用户名: 密码: 验证码:
三维复子空间中的量子搜索和多相位匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在一个大型无序数据库中,与任何经典的搜索算法相比较而言,原先的Grover量子搜索算法能以平方根的加速找到唯一的目标态。并且该算法已经被证明为最优的。迄今为止主要是从以下的方面对该量子搜索算法进行了扩展:
     (1)假设有多个目标态;
     (2)以任意的酉变换来代替Walsh-Hadamard变换;
     (3)引入了概率幅扩大的思想;
     (4)通过并行的量子计算方式来进一步降低搜索次数;
     (5)以任意的相位旋转代替反方向的相位旋转;
     (6)初始态是任意的复概率幅分布,而不再是等概率幅分布;
     (7)讨论了任意的纠缠初始态。
     为保证以100%的概率找到一个目标态,许多研究工作者给出了不同形式的精确的相位公式。自然要问一个目标元素的叠加态或者唯一的目标态是否只能在搜索空间只限制在二维复子空间中才能以100%的最大成功概率被找到。对任意的3×3酉矩阵而言,为使得复杂的计算得到充分的简化并得到数学上易处理的结果,可考虑运用下面的性质和技巧:1)一个厄米矩阵的特征值都是实数且对应于该厄米矩阵的不同特征值的特征矢量是互相正交的;2)由于对易性,两个厄米矩阵共同拥有的规格化正交矢量完全集可能存在;3)假设存在两个厄米矩阵共同拥有的规格化正交矢量完全集。那么,如果属于其中之一的厄米矩阵的某个特征值是简并的,则该特征值的简并度应通过另一个厄米矩阵来予以消除。利用上述性质,我们证明了在三维复子空间中,只要偏离角不等于零那么无论给定什么样的初始态,都不能以100%的概率找到一个目标元素的叠加态或唯一的目标态。通过利用将一个3×3酉矩阵分解为两个相互对易的厄米矩阵和指数矩阵的性质这两种不同的方法,进一步论证了如果在一个无序数据库中总的目标态和非目标态的个数充分大,那么对应于两个相同相位旋转角的情形,找到唯一目标态的最大成功概率近似地等于一个偏离角的余弦函数的平方。
     另一方面,由于一个量子系统将不可避免地受到不可预知的微扰影响,我们得出了以前文献中所报道的Grover量子搜索算法的实验实现实际上是在三维复子空间中完成的结论。同时,利用指数矩阵的性质表明了在一个二维复子空间中,对于任意给定的初始态,倘若满足多相位匹配方程那么就能以较大的成功概率找到唯一的目标态。
     本文按照任意的初始态、任意的酉变换和任意的相位旋转角的方式以具体的数据实例严格核实了上述结论。
The original Grover's quantum search algorithm goes quadratically faster than any possible classical counterpart for searching a single desired state in a large unsorted database and it was shown to be optimal. So far, several generalizations of the original Grover's algorithm have been developed from different aspects by some modifications mainly resulted from
     (1) dealing with the case of more than one desired state;
     (2) substituting almost any unitary transformation for the Walsh-Hadamard transformation, which is used in the original setting;
     (3) introduction of the concept of amplitude amplification;
     (4) further speedup for repeated quantum search by means of quantum computations in parallel;
     (5) the phase inversion being replaced by arbitrary phase rotations;
     (6) allowing for an arbitrary complex initial amplitude distribution, instead of the uniform initial amplitude distribution;
     (7) investigating the case of an arbitrarily entangled initial state. To guarantee that a desired state can be found with certainty, many researchers gave their different forms of accurate phase formulae. It is natural to ask whether a superposition of desired states or a unique desired state can be found with certainty only under the circumstances that the search space is confined to the two-dimensional complex subspace. To render the manipulation of complicated computations substantially simple and to obtain mathematically tractable results for any3×3unitary matrix, we consider the following properties and techniques.1) The eigenvalues of a Hermitian matrix are all real and the eigenvectors of a Hermitian matrix corresponding to different eigenvalues must be orthogonal to each other;2) Due to commutativity, a complete set of common orthonormal eigenvectors shared by two Hermitian matrices possibly exists;3) Suppose that there exists a complete set of common orthonormal eigenvectors shared by two Hermitian matrices. Then, if some eigenvalue belonging to one Hermitian matrix is degenerate, the degeneracy of this eigenvalue should be lifted through combining the other Hermitian matrix. Using the above properties, we prove that no matter what the initial superposition may be, neither a superposition of desired states nor a unique desired state can be found with certainty in a three-dimensional complex subspace, provided that a deflection angle is not exactly equal to zero. By using two different methods of dividing a3×3unitary matrix into two Hermitian matrices, which are commutative one another, and of the properties of the matrix exponential, we further demonstrate that if the total number of the desired and undesired states in an unsorted database is sufficiently large, then corresponding to the case of identical rotation angles, the maximum success probability of finding a unique desired state is approximately equal to the square of the cosine function of a deflection angle.
