal of plankton research.2003,25(4):445-453
    151Wang J.L., Cheng M.H., Haiao Z., Schleser G., Battarbee R. Sedimentary evidence for recent eutrop-hication in the northern basin of Lake Taihu, China: human impacts on a large shallow lake [J]. Journalof Paleolimnology.2007,38(1):13-23
    152Krusche A V,Camargo P B,Cerri C E,et al.2003.Acid rain and nitrogen deposition in a subtro-picalwatershed (Piracicaba): Ecosystem consequences. Environ Poll,121:389~399.
    153Moss B.Engineering and biological approaches to the restoration for eutrophication of shall-ow lakes inwhich aquatic plant communities are important components [J]. Hydrobiologia,1990,200:367-377
    154Krusche A V,Camargo P B,Cerri C E,et al..Acid rain and nitrogen deposition in a subtropical watershed(Piracicaba): Ecosystem consequences. Environmental Pollution,2003,121:389-399
    155张修峰,何文珊,陆健健.酸雨对温州三垟湿地水体氮营养盐数量的影响.应用生态学报,2005,16(2):333~336
    156Mars R, Mathew K, Ho G. The role of the submergent macrophyte Triglochin huegelii in domestic grey-water treatment[J].Ecological Engineering,1999,12:57-66
    157薛建辉,阮宏华,刘金根等.太湖流域水岸生态防护林体系建设技术与对策[J].南京林业大学学报:自然科学版,2008,32(5):13-18
    158Zhang L., Li J.M., Wang H. Physiological and ecological responses of wheat(Triticum aestivm L.) rootto cadmium stress [J]. Chinese Journal of Soil Science,2002,33(1):61-65
    159周秀杰,王海红,束良佐等.局部根区水分胁迫下氮形态与供给部位对玉米幼苗生长的影响[J].应用生态学报,2010,21(8):2017-2024
    160郭超,牛文全.根际通气对盆栽玉米生长与根系活力的影响[J].中国生态农业学报,2010,18(6):1194-1198
    161赵旭,李天来,孙周平.番茄基质通气栽培模式的效果[J].应用生态学报,2010,21(1):74-78
    162孟庆玲,程智慧,徐鹏,梁静.营养液pH值对非洲菊生长和生理特征的影响[J].西北植物学报,2010,30(10):2081-2086
    163郭日杰,周青,燕国梁,梁婵娟.酸雨与稀土La对大豆幼苗根系生长及活力的复合影响[J].环境化学,2010,29(5):923-926
    164张杰,黄永杰,周守标.镧对酸雨胁迫下水稻幼苗生长的保护效应[J].上海交通大学学报(农业科学版),2010,28(4):367-372
    165曾俊,汪有良,王国良,宋杰.镉、铅胁迫对月季生长及生理生化特性影响[J].林业科技开发,2010,2(5):60-63
    166邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000
    167Solomonson L P, Barber M L. Assimilatory nitrate reductase: Function properties and regulation [J].AnnRev Plant Physiology Plant Mol Biology,1990,41:225-253
    168陈新红,王志琴,杨建昌.不同氮素水平与水分胁迫对水稻秧苗素质的影响[J].干旱地区农业研究,2007,25(1):78-81,93
    169赵越,魏自民,马凤鸣.不同水平铵态氮对甜菜硝酸还原酶和谷氨酰胺合成酶活力的影响[J].中国糖料,2003,(1):22-25
    170杨东,陈鸿飞,卓传营等.头季不同施氮方式对再生稻生理生化的影响[J].中国生态农业学报,2009,17(4):643646
    171姜照伟,林文雄,李义珍等.不同氮肥施用量对再生稻若干生理特性的影响[J].福建农业学报,2005,20(3):168-171
    172张焕军,郁红艳,项剑等.氮磷用量对豫北地区小麦产量的交互效应研究[J].中国生态农业学报,2010,18(6):1163-1169
    173杨金凤,卜玉山,邓红艳.镉、铅及其复合污染对油菜部分生理指标的影响[J].生态学杂志,2009,28(7):1284-1287
    174叶梅荣,吴成玉,杨安中等.模拟酸雨胁迫下大豆异黄酮对油菜幼苗某些生理指标的影响[J].中国农学通报,2008,24(4):245-249
    175凌俊.硝酸还原酶聚丙烯酰胺凝胶电泳活性染色[J].植物生理学通讯,1990(1):60-62
    176陆景陵.植物营养学[M].北京:中国农业大学出版社,2002
    177Qiu D.L.,Liu X.H.,Guo S.Z.Regulation function of calcium on photosynthesis of Dimorcarpus longanaLour.cv. wulongling under simulated acid rain stress [J].China Journal Applied Ecology,2002,13(9):1072-1076
    178Huang X.H.,Zhou Q.,Zhang X.W. The stress effect of acid rain on root growth in plant [J]. Agroenviron-ment Protection,2000,19(4):234-235
    179Qi Z.M.,Zhong Z.C.,Deng J.The effects of simulated acid rain on nitrogen metabolism of Eucommiaulmoides leaves[J]. Acta Phytoecol Sina,2001,25(5):544-548
    180Lee J.J., Weber D.E. The effect of simulated acid rain on seedling emergence and growth of eleven woo-dy species[J].Foristry Science,1979,25(3):393-397
    181Wang Y.G.,Wang W. A study of the effects of simulated acid rain on some vegetables[J]. ChinaEnvironment Science,1987,7(6):1-5
