用户名: 密码: 验证码:
洪湖市湿地景观演替及碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地景观研究是近十余年来新兴的热点领域,湿地碳储量是研究全球气候变化和生态安全核心内容之一。中国是世界上湿地资源最丰富的国家之一,洪湖是我国第七大淡水湖,在长江中下游的湖泊湿地中具有典型性和代表性。对洪湖开展湿地景观和碳储量研究,对我国开展湿地资源生态安全、保护和合理利用等研究方面具有重要的示范意义。论文在3S技术支持下,收集了1974-2010年期间内洪湖市Landsat系列、CBERS02-CDC、ALOS遥感数据,共8个时间段的9期影像,建立了湿地资源空间数据库,结合地面相关辅助资料,运用面向对象的影像分割方式进行湿地信息提取;在此基础上并结合景观生态学原理,选取23个景观格局指数,开展洪湖湿地景观的时空变化、湿地演替分析,分析各种湿地类型的景观变化特征和转移变化。利用Markov和CA-Markov模型对洪湖今后一段时间内的景观变化进行了预测和分析,同时利用高分辨率的ALOS影像对整个研究区各种景观类型的碳密度和碳储量进行了估算。论文研究的主要结论如下:
     (1)参照《国际湿地公约》和国家林业局《湿地调查技术规程》,结合洪湖市湿地的实际情况,确定了洪湖湿地遥感解译分类标准。采用面向对象的信息提取方式进行湿地信息的提取,确定了合适的分割参数设置(空间参数为10、颜色参数为10、最小区域参数为120)。
     (2)选取了23个景观指数,开展湿地景观时空变化分析研究,研究表明过去36年间研究区湿地景观斑块数量增加明显,湿地破碎化程度增大。人为活动加剧是影响洪湖湿地景观斑块数量、景观破碎化程度的主要原因,导致景观破碎化程度上升,香农均匀度指数与香农多样性指数增大。其中斑块数量变化起伏较大的地类为旱地、农用池塘和稻田/冬水田。面积增长最快的属淡水养殖池塘,淡水养殖池塘增加的面积90%以上来自稻田/冬水田的转化。
     (3)通过景观类型构成的转入转出贡献率和保留率等方面进行的动态变化研究,揭示了不同景观组分转移特征在景观整体变化中的地位和作用,描述景观动态变化的总体特点和内在驱动机制;在景观类型动态度变化研究方面,分析了全市景观类型面积转移的活跃性,波动性变化,通过对景观类型质心变化研究,计算了各景观类型质心位置偏移方向及其偏移量,直观的再现了景观组分的时空演变过程。
     (4)利用CA-MARKOV和MARKOV模型对洪湖市景观类型格局进行预测,并将其预测结果与解译结果进行了对比,对比发现:CA-MARKOV和MARKOV模型的都得到了较好的估测效果,均可对洪湖市景观类型变迁进行科学、合理的预测,在估测精度方面CA-Markov模型的预测精度更准确。
     (5)从土壤有机碳和植被碳储量两个方面开展洪湖碳储量研究,计算结果表明洪湖土壤有机碳密度为4.557-67.519kg/m2,各土壤有机碳密度大小为:湖底淤泥>洪泛平原湿地>草本沼泽>林地>农田;总的土壤碳储量为3.537×107t,其中湖底淤泥的碳储量占了45%的比例,为1.597×107t,碳储量大小为:湖底淤泥>林地>农田>草本沼泽>洪泛平原湿地;洪湖植物有机碳含量碳密度及碳储量的计算结果表明洪湖植物有机碳密度为4.93-63.03kg/m2,碳密度大小为:林地>草本沼泽>农田>水生植物>洪泛平原湿地;总的植物碳储量为1.74×106t,其中农田的碳储量占了59%的比例,为1.02×106t,碳储量大小为:农田>林地>水生植物>草本沼泽>洪泛平原湿地。
Wetland landscape is a hot research field in the past decade, and wetland carbon storage is one of the essential elements in the study of global climate change and ecological security. As the seventh largest freshwater lake in China, which owns the most abundant wetland resources in the world, the Honghu Lake wetland is typical and representative among the Yangtze River. Therefore, research into Honghu wetland landscape and carbon storage has great significance for China's wetland ecology security, protection and rational utilization.