     On the other hand, due to the fact that a quantum system will inevitably be influenced by some unpredictable perturbations, we thereby conclude that the experimental realizations of Grover quantum search algorithm previously reported in the literature were, in fact, achieved in a three-dimensional complex subspace. Meanwhile, by utilizing the properties of the matrix exponential, we also showed that in a two-dimensional complex subspace, a unique desired state can be found with high success probability provided the multiphase matching equation is satisfied for any given initial superposition.
     The above results were rigorously verified by concrete numerical examples in terms of arbitrary initial superposition, arbitrary unitary transformation and arbitrary phase rotation angles in this paper.
引文
[1]Feynman R., Simulating physics with computers, Int J Theor Phys,1982,21:467-488.
    [2]Feynman R., Quantum mechanical computers, Found Phys,1986,16:507-531.
    [3]Deutsch D., Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London A,1985,400, pp.97-117.
    [4]Deutsch D. and Jozsa R., Rapid solutions of problems by quantum computation, Proceedings of the Royal Society of London, Series A,1992,439, pp.553-558.
    [5]Bernstein E. and Vazirani U., Quantum Complexity Theory, SIAM Journal on Computing,1997, vol.26, pp.1411-1473.
    [6]Simon D., On the power of quantum computation, Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS), pp.116-123.
    [7]Shor P., Algorithms for Quantum Computation:Discrete Logarithms and Factoring, Proceedings of the 35th Annual Symposium on Foundations of Computer Science,1994, pp.124-134.
    [8]Boneh D. and Lipton R., Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract), Proceedings of 15th Annual International Cryptology Conference (CRYPTO'95),1995, pp. 424-437.
    [9]Grigoriev D., Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines, Theor. Comput. Sci,1997, vol.180, pp.217-228.
    [10]Kitaev A., Quantum measurements and the Abelian Stabilizer Problem, Electronic Colloquium on Computational Complexity (ECCC),1996, vol.3.
    [11]Cleve R., Ekert A., Macchiavello C. and Mosca M., Quantum Algorithms Revisited, Proceedings of the Royal Society of London A,1998, vol.454, pp.339-354.
    [12]Grover L., A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC 1996),1996, pp.212-219.
    [13]Brassard G., Hoyer P. and Tapp Alain., Quantum Counting, Proceedings of the ICALP'98 Lecture notes in Computer Science,1998, pp.1820-1831.
    [14]Brassard G., Hoyer P., Mosca M. and Tapp Alain., Quantum Amplitude Amplification and Estimation, Quantum Computation and Quantum Information Science, AMS Contemporary Math Series,2000.
    [15]Nielsen M A. and Chuang I L., Quantum Computation and Quantum Information, Cambridge University Press,2000.
    [16]Pittenger A., An Introduction to Quantum Computing Algorithms, Birkhauser,2000.
    [17]Kitaev A Y., Shen A H. and Vyalyi M N., Classical and Quantum Computation, Graduate Studies in Mathematics, vol.47, American Mathematical Society,2002.
    [18]Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, World Scientific Publishing Co. Pte. Ltd,2004.
    [19]Kaye P., Laflamme R. and Mosca M., An Introduction to Quantum Computing, Oxford University Press,2007.
    [20]Aharonov D., Quantum computation. In:Stauffer D (ed) Ann Rev Comput Phys World Sci,1998.
    [21]Berthiaume A., Complexity theory retrospective II, chapter Quantum computation, Springer, New York, NY,1996, pp.23-51.
    [22]Preskill J., Fault-tolerant quantum computation, quant-ph/9712048.
    [23]Rieffel E. and Polak W., An introduction to quantum computing for non-physicists, quant-ph/9809016.