    182童贯和.人工模拟酸雨致酸土壤对莴苣的硝酸还原酶活性和根系活力的影响[J].安庆师范学院学报(自然科学版),2002,8(1):74-75,80
    183童贯和,梁惠玲.模拟酸雨及其酸化土壤对小麦幼苗体内可溶性糖和含氮量的影响[J].应用生态学报,2005,16(8):1487-149
    184齐泽民,钟章成,邓君等.模拟酸雨对杜仲叶膜脂过氧化及氮代谢的影响[J].西南师范大学学报(自然科学版),2001,26(1):38-44
    185段九菊,郭世荣,康云艳等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报,2008,19(1):57-64
    186刘俊,张艳艳,章文华等.大麦根中多胺含量和转化与耐盐性的关系[J].南京农业大学学报,2005,28(2):7-11
    187杨建昌,张亚洁,张建华等.水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J].作物学报,2004,30:1069-1075
    188周小梅,赵运林,张擎等.分蘖期水分胁迫对水稻生长及多胺含量的影响[J].湖南城市学院学报(自然科学版),2010,19(1):50-53
    189李如铁,沈惠娟,李梅枝.酸胁迫对几种林木体内脯氨酸及腐胺含量的影响[J].南京林业大学学报,1995,3:88-93
    190邱栋梁,刘星辉.模拟酸雨对龙眼幼果多胺含量的影响研究[J].中国生态农业学报,2007,15(1):102-104
    191潘瑞炽.多胺是植物生长发育的调节物[J].植物生理学通讯,1985,(6):63-68
    192Galston A.W., Flores H. E. Analysis of polyamines in higher plants by high performance liquid chro-matography [J]. Plant Physiology,1982,69:701-706
    193王振永,苏美霞,李明启.甜橙褐斑病与乙烯产生的关系[J].植物生理学报,1987,13:287-294
    194Bouchereau A., Aziz A., Larher F, et al. Polyamines and environmental challenges: recent development[J]. Plant Science,1999,140:103-125
    195Kwon S., Ko B. R., Bai D. G. Changes in antioxidant enzymes and polyamines in response to lowtemperature chilling in watermelon plants [J]. Acta Horticulturae,2003,620:111-117
    196Nayyar H. Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea [J].Journal of Agronomy and Crop Science,2005,191(5):340-345
    197Nayyar H., Chander S. Protective effects of polyamines against oxidative stress induced by water andcold stress in chickpea [J].Journal of Agronomy and Crop Science,2004,190:355-365
    198Mo H., Pua E. C. Up-regulation of arginine decarboxylase gene expression and accumulation of poly-amines in mustard (Brassica juncea) in response to stress [J]. Physiologia Plantarum,2002,114(3):439-449
    199Pillai M. A., Akiyama T. Differential expression of an S-adenosyl-L-methionine decarboxylase geneinvolved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes[J]. Molecular Genetics and Genomics,2004,271(2):141-149
    200Lee T. M. Polyamine regulation of growth and chilling tolerance of rice (Oryza sativa L.) roots culturedin vitro [J]. Plant Science,1997,122:111-117
    201Kim T. E., Kim S. K., Han T. J.,et al. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum)[J].Physiologia Plantarum,2002,115:370-376
    202Richard W., Alexandra C. Polyamine: srnall molecules triggering pathways in plant growth and devel-opment [J]. Plant Physiology,1997,113:241-248
    203Liu H. P., Dong B. H., Zhang Y. Y.,et al. Relationship between osmotic stress and the levels of free,conjugated and bound polyamines in leaves of wheat seedlings.Plant Science,2004,166:1261-1267
    204Velikova V., Yordanov I., Edreva. A.Oxidative stress and some antioxidant systems in acid rain-treatedbean plants protective role of exogenous polyamines[J]. Plant Science,2000(151):59–66
    205Chong Y.X., Hu H.Y., QianY. Advances in utilization of macrophytes in water pollution control [J].Techniques and Equipment for Environmental Pollution Control(Chinese),2004,4:36-40
    206Samecka C A, Kempers A J. Concentrations of heavy metals and plant nutrients in water, sediments andaquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage ofacidification [J]. Science of the Total Environment,2001,(281):87-98
    207胡绵好,奥岩松,朱建坤等. pH和曝气对水生植物去除富营养化水体中氮磷等物质的影响[J].水土保持学报.2008,22(4):168-173
    230Li F.B,Wu Q.T. Treatment of septic tank wastewater by floating soilless culture of plants[J]. Rural Eco-environment,1997,13:25-28.