     With3S technology support, this paper collected the Landsat series, CBERS02-CCD and ALOS remote sensing data of Honghu City during the period1974-2010, a total9images for eight different time slots, had set up a wetland resource space database, combined ground auxiliary information, and extracted wetland information using object-oriented image segmentation approach; On this basis, by employing principles of landscape ecology,23landscape pattern index were selected to carry out analysis of temporal and spatial variation of Honghu wetland landscape and its succession, and to reveal the wetland type change of landscape change and transfer characteristics. Using Markov and CA-Markov model, the future landscape changes of the wetland over time were predicted and analyzed, while utilizing high-resolution ALOS images of the entire study area, carbon density and carbon storage were estimated for target landscape types. The main conclusions are as follows:
     (1) Referring to "International Convention on Wetlands" and the State Forestry Administration published "Technical Specification for wetland inventory", and considering the actual situation of Honghu wetlands, the interpretation standard of remote sensing classification was proposed. Through wetland information extraction using object-oriented approach, the appropriate segmentation parameters were determined as:the spatial parameter, the color parameter and the minimum area parameter are10,10and120respectively.
     (2) Spatial and temporal analysis of wetland variation using23selected landscape indices suggests that, over the past36years, the number of wetland landscape patches in the study area increased significantly, and the degree of fragmentation increases. Increasing human activities main factor affecting the landscape patch number and the landscape fragmentation, leads to the rising of landscape fragmentation and the increases of Shannon evenness index and the Shannon diversity index. Land types undulating patch number changes are cropland, farm ponds and paddy fields/winter paddy field. The fastest growing of area appears for freshwater ponds, and more than90%of the area increase is from rice/winter paddy field conversion.
     (3) Dynamic analysis of the contribution rate and retention rate of landscape composition moving-in or-out reveals the position and role of different landscape components'characteristics in the overall change of the landscape, describes the general features of landscape dynamics and the internal driving mechanism; for changes in landscape type dynamic, the landscape transfer activity and fluctuant of the city was analyzed, through investigating into the landscape center changes, the centroid position of each direction and the partial offset Shift for landscape types were calculated, visually representing the temporal evolution of landscape components.
     (4) CA-Markov and Markov models were used to predict the pattern of Honghu landscape, and the predicted results were compared with the interpretation results. Comparison shows that:CA-Markov and Markov models have both achieved satisfactory estimation, can provide scientific and reasonable projections for the Honghu landscape pattern change, and CA-Markov has higher prediction accuracy as to model estimation precision.
     (5) Carbon storage of Honghu wetland were carried out on organic carbon from soil and vegetation carbon storage, results show that the soil organic carbon density of Honghu is4.557-67.519kg/m2, the soil organic carbon density of each soil type rank as:Bottom mud> Floodplain wetland> Marshes> Woodland> Cropland; the total soil carbon reserves is3.537x107t, of which the lake bottom sludge carbon storage takes45%, accounts to1.597x107t, carbon storages rank as:Bottom mud> Woodland> Cropland> Marshes> Floodplain wetland; Honghu plant organic carbon content of carbon density and storage of calculation results show that the organic carbon density of plants is4.93-63.03kg/m2, carbon density rank of the vegetation types is: Woodland> Marshes> Farmland> Aquatic> Floodplain wetland; the total plant carbon reserves is1.74x106t, carbon storage of farmland takes59%, accounts to1.02x106t, carbon storage rank is:Farmland> Woodland> Aquatic> Marshes> Floodplain wetland.
引文
[1]杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域与展望[J].地球科学进展,2002,17(4):508-514
    [2]傅国斌,李克让.全球变暖与湿地生态系统的研究进展[J].地理研究,2001,20(1):120-128
    [3]余国营.湿地研究的若干基本科学问题初论[J].地理科学进展,2001,20(2):177-183
    [4]吕宪国.湿地科学研究进展及研究方向[J].中国科学院院刊,2002(3):170-172
    [5]曹宇,莫利江,李艳.湿地景观生态分类研究进展[J].应用生态学报,2009,20(12):3084-3092
    [6]吕宪国,刘晓辉.中国湿地研究进展[J].地理科学,2008,28(3):301-308
    [7]潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报,2002,25(3):100-109.
    [8]Eswaran H, Van den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal,1993,57:192-194.
    [9]Parton W J, Schmiel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands soils[J]. Soil Science Society of America Journal,1987,51(5):1173-1179.
    [10]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973.