    [24]Shor P.. Quantum computing. Documenta Mathematica,1998, Extra vol. ICM, pp.467-48 6.
    [25]Steane A., Quantum computing, Rep Prog Phys,1998, vol.61, pp.117-173.
    [26]Grover L K., Quantum mechanics helps in searching for a needle in a haystack, Phys Rev Lett, 1997, vol.79, pp.325-328.
    [27]Shor P., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing,1997, vol.26, pp.1484-1509.
    [28]Mosca M., Quantum searching and counting by eigenvector analysis, Proceedings of Randomized Algorithms, Satellite Workshop of 23rd International Symposium on Mathematical Foundations of computer Science, Brno, Czech Republic, August 1998, pp.90-100.
    [29]Richard C., Ekert A., Macchiavello C. and Mosca M., Quantum algorithms revisited, Proceedings of the Royal Society, London,1998, vol. A354, pp.339-354.
    [30]Mosca M., Counting by quantum eigenvalue estimation, Theoretical Computer Science,2001,264, pp.139-153
    [31]Mosca M. and Ekert A., The hidden subgroup problem and eigenvalue estimation on a quantum computer, Proc. of the 1st NASA Int. Conf. on Quantum Computing and Quantum Communication, Lecture Notes in Computer Science, pp.174-188.
    [32]Mosca M., Quantum computer algorithms, PhD thesis, University of Oxford,1999.
    [33]Wang H F. and Zhang S., Quantum Computer Algorithm for Parity Determination Based on Quantum Counting, Int J Theor Phys,2009,48, pp.1945-1949.
    [34]Q Ai., Y S Li. and G L Long., Infulences of Gate Operation Errors in the Quantum Counting Algorithm, J Comput Sci & Technol,2006, vol.21, no.6, pp.927-932.
    [35]Jozsa R., Quantum Algorithms and the Fourier Transform, quant-ph/9707033.
    [36]Zalka C., Efficient Simulation of Quantum Systems by Quantum Computers, quant-ph/9603026v2.
    [37]Lloyd S., A Potentially Realizable Quantum Computer, Science,1993, vol.261,1569.
    [38]Chuang I L., Laflamme R., Shor P. and Zurek W., Quantum Computers, Factoring, and Decoherence, quant-ph/9503007.
    [39]Chuang I L. and Yamamoto Y., A Simple Quantum Computer, quant-ph/9505011.
    [40]Chuang I L., Laflamme R. and Paz J P., Effects of Loss and Decoherence on a Simple Quantum Computer, quant-ph/9602018.
    [41]Barenco A., A Universal Two Bit Gate for Quantum Computation, quant-ph/9505016.
    [42]Barenco A., Bennett C H., Cleve R., DiVincenzo D P., Margolus N., Shor P., Sleator T., Smolin J. and Weinfurter H., Elementary gates for quantum computation, quant-ph/9503016.
    [43]Unruh W G., Maintaining Coherence in Quantum Computers, hep-th/9406058.
    [44]Bennett C H., Cirac J I., Leifer M S., Leung D W.. Linden N., Popescu S. and Vidal G, Optimal simulation of two-qubit Hamiltonians, Phys Rev A,2002. vol.66.012305.
    [45]Childs A M., Leung D W. and Vidal G., Reversible simulation of bipartite product Hamiltonians, IEEE Trans Inform Theory,2004, vol 50, pp.1189-1197.
    [46]Dodd J L., Nielsen M A., Bremner M J. and Thew R T., Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries, Phys Rev A,2002, vol.65, 040301.
    [47]Jones J A. and Knill E., Efficient refocussing of one spin and two spin interactions for NMR quantum computation, J Magn Reson.1999, vol.141, pp.323-325.
    [48]Leung D, Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices, J Mod Opt, 2002, vol.49, no.8, pp.1199-1217.
    [49]Nielsen M A., Bremner M J., Dodd J L., Childs A M and Dawson C M., Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces, Phys Rev A, 2002, vol.66,022317.
    [50]Wocjan P., Rotteler M.. Janzing D. and Beth T., Simulating Hamiltonians in quantum networks: efficient schemes and complexity bounds, Phys Rev A,2002, vol.65,042309.
    [51]Wocjan P., Rotteler M., Janzing D. and Beth T.. Universal simulation of Hamiltonians using a finite set of control operations, quant-ph/0109063.