    231Li F.B,Wu Q.T. Domestic wastewater treatment with means of soilless cultivated plants[J]. China JournalAppyl Ecology,1997,8(1):88-92.
    232Mars R, Mathew K, Ho G. The role of the submergent macrophyte Triglochin huegelii in domestic grey-water treatment[J].Ecological Engineering,1999,12:57-66.
    233Cedergreen N. and Madsen T. V. Nitrogen uptake by the floating macrophyte Lemmna minor [J]. NewPhytologist,2001,155:285-292.
    234Cedergreen N. and Madsen T. V. Light regulation of root and leaf NO3-uptake and reduction in the float-ing macrophyte Lemmna minor [J]. New Phytologist,2003,161:449-457.
    240Henriksen G. H, Raman D. R, Walker L. P, et al. Measurement of net fluxes of ammonium and nitrate atthe surface of barley roots using ion-selective microelectrodes: Patterns of uptake along the axis andevaluation of the microelectrode flux estimation technique[J]. Plant Physiol-ogy,1992,99:734-747.
    241Colmer T. D, Bloom A. J. A compaeison of NO3-and NH4+net fluxes along roots of rice and maize[J].Plant, Cell and Environment,1998,21:240-246.
    242Taylor A. R, Bloom A. J. Ammonium, nitrate, and proton fluxes along the maize root[J]. Plant, Cell andEnvironment,1998,21:1255-1263.
    243Garnett T, Shabala S. N, Smethurst P. J, et al. Simultaneous measurement of ammon-ium, nitrate andproton fluxes along the length of eucalypt roots[J]. Plant and soil,2001,236:55-62.
    244Garnett T, Shabala S. N, Smethurst P. J, et al. Kinetics of ammonium and nitrate up-take by eucalyptroots and associated proton fluxes measured using ion selective microelectrodes [J]. Functional PlantBiology,2003,30:1165-1176.
    245Newmann I. A. Ion transport in roots: measurement of fluxes using ion-selective microelect-rodes tocharacterize transporter function[J]. Plant, Cell and Environment,2001,24:1-14.
    246Gerendas J, Zhu Z, Bendixen R, et al. Physiological and biochem-ical processes related to ammoniumtoxicity in higher plants[J]. Zeitschrift fur Pflanzenerna-hrung and Bodenkunde,1997,160:239-251.
    220太湖流域管理局.太湖流域及东南诸河水资源公报,上海:2006-2010
    221江苏省环保厅.江苏省环境质量报告书,南京:2004-2010
    222梁骏.南京酸雨对土壤和作物产量品质形成的影响研究[D].南京:南京信息工程大学,2008
    250Kohno Y, Matsmuura H, Kobaya S. Effect of simulated acid rain on the growth of Japanese conifersgrown with or without fertilizer [J]. Water Air and Soil Pollution,1995,85(3):1305-1310.
    224Newman IA. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to chara-cterize transporter function[J].Plant, Cell and Environment,2001,24:1-14
    225Yin L.P., ShangGuan Y., Xu Y. Application of scanning iron-selective electrode technique to the researchof advanced Plant [J]. Natural Science Development,2006,16(3):262-266
    226Jian Sun, Shao-Liang Chen, Song-Xiang Dai, et al. Ion flux profiles and plant ion homeostasis controlunder salt stress [J]. Plant Signaling&Behavior,2009,4(4):261-264
    227Sun Jian, Chen Shaoliang, Dai Songxiang, et al. Ion flux profiles and plant ion homeostasis controlunder salt stress [J]. Plant Signaling&Behavior,2009,4(4):261-264.
    228Colmer T. D, Bloom A. J. A compaeison of NO-3and NH+4net fluxes along roots of rice and maize[J].Plant, Cell and Environment,1998,21:240-246.
    229Madsen T.V., Cedergreen N. Sources of nutrients to rooted submerged macrophytes growing in anutrient-rich stream [J]. Fresh water Biology,2002,47:283-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700