    [11]赵俊芳,延晓冬,贾根锁.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报,2008,28(1):92-102
    [12]吴庆标,王效科,段晓男,邓立斌,逯非,欧阳志云,冯宗炜.中国森林生态系统植被固碳现状和潜力.生态学报,2008,28(2):517-524.
    [13]韩冰,王效科,逯非,段晓男,欧阳志云.中国农田土壤生态系统固碳现状和潜力.生态学报,2008,28(2):612-619.
    [14]王茜,任宪友,肖飞,等.RS与GIS支持的洪湖湿地景观格局分析[J].中国生态农业学报,2006,14(2):224-226
    [15]卢山,王圣海.洪湖湖泊环境演变与湿地生态产业发展的思考[J].湿地科学与管理,2009,5(4):46-48
    [16]陈宜瑜,曹文宣,等.洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版社.1991
    [17]肖飞,蔡述明.洪湖湿地变化研究[J].华中师范大学学报(自然科学版),2003,37(2):266-269
    [18]张良,李妲.洪湖湿地生态脆弱性研究[J].科学技术与工程,2009,9(14):4249-4252
    [19]王茜,吴胜军,肖飞.洪湖湿地生态系统稳定性评价研究[J].中国生态农业学报,2005,13(4):178-180
    [20]卢山,姜加虎.洪湖湿地资源及其保护对策[J].湖泊科学,2003,15(3):281-284
    [21]任宪友,吴胜军.洪湖湿地综合评价研究[J].国土资源科技管理,2007,24(5):95-98
    [22]史志华.基于GIS和RS的小流域景观格局变化及其土壤侵蚀响应[D],华中农业大学博士学位论文,2003
    [23]乌日汗.基于RS和GIS的城市绿地景观动态及其规划研究-以深圳市为例
    [D],南京林业大学博士学位论文,2008
    [24]T urner M.G., Gardener R.H..Quantitative Methods in Landscape in Landscape Ecology. SPringer-Verlag, NewYork,1991
    [25]Turner M.G.Landscape ecology:The effect of Pattern on Process. Annual Review of Ecology and system,1989,20:171-197
    [26]Forman R T T, Godron M. Landscape Ecology[M].New York:John Wiley and Sons,1986
    [27]傅伯杰.黄土区农业景观空间格局分析[J].生态学报,1995,15(2):113-120
    [28]肖笃宁,李秀珍.当代景观生态学的进展和展望[J].地理科学,1997,17(4):356-364
    [29]BRIJG.Wetlandtypes[A].MA JU MDARSK, MILLER E W.Ecology of Wetlands and Associated Systems[C].ThePennsyl vania Academy of Science,1998.4-11 WOOD R, HANDL EYJ.Landscape dynamics and the management of
    change[J].Landscape Research,2001,26:45-54
    [30]王丹丹,王志强,陈铭,等.松嫩平原西部沼泽湿地景观格局动态变化研究[J].干旱区地理,2006,29(1):94-100
    [31]王燕燕,盛连喜,何春光.国际湿地生态学研究前瞻-第七届国际湿地会议透视及启示[J].地理与地理信息科学,2005,21(6):56-59
    [32]高常军,周德民,栾兆擎.湿地景观格局演变研究评述[J].长江流域资源与环境,2010,19(4):460-464
    [33]王宪礼,肖笃宁.辽河三角洲湿地的景观格局分析[J].生态学报,1997,17(3):317-323
    [34]宗跃光.城市景观生态规划中的廓道效应研究[J].生态学报,1999,19(2):145-150
    [35]邬建国.景观生态学-格局,过程,尺度与等级[M].北京:高等教育出版社,2000
    [36]肖笃宁.景观生态学[M].北京:科学出版社,2003
    [37]汪爱华,张树清.三江平原沼泽湿地景观空间格局变化[J].生态学报,2003,23(2):237-243
    [38]刘红玉,张世奎,吕宪国.三江平原湿地景观结构的时空变化[J].地理学报,2004,59(3):391-400
    [39]郭程轩,徐颂军.基于3S与模型方法的湿地景观动态变化研究述评[J].地理与地理信息科学,2007,23(5):86-90
    [40]高义,苏奋振,孙晓宇,等.珠江口滨海湿地景观格局变化分析[J].热带地理,2010,30(3):215-221
    [41]白军红,欧阳华,杨志锋,等.湿地景观格局变化研究进展[J].地理科学进展,2005,24(4):36-45
    [42]STEVEN A, DOUGLAS A, LIOUW.Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification[J].Remote Sensing of Environment,1995,53:133-144
    [43]YUET, LIUJ, SVENE, etal.Landscape change detection of the newly created wetland in Yellow River Delta[J].Ecological Modeling,2003,164:21-31