    [52]Ernst R R., Bodenhausen G. and Wokaun A., Principles of nuclear magnetic resonance in one and two dimension, Clarendon Press,1987, Oxford.
    [53]Slichter C P., Principles of Magnetic Resonance,3rd edition,1990, Springer, Berlin.
    [54]Boneh D. and Lipton R J., Quantum cryptanalysis of hidden linear functions (extended abstract), In Advances in Cryptology (CRYPTO'95),1995, volume 963 of Lecture Notes in Computer Science, Springer, pp.424-437.
    [55]Boyer M., Brassard G., H?yer P. and Tapp A., Tight bounds on quantum searching, quant-ph/9605034.
    [56]Brassard G. and H?yer P., An exact quantum polynomial-time algorithm for Simon's problem, quant-ph/9704027.
    [57]Brassard G., H?yer P. and A Tapp., Quantum counting, quant-ph/9805082.
    [58]Buhrman H., Cleve R. and Wigderson A., Quantum vs. classical communication and computation, quant-ph/9802040.
    [59]Deutsch D. and Jozsa R., Rapid solution of problems by quantum computation, In Proceedings of the Royal Society of London,1992, vol. A439, pp.553-558.
    [60]Hoyer P., Conjugated operators in quantum algorithms, Phys Rev A,1999, vol.59, no.5, pp. 3280-3289.
    [61]Beals R., Buhrman H., Cleve R., Mosca M. and de Wolf R., Quantum Lower Bounds by Polynomials, quant-ph/9802049v3.
    [62]Grover L K., Quantum computers can search rapidly by using almost any transformation, Phys Rev Lett,1998, vol.80, pp.4329-4332.
    [63]Bennett C.H., Bernstein E., Brassard G. and Vazirani U., Strengths and weaknesses of quantum computing, quant-ph/9701001v1.
    [64]Buhrman H., Cleve R., de Wolf R. and Zalka C., Bounds for small-error and zero-error quantum algorithms. cs.CC/990401.
    [65]Zalka C., Grover's quantum searching algorithm is optimal, Phys Rev A,1999, vol.60, pp. 2746-2751.
    [66]Ozhigov Y., Speedup of iterated quantum search by parallel performance, quant-ph/9904039v4.
    [67]Gingrich R., Williams C P. and Cerf N., Generalized Quantum Search with Parallelism, quant-ph/9904049vl.
    [68]Jozsa R., Searching in Grover's algorithm, quant-ph/9901021v1.
    [69]Farhi E. and Gutmann S., Analog analogue of a digital quantum computation, Phys Rev A,1998, A vol.57, pp.2403-2406.
    [70]Pati A K., Fast Quantum Search Algorithm and Bounds on it, quant-ph/9807067v1.
    [71]Brassard G., Hoyer P., Mosca M. and Tapp, A., Quantum Amplitude Amplification and Estimation, quant-ph/0005055v1.
    [72]H?yer P., Arbitrary phases in quantum amplitude amplification, Phys Rev A,2000, vol.62, 052304.
    [73]Grover L., A framework for fast quantum mechanical algorithms, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC),1998, pp.53-62.
    [74]Brassard G., Hoyer P. and Tapp A., Cryptology column—quantum algorithm for the collision problem, ACM SIGACT News,1997, vol.28, pp.14-19.
    [75]Boixo S., Knill E. and Somma R., Quantum state preparation by phase randomization, arXiv:0903.1652.
    [76]Tulsi T., Grover, L K. and Patel A., A new algorithm for fixed point quantum search, quant-ph/0505007.
    [77]Mosca M., Quantum Algorithms,2009, Encyclopedia of Complexity and Systems Science.
    [78]Jordan S., Quantum computation beyond the circuit model, Ph D thesis,2008, MIT.
    [79]Zalka C., A Grover-based quantum search of optimal order for an unknown number of marked elements, quant-ph/9902049.
    [80]Long G L., Zhang W L., Li Y S. and Niu L., Arbitrary phase rotation of the marked state can not be used for Grover's quantum search algorithm, quant-ph/9904077.
    [81]Long G L., Li Y S., Zhang W L. and Niu L., Phase matching in quantum searching, Phys Lett A, 1999, vol.262, pp.27-34.