    [44]LUCKM, WUJGAgradient analysis of urban landscape pattern:A case study from the Phoenix metropolitan region, Arizona, USA[J].Landscape Ecology,2002, 17:327-339
    [45]LU CH, VAN IM K, RABBINGE R. Ascenario exploration of strategic landuse options for the Loess Plateau in northern China[J]. Agricultural Systems,2004,79: 145-170
    [46]TURNER M GSpatial and temporal analysis of landscape patterns[J].Landscape Ecology,1990,4:21-30
    [47]孙志高,刘景双,孙广友,等.分形理论在湿地科学中的应用现状与前景展望[J].地理与地理信息科学,2005,21(4):99-101
    [48]丁圣彦,梁国付.近20年来河南沿黄湿地景观格局演化[J].地理学报,2004,59(5):653-661
    [49]Cowardin L.M., Carter V., Golet E C. Classification of wetlands and deepwater habitats of the United States.US Fish and Wildlife Service, FWS/OBS 79/31,1979
    [50]Brinson M M.A hydrogeomorphic classification for wetlands.Wetlands research program technical report WRP-DER, U.S.Army Enginers Waterways Experiment Station, Vicksburg, M.S.1993
    [51]刘厚田.湿地的定义和类型划分[J].生态学杂志,1995,14(4):73-77
    [52]柴岫,金树仁,若尔盖高原沼泽类型及其发生与发展[J].地理学报,1963,29(3):363-366
    [53]殷康前,倪晋仁.湿地研究综述[J].生态学报,1998,18(5):539-546
    [54]陆健健主编.中国湿地[M].上海:华东师范大学出版社,1990
    [55]刘子刚,马学慧.湿地的分类[J].湿地科学与管理,2006,2(1):60-63
    [56]曹宇,莫利江,李艳,等.湿地景观生态分类研究进展[J].应用生态学报,2009,20(12):3084-3092
    [57]Cowardin L M, Carter V, Golet F C.1995. U.S. fish and wildlife service wetland classification:a review. In:Finlason C M, Van der Valk A G eds. Classification and Inventory of the World's Wetlands Netherlands:Kluwer Academic Publishers,139-152
    [58]顾丽,王新杰,龚直文,等.北京湿地景观监测与动态演变[J].地理科学进展,2010,29(7):789-796
    [59]邓茂林,田昆,段宗,等.高原湿地若尔盖国家级自然保护区景观变化[J].山地学报,2010,18(2):240-246
    [60]韩振华,李建东,殷红,等.基于景观格局的辽河三角洲湿地生态安全分析[J].生态环境学报,2010,19(3):701-705
    [61]刘恩峰,侯伟,崔莉,等.南四湖湿地景观格局变化及原因分析[J].湿地科学,2009,7(3):261-265
    [62]李颖,张养贞,张树文.三江平原沼泽湿地景观格局变化及其生态效应[J].地理科学,2002,22(6):677-682
    [63]王宗明,陈铭,宋开山,等.三江平原别拉洪河流域湿地农田化过程中湿地-农田景观梯度时空特征分析[J].水土保持学报,2008,22(1):194-198
    [64]李春华,沙晋明.厦门市湿地时空演化的遥感动态分析[J].水土保持研究,2007,14(1):43-46
    [65]曾辉,高启辉,陈雪,等.深圳市1988-2007年间湿地景观动态变化及成因分析[J].生态学报,2010,30(10):2706-2714
    [66]张曼胤.江苏盐城滨海湿地景观变化及其对丹顶鹤生境的影响[D].东北师范大学博士学位论文,2008
    [67]刘玉红,吕宪国,张世奎.湿地景观变化过程与累积环境效应研究进展[J].地 理科学进展,2003,22(1):60-70
    [68]Dahl T E.Wetland losses in the United States 1780s to 1980s[R].United States Department of Interior, Fish and Wildlife Service,1990
    [69]Baumann R H, Turner R E. Direct impacts of outer continental shelf activities on wetland loss in the central Gulf of Mexico[J]. Environmental Geology and Water Resources,1990,15:189-198
    [70]Kingsford R T, Thomas R F. Use of satellite image analysis to track wetland loss on the Murrumbidgee River floodplain in arid Australia,1975-1998[J]. Water Science and Technology,2002,45(11):45-53
    [71]Kingsford R T, Thomas R F. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia.[J]. Environ Manage,2004,34(3):383-396
    [72]王志强,张柏,徐振华,等.近50年来富锦湿地景观遥感与GIS的时空动态分析[J].地球信息科学,2006,8(1):21-2529
    [73]张华,苗苗,孙才志,等.辽宁省滨海湿地资源类型及景观格局分析[J].资源科学,2007,29(3):139-146
    [74]Guofu L, Shengyan D. Impacts of human activity and natural change on the wetland landscape pattern along the Yellow River in Henan Province[J]. Journal of Geographical Sciences,2004,14(3):339-348
    [75]丁圣彦,梁国付.近20年来河南沿黄湿地景观格局演化[J].地理学报,2004,59(5):653-661
    [76]周连义,江南,吕恒,等.长江南京段湿地景观格局变化特征[J].资源科学,2006,28(5):24-29
    [77]李加林,赵寒冰,曹云刚,等.辽河三角洲湿地景观空间格局变化分析[J].城市环境与城市生态,2006,19(2):5-7
    [78]龚文峰,袁力,范文义.基于RS和GIS扎龙湿地景观时空演变研究[J].水土保持研究,2010,17(1):107-112
    [79]孟伟庆,李洪远,郝翠,等.天津滨海新区湿地环境演化与景观格局动态[J].城市环境与城市生态,2009,22(2):4-7
    [80]Noah Fierer, Joshua P. Schimel. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. soil Biology & Biochemistry, 2002,34:777-787
    [81]王红娟,姜加虎,黄群.东洞庭湖湿地景观变化研究[J].长江流域资源与环境,2007,16(6):732-737
    [82]熊建新,吴南飞.东洞庭湖湿地景观空间结构的完整性分析[J].环境科学与管理,2008,33(4):30-33
    [83]石军南,徐永新,刘清华.洞庭湖湿地保护区景观格局变化及原因分析[J].中南林业科技大学学报,2010,30(6):18-26
    [84]熊建新.西洞庭湖湿地景观空间结构的完整性分析与优化对策[J].湿地科学与管理,2008,4(1):16-20
    [85]宫兆宁,张翼然,宫辉力,等.北京湿地景观格局演变特征与驱动机制分析[J].2011,66(1):77-88
    [86]Li H, Reynolds J F. A simulation experiment to quantify spatial heterogeneity in categorical maps[J]. Ecology,1994,75(8):2446-2455.
    [87]Riitters K H, Robert V.O'Neil, James D.Wickham, et al. A note on contagion indices for landscape analysis[J]. Landscape Ecology,1996,11(4):197-202.
    [88]Christina D. Hargis, John A. Bissonette, John L. David. The behavior of landscape metrics commonly used in the study of havitat fragmentation[J]. Landscape Ecology, 1998,13:167-186.
    [89]FUJIHARA M, KIKUCHI T. Changes in the landscape structure of the Nagara River Basin, central Japan [J]. Landscape and Urban Planning,2005,70:271-281
    [90]郑建蕊,蒋卫国,周廷刚,等.洞庭湖区湿地景观指数选取与格局分析[J].长江流域资源与环境,2010,19(3):305-310
    [91]崔丽娟,李伟,张曼胤,等.福建洛阳江口红树林湿地景观演变及驱动力分析[J].北京林业大学学报,2010,32(2):106-112
    [92]胡冰殊,曹广超,马燕飞.黑河源区景观格局空间变化分析[J].价值工程,2011(2):34
    [93]宗秀影,刘高焕,乔玉良,等.黄河三角洲湿地景观格局动态变化分析[J].地球信息科学学报,2009,11(1):91-97
    [94]杨海波,贺添,李建峰.基于模糊集对分析的黄河三角洲景观评价研究[J].人民黄河,2010,32(5):1-5
    [95]白军红,欧阳华,崔保山,等.近40年来若尔盖高原高寒湿地景观格局变化[J].生态学报,2008,28(5):2245-2252
    [96]王春连,张镱锂,王兆锋,等.拉萨河流域湿地系统景观格局多尺度分析[J].资源科学,2010,32(9):1634-1642
    [97]翟万林,龙江平,乔吉果,等.长江口滨海湿地景观格局变化及其驱动力分析[J].海洋学研究,2010,28(3):17-22
    [98]汤洁,汪雪格,李昭阳.基于CA-Markov模型的吉林省西部土地利用景观格 局变化趋势预测[J].吉林大学学报(地球科学版),2010,40(2):405411
    [99]Sarkar C, Abbasi S A. Cellular automata-based forecasting of the impact of accidental fire and toxic dispersion in process industries[J]. Journal of Hazardous Materials, 2006,137(1):8-30.