    [82]Biedenharn L C. and Louck J D., Angular Momenttum in Quantum Physics:Theory and Application,1981, Addison-Wesley, Redwood City, CA.
    [83]Han Q Z. and Sun H Z., Group Theory,1987, Peking University Press, Peking.
    [84]Long G L., Xiao L. and Sun Y., General Phase Matching Condition for Quantum Searching, quant-ph/0107013v1.
    [85]Long G L., Grover algorithm with zero theoretical failure rate, Phys Rev A,2001, vol.64.022307.
    [86]Long G L., Tu C C., Li Y S., Zhang W L. and Yan H Y., A novel SO(3) picture for quantum searching, quant-ph/9911004v1.
    [87]Galindo A., Martin-Delgado M A., Family of grover's quantum-searching algorithms, Phys Rev A, 2000, vol.62,062303.
    [88]Li C M., Hwang C C., Hsieh J Y. and Wang K S.. General phase-matching condition for a quantum searching algorithm, Phys Rev A,2002, vol.65,034305.
    [89]Hsieh J Y. and Li C M., General SU(2) formulation for quantum searching with certainty. Phys Rev A.2002, vol.65,052322.
    [90]Biham E., Biham O., Biron D., Grassl M. and Lidar D A., Grover's quantum search algorithm for an arbitrary initial amplitude distribution, Phys Rev A,1999, vol.60, pp.2742-2745.
    [91]Biham E., Biham O.. Biron D., Grassl M., Lidar D A. and Shapira D., Analysis of generalized Grover quantum search algorithms using recursion equations, Phys Rev A,2000, vol.63,012310.
    [92]Biham E. and Kenigsberg D., Grover's quantum search algorithm for an arbitrary initial mixed state, Phys Rev A,2002, vol.66,062301.
    [93]Carlini A. and Hosoya A., Quantum Computers and Unstructured Search: Finding and Counting Items with an Arbitrarily Entangled Initial State, quant-ph/9909089v3.
    [94]Jozsa R., Entanglement and Quantum Computation, quant-ph/9707034v1.
    [95]Chen G., Fulling S A. and Scully M O., Grover's algorithm for multiobject search in quantum computing, quant-ph/9909040.
    [96]Grover L K., Rapid sampling through quantum computing, quant-ph/9912001.
    [97]Chi D P. and Kim J., Quantum database searching by a single query, quant-ph/9708005.
    [98]Terhal B M. and Smolin J A., Single quantum querying of a database, Phys Rev A,1998, vol.58, pp.1822-1826.
    [99]Grover L K., Quantum Computers Can Search Arbitrarily Large Databases by a Single Query, 1997, Phys Rev Lett, vol.79, pp.4709-4712.
    [100]Grassl M. and Beth T., On the complexity of quantum searching with complex queries, quant-ph/9706052.
    [101]Li P C. and Li S Y., Phase matching in Grover's algorithm, Phys Lett A,2007, vol.366, pp. 42-46.
    [102]Toyama F M., Dijk W V., Nogami Y., Tabuchi M. and Kimura Y, Multiphase matching in the Grover algorithm, Phys Rev A,2008, vol.77,042324.
    [103]Li D F., The Precise Formula in a Sine Function Form of the Norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations, quant-ph/0107010v3.
    [104]Li D F. and Li X X., More general quantum search algorithm Q=-IγVIτU and the precise formula for the amplitude and the non-symmetric effects of different rotating angles, quant-ph/0105035v3.
    [105]Li D F., Li X X., Huang H T. and Li X R., Invariants of Grover's algorithm and the rotation in space, Phys Rev A,2002. vol.66,044304.
    [106]Li D F., Li X X. and Huang H T., PHASE CONDITION FOR THE GROVER ALGORITHM, Theoretical and Mathematical Physics,2005, vol.144, pp.1279-1287.
    [107]Grover L K., Fixed-Point Quantum search, Phys Rev Lett,2005, vol.95,150501.
    [108]Li D F., Chen J P., Li X R., Huang H T. and Li X X., Performance of Equal Phase-Shift Search for One Iteration, quant-ph/0603204.
    [109]Li D F., Li X R., Huang H T. and Li X X., Fixed-point Quantum Search for Different Phase Shifts, quant-ph/0604062v3.
    [110]Grover L K. and Radhakrishnan J., Is partial quantum search of a database any easier?, quant-ph/0407122.