    [100]Weber T. Landscape Ecological Assessment of the Chesapeake Bay Watershed[J]. Environmental Monitoring and Assessment,2004,94:39-53.
    [101]Weber T, Sloan A, Wolf J. Maryland's Green Infrastructure Assessment:Development of a comprehensive approach to land conservation[J]. Landscape and Urban Planning,2006,77:94-110.
    [102]赵建军,张洪岩,乔志和,等.基于CA2Markov模型的向海湿地土地覆被变化动态模拟研究[J].自然资源学报,2009,24(12):2178-2186
    [103]胡茂桂,傅晓阳,张树清,等.基于元胞自动机的莫莫格湿地土地覆被预测模拟[J].资源科学,2007,29(2):142-148
    [104]孙艳楠.扎龙湿地时空格局演变的细胞自动机模型研究[D].大连:大连理工大学,2007
    [105]余瑞林,周葆华,刘承良.安庆沿江湿地景观格局变化及其驱动力[J].长江流域资源与环境,2009,18(6):522-527
    [106]董婷婷,王秋兵.东港市湿地的景观格局变化及驱动力分析[J].中国农学通报,2006,22(2):257-261
    [107]程乾,吴秀菊.杭州西溪国家湿地公园1993年以来景观演变及其驱动力分析[J].应用生态学报,2006,17(9):1677-1682
    [108]袁力.基于RS、GIS生态景观格局动态变化及其驱动力的研究[J].东北林业大学学报,2007,35(12):25-28
    [109]徐欢欢,曾从盛.基于RS和GIS的九龙江河口湿地景观变[J].湿地科学与管理,2008,4(1):20-24
    [110]曹林,韩维栋,李凤凤,等.雷州湾红树湿地景观格局演变及驱动力分析[J],2010,24(4):18-23
    [111]李文龙,王晶,郭述茂,等.玛曲沼泽湿地景观格局变化研究及驱动力分析[J].草业科学,2009,26(8):57-62
    [112]周亮进,由文辉.闽江河口湿地景观格局动态及其驱动力[J].华东师范大学学报(自然科学版),2007(6):77-87
    [113]郭跃东,何岩,张明祥,等.洮儿河中下游流域湿地景观演变及驱动力分析[J].水土保持学报,2004,18(2):118-121
    [114]CHHABRA A, PALRIA S, DADHWAL V K. Soil organic carbon pool in Indian forests [J] Forest Ecology and Management,2003,173:187-199.
    [115]YANG Y H, FANG J Y, TANG Y H, et al.Storage, patterns and controls of soil organic carbon in the Tibetan grasslands [J].Global Change Biology,2008,14: 1592-1599.
    [116]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J]地理学报,2000,55(5):533-544.