    [111]Korepin V E., Optimization of Partial Search, quant-ph/0503238.
    [112]Korepin V E. and Liao J F., Quest for Fast Partial Search Algorithm, quant-ph/0510179.
    [113]Choi B S. and Korepin V E., Quantum Partial Search of a Database with Several Target Items, quant-ph/0608106.
    [114]Korepin V E. and Vallilo B C., Group Theoretical Formulation of Quantum Partial Search Algorithm, quant-ph/0609205.
    [115]Korepin V E. and Grover L K., Simple Algorithm for Partial Quantum Search, quant-ph/0504157.
    [116]Korepin V E. and Xu Y., Binary Quantum Search, arxiv:0705.0777v1.
    [117]Heiligman M., Finding Matches between Two Databases on a Quantum Computer, quant-ph/0006136.
    [118]Grover L K., From Schrodinger's Equation to the Quantum Search Algorithm, quant-ph/0109116.
    [119]Grover L K., Superlinear Amplitude Amplification, arxiv: 0806.0154v1.
    [120]Grover L K., Quantum searching amidst uncertainty, quant-ph/0507116.
    [121]Grover L K., An Improved Quantum Scheduling Algorithm, quant-ph/0202033.
    [122]Grover L K., Synthesis of Quantum Superpositions by Quantum Computation, Phys Rev Lett, 2000. vol.85, pp.1334-1337.
    [123]Grover L K.. and Radhakrishnan J., Quantum search for multiple items using parallel queries, quant-pn/0407217v1.
    [124]Farhi E. and Gutmann S., Quantum Mechanical Square Root Speedup in a Structured Search Problem, quant-ph/9711035.
    [125]Grover L K., Quantum search on structured problems, quant-ph/9802035.
    [126]Hogg T., Highly Structured Searches with Quantum Computers, Phys Rev Lett,1998, vol.80, no. 11,2473.
    [127]Hogg T., Solving Highly Constrained Search Problems with Quantum Computers,1999, Journal of Artificial Intelligence Research, vol.10, pp.39-66.
    [128]Cerf N J., Grover L K. and Williams C P., Nested quantum search and structured problems, Phys Rev A,2000, vol.61,032303.
    [129]Hunziker M. and Meyer D A., Quantum Algorithms for Highly Structured Search Problems,2002, Quantum Inf Process, vol.1, no.3, June 2002.
    [130]He Y G.,and Sun J G., Quantum Search in Structured Database,2005, LNCS 3612, pp.434-443, Springer-Verlag Berlin Heidelberg.
    [131]Peng X H., Zhu X W., Fang X M., Feng M., Liu M L. and Gao K L., Experimental Implementation of Hogg's Algorithm on a Three-Quantum-bit NMR Quantum Computer, quant-ph/0108068v 1.
    [132]Fenner S A., An intuitive Hamiltonian for quantum search, quant-ph/0004091.
    [133]Accardi L. and Sabbadini R., A Generalization of Grover's Algorithm, quant-ph/0012143v1.
    [134]Younes A., Rowe J. and Miller J., Quantum Search Algorithm with more Reliable Behaviour using Partial Diffusion, quant-ph/0312022v1.
    [135]Zuliani P., A Formal Derivation of Grover's Quantum Search Algorithm,2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering.
    [136]Dorn S., Quantum Algorithms for Matching Problems,2009, Theory Comput Syst, vol.45, pp. 613-628.
    [137]Ambainis A., Quantum Search with Variable Times,2010, Theory Comput Syst, vol.47, pp. 786-807.
    [138]Magniez F., Santha M. and Szegedy M., Quantum algorithms for the triangle problem, quant-ph/0310134.
    [139]Buhrman H., Durr C., Heiligman M., Hoyer P., Magniez F., Santha M. and de Wolf R., Quantum Algorithms for Element Distinctness, quant-ph/0007016.
    [140]Aaronson S. and Ambainis A., Quantum search of spatial regions, quant-ph/0303041.
    [141]Ambainis A., Quantum walk algorithm for element distinctness, quant-ph/0311001.
    [142]Farhi E., Goldstone J. and Gutman S., A quantum algorithm for the Hamiltonian NAND tree, quant-ph/0702144.