    [117]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [118]段晓男,王效科,尹弢,等.湿地生态系统固碳潜力研究进展[J].生态环境,2006,15(5):1091-1095
    [119]Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their Net Primary Productivity, seasonality and possible methane emissions [J]. Journal of atmospheric chemistry,1989,8(4):307-358
    [120]Hans Brixa, Brian K. Sorrellb and Bent Lorenzen.Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?[J]. Aquatic Botany,2001,69: 313-324
    [121]张文菊.典型湿地生态系统碳蓄积与碳循环模拟[D].华中农业大学博士学位论文,2006
    [122]方精云等.中国陆地生态系统碳库.王如松等编著.现代生态学的热点问题研究.北京:中国科学技术出版社,1996,251-267
    [123]王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-355
    [124]张文菊,彭佩钦,童成立,等.洞庭湖湿地有机碳垂直分布与组成特征[J].环境科学,2005,26(3):56-60
    [125]康文星,王卫文,何介南.洞庭湖湿地草地不同利用方式对土壤碳储量的影响[J].中国农学通报2011,27(2):35-39
    [126]高俊琴,欧阳华,张锋,等.若尔盖高寒湿地表层土壤有机碳空间分布特征[J].生态环境,2007,16(6):1723-1727
    [127]李红梅.若尔盖湿地景观格局演变与土壤有机碳储量研究[D].四川农业大学硕士学位论文,2009
    [128]刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化[J].2005,45(6):788-791
    [129]石福臣,李瑞利,王绍强,等三江平原典型湿地土壤剖面有机碳及全氮分布与积累特征[J].应用生态学报,2007,18(7):1425-1431
    [130]张文菊,吴金水,童成立,等.三江平原湿地沉积有机碳密度和碳储量变异分析[J].自然资源学报,2005,20(4):537-544
    [131]满秀玲,刘斌,李奕.小兴安岭草本泥炭沼泽土壤有机碳、氮和磷分布特征[J].北京林业大学学报,2010,32(6):48-53
    [132]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J].应用生态学报,2007,18(4):933-936
    [133]梅雪英,张修峰.长江口典型湿地植被储碳、固碳功能研究[J].中国生态农业学报,2008,16(2):269-272
    [134]葛振鸣,周晓,王开运,等.长江河口典型湿地碳库动态研究方法[J].生态学报,2010,30(4):1097-1108
    [135]张容娟,布乃顺,崔军,等.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响[J].生态学报2010,30(24):6698-6706
    [136]Gyanesh Chander, Brian L.Markham, Dennis L.Helder. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors.Remote Sensing of Environment,2009,113:893-903
    [137]Chander, G.,Meyer, D. J., Helder, D. L. Cross-calibration of the Landsat-7 ETM+ and EO-1 ALI sensors. IEEE Transactions on Geoscience and Remote Sensing, 204,42(12),2821-2831
    [138]Chander, G, Markham, B. L., & Barsi, J. A. Revised Landsat 5 Thematic Mapper radiometric calibration. IEEE Transactions on Geoscience and Remote Sensing, 2007,44,490-494
    [139]Chander, G., Coan, M. J., & Scaramuzza, P. L. Evaluation and comparison of the IRS-P6 and the Landsat Sensors. IEEE Transactions on Geoscience and Remote Sensing,2008,46(1),209-221
    [140]刘建平,赵应时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报,1999,16(2):153-161
    [141]葛宏立.面向类的图像分割方法研究[D].北京林业大学,2004.
    [142]莫登奎.中高分辨率遥感影像分割与信息提取研究[D].中南林业科技大学,2006.
    [143]Carpenter, GA., Gopal, S., Macomber, S., et al.A neural network method for efficient vegetation mapping[J].Remote Sensing of Environment,1999,70(3): 326-338.
    [144]Erikson, M.Segmentation of Individual Tree Crowns in Color Aerial Photographs Using Region Growing Supported by Fuzzy Rules[J].Canadian Journal of Forest Research,2003,33(8):1557-1563.
    [145]Benz, U., Hofman, P., Willhauck, Get al.Multi-resolution, object oriented fuzzy analysis of remote sensing data for GIS-ready information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004(58):239-258.
    [146]刘茂松,张明娟.景观生态学——原理与方法[M].北京:化学工业出版社,2004
    [147]汤孟平.森林空间结构分析与优化经营模型研究[D].北京:北京林业大学博士论文,2004
    [148]肖笃宁,赵羿,孙中伟,等.沈阳西郊景观格局变化的研究[J].应用生态学报,1990,6(1):75-84
    [149]Gordon RL. Hunsaker CT, O'Neill RV, et al. Ecological riskat the regional scale[J], Ecology,1991,8(1):196-206
    [150]Xu L, ZhaO Y. Forecast of landuse pattern change in Dongling District of Shengyang:an application of Markov process[J]. Chin.J.Appl. Eco,1993,4(3): 272-277
    [151]陈建全.漳江口湿地景观类型动态度分析[J].林业勘察设计(福建),2007,(2):55-57
    [152]史培军等.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2000
    [153]Wang X T, Bao Y H. Study on the methods of land use dynamic change research. Progress in Geography,1999,18(1):81-87
    [154]宁龙梅.武汉市湿地功能评价与景观格局动态变化研究[D].武汉:中国科学院测量与地球物理研究所,2004
    [1555]Royle J A, Koneff MD, Reynolds R E.spatial Modeling of Wetland Condition in the U.S.Priairie pothole Region.Biometrics.2002.58(2):270-279
    [156]宁龙梅,王学雷,吴后.武汉市湿地景观格局变化研究[J].长江流域资源与环境,2005,14(1):44-49
    [157]王学雷,吴宜进.马尔科夫模型在四湖地区湿地景观变化研究中的应用[J].华中农业大学学报,2002.21(3):288-291
    [158]邵军.基于3S技术的武汉市湿地景观变迁研究[D].长沙:中南林业科技大学,2007.