    [143]Hoyer P., Neerbek J. and Shi Y Y., Quantum complexities of ordered searching, sorting, and element distinctness, quant-ph/0102078.
    [144]Durr C., Heiligman M., Hoyer P. and Mhalla M., Quantum query complexity of some graph problems, quant-ph/0401091.
    [145]Childs A M. and Eisenberg J M., Quantum algorithms for subset finding, quant-ph/0311038.
    [146]Vandersypen L M K., Steffen M., Breyta G., Yannoni C S., Sherwood M H. and Chuang I L., Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance, quant-ph/0112176v1.
    [147]Jones J A., Mosca M. and Hansen R H., Implementation of a quantum search algorithm on a quantum computer,1998, Nature, vol.393, no.6683, pp.344-346.
    [148]Chuang I L., Gershenfeld N. and Kubinec M., Experimental implementation of fast quantum searching,1998, Phys Rev Lett, vol.80, no.15, pp.3408-3411.
    [149]Zhang J F., Lu Z H., Shan L. and Deng Z W., Synthesizing NMR analogs of Einstein-Podolsky-Rosen states using the generalized Grover's algorithm,2002, Phys Rev A, vol. 66,044308.
    [150]Vandersypen L M K., Steffen M., Sherwood M H., Yannoni C S., Breyta G. and Chuang I L., Implementation of a three-quantum-bit search algorithm, quant-ph/9910075.
    [151]Bhattacharya N., van Linden van den Heuvell H B. and Spreeuw R J C., Implementation of quantum search algorithm using classical Fourier optics,2002, Phys Rev Lett, vol.88,137901.
    [152]Long G L.,Yan H Y., Li Y S., Tu C C., Tao J X., Chen H M., Liu M L., Zhang X., Luo J., Xiao L. and Zeng X Z., Experimental NMR realization of a generalized quantum search algorithm,2001, Phys Lett A, vol.286, pp.121-126.
    [153]Xiao L. and Jones J A., Error tolerance in an NMR Implementation of Grover's Fixed-Point Quantum Search Algorithm, quant-ph/0504054v2.
    [154]咯兴林,高等量子力学(第二版),2000年,高等教育出版社。
    [155]Wenliang Jin. and Xiangdong Chen., A desired state can not be found with certainty for Grover's algorithm in a possible three-dimensional complex subspace, Quantum Inf. Process,2010, DOI: 10.1007/s11128-010-0209-7.
    [156]Wenliang Jin., Quantum search in a possible three-dimensional complex subspace, Quantum Inf. Process,2011, DOI:10.1007/s11128-011-0230-5.
    [157]Long G L. and Liu Y., Search an unsorted database with quantum mechanics,2007, Frontiers of Computer Science in China, vol.1, pp.247-271.
    [158]Li P C. and Li S Y., Phase matching in Grover's algorithm,2007, Physics Letters A, vol.366, pp. 42-46.
    [159]Li P C. and Li S Y., Phase Matching in Quantum Searching Algorithm with Weighted Targets, 2008, CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, vol.25, pp.623-630.
    [160]邵问津,吴盛俊,张永得,量子Grover算法极其在遍历搜索中的应用,2000,大学物理,vol.19, pp.1-4.
    [161]宋辉,戴葵,王志英,一种改进的量子搜索算法,2002,计算机工程与科学,vol.24, pp.4-7.
    [162]孙吉贵,何雨果,量子搜索算法,2003,软件学报,vol.14, pp.334-344.
    [163]陈洪光,李飚,沈振康,逼近全概率Grover算法的搜索次数计算,2004,计算机工程与应 用,vol.3, pp.58-59.
    [164]李映,张艳宁,赵荣椿,量子搜索和进化搜索算法的比较研究,2004,计算机工程与应用,vol.18, pp.1-4.
    [165]穆万军,游志胜,赵明华,用Grover量子搜索算法挖掘网络数据,2005,计算机应用,vol. 25, pp.2310-2311.
    [166]孙力,须文波,量子搜索算法体系极其应用,2006,计算机工程与应用,vol.14, pp.55-57.
    [167]Tulsi A., Quantum computers can search rapidly by using almost any selective transformation, 2008, Physical Review A, vol.78, pp.042319.
    [168]Joshi A W., Matrices and Tensors in Physics,2005, New Delhi:New Age International (P) Ltd., Reprint, pp.69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700