    [159]朱海涌.基于CA-Markov模型的艾比湖流域平原区景观格局动态模拟预测[J].干旱环境监测,2008,22(3):134-139
    [160]黎夏,叶嘉安,刘小平,等.地理模拟系统:元胞自动机与多智能体[M].北京:科学出版社,2007
    [161]郑燕凤.基于GIS和CA-Markov模型的土地利用变化研究-以招远市为例 [D].泰安:山东农业大学,2009
    [162]徐德应.人类经营活动对森林土壤碳的影响[J].世界林业研究,1994,(5):26-31
    [163]方精云.全球生态学:气候变化与生态响应[M].北京:高等教育出版社,2000.
    [164]Cynthia R Z, David K, Marta V L, et al. Attributing physical and biological impacts to anthropogenic climate change [J]. Nature, 2008,453:353-358
    [165]Yoshikawa, K.& Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac.Process.2003,14,151-160
    [166]Stott, P. A. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett.2003,30,1728
    [167]Edwards, M.& Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature,2004, 430, 881-884
    [168]Milly, P. C. D., Dunne, K. A.& Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature,2005,438:347-350
    [169]Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to globe warming[J], Nature, 1991,351,304-306
    [170]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科技,1981,2:1-12
    [171]NAKLANG K, WHITEBREAD A, LEFROY R, etal. The management of rice straw, fertilizers and leaf litters in rice cropping systems in Northern Thailand:Soil carbon dynamics[J]. Plant and Soil,1999, 209:21-28
    [172]ZDRULI P, ESWARAN H, KIMBLE J. Organic carbon contents and rates of sequestration in soils of Albania [J]. Soil Science Society of American Journal,1995, 59:1684-1687
    [173]Wu J, Brookes P C. The proportional mineralization of microbial biomass and organic matter caused by air drying and rewetting of a grassland soil[J]. Soil Biology and Biochemistry, 2005,37:506-515.
    [174]李伟.洪湖水生维管束植物区系研究[J].武汉植物学研究,1997,15(2):113-122
    [175]王学雷,厉恩华,余璟,邓帆.生态恢复前后洪湖水生植被景观各向异性动态变化研究[J].湿地科学,2008,8(2):105-109
    [176]索安宁,赵冬至,张丰收.我国北方河口湿地植被储碳、固碳功能研究-以辽河三角洲盘锦地区为例[J].海洋学研究.2010,28(3):68-71
    [177]何介南,康文星.广州市水稻作物生态系统碳汇功能[J].中国农学通报, 2010,26(2):246-249
    [178]何浩,潘耀忠,朱文泉,等.中国陆地生态系统服务价值测量[J].应用生态学报,2005,16(6):1122-1127
    [179]李洁静,潘根兴,张旭辉,等.太湖地区长期施肥条件下水稻-油菜轮作生态系统净碳汇效应及收益评估[J].应用生态学报,2009,20(7):1664-1670
    [180]黄建晔,董桂春,杨洪建,等.开放式空气C02增高对水稻物质生产与分配的影响[J].应用生态学报,2003,14(2):253-257.
    [181]王绍强,许军,周成虎.土地覆被变化对陆地碳循环的影响-以黄河三角洲河口地区为例[J].遥感学报,2001,5(2)142-148
    [182]海龙,兴安落叶松原始林和砍伐后恢复林分的碳汇功能研究[D].呼和浩特:内蒙古农业大学,2009
    [183]Daniel P R, Stavroulas, Garyp, et al. Patterns of canopy air CO2 concentration in a brackish wetland:analysis of a decade of measurement s and the simulated effects on the vegetation [J]. Agricultural and Forest Meteorology, 2002, 114:59-73
    [184]Fang J,Chen A,Peng C,et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292: 2320-2322.
    [185]唐罗忠,生原喜久雄,黄宝龙,等.江苏省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报(自然科学版),2008,28(2):1-6
    [186]Ni J. Net primary productivity in forests of China:scaling-up of national inventory data and comparison with model predictions [J]. Forest Ecology and Management, 2003,176:485-495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700