用户名: 密码: 验证码:
新型无机—有机复合高分子絮凝剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,水是生命之源,水污染是环境污染的根源所在,水一旦受到污染,人类及其他动植物都将受到其危害。废弃钻井液是一种稳定的悬浮体系,因含有多种有毒的有机化学添加剂及无机盐、碱类物质等,且排放量大、处理困难,是石油化工行业的一大污染源,如果不经过处理就排放,对水资源、土壤等将会造成严重的危害。随着石油工业的发展,废弃钻井液带来的污染问题也越来越受到人们的重视,废弃钻井液的治理也得到了一定的发展,世界各国都相继建立了相应的法律条文以促进环境保护。
     治理水污染不可避免的要用到水处理药剂,而絮凝剂是水处理中用量最大的一类。絮凝剂的种类繁多,多达两三百种,按化学成分可分为无机絮凝剂,有机絮凝剂和微生物絮凝剂三种,介于无机、有机絮凝剂之间,还有混合型和复合型絮凝剂。因为每一种絮凝剂都有其优缺点和应用范围,大量研究表明,将两种或两种以上的絮凝剂通过混合或反应形成一种复合絮凝剂进行应用,或是通过分别投加进行复配使用,则可以克服使用单一絮凝剂的许多不足,实现优势互补,在降低水处理成本的同时提高对废水的絮凝处理效果,所以复合絮凝剂的开发和应用成为了当前废水处理领域的热点之一。
     无机–有机复合高分子絮凝剂兼具无机絮凝剂的快速破胶以及有机高分子絮凝剂的吸附架桥能力,且用量少,脱色能力强,除浊性能好,特别是无机纳米氧化物与天然高分子作用形成的复合絮凝剂,具有原料来源广,价格低廉,无毒、易降解的优点,是一种新的、很有发展潜力的水处理药剂。利用无机–有机高分子复合絮凝剂对废弃钻井液进行固液分离处理,所需设备少,操作简单,成本低,适合大规模推广使用。本文以对废弃钻井液进行固液分离处理后固相含水率低于30%为研究目标,开发出了四种新型无机–有机复合高分子絮凝剂,主要工作如下:
     1、以胜利油田某一井区的废弃钻井液为研究对象,分析废弃钻井液的基本理化性质,筛选出合适的破胶剂;
     2、以水玻璃为原料制得纳米氧化硅胶体,淀粉(St)、丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,采用原位共聚的方法制备出无机–有机复合高分子絮凝剂SSAD和CSSAD,并优化了制备条件;对废弃钻井液进行处理;无破胶剂氯化铝的作用下,SSAD在投量为0.5%时絮凝、脱水效果最好,固相含水率为20.78%,固相去除率为92.80%,CSSAD在投量为0.4%时絮凝脱水效果最好,固相含水率和固相去除率分别为19.85%和95.89%。
     3、以氯化铝为原料制得氧化铝胶体,用KH570进行表面改性,再与丙烯酰胺、阳离子单体进行聚合反应,制备出了阳离子型无机–有机复合高分子絮凝剂CAPAM,并优化了制备条件;对废弃钻井液进行处理,在破胶剂的作用下,CAPAM的加量为0.3%时,固相含水率达到最小为19.86%,固相去除率最高为98.60%;无破胶剂的作用下,CAPAM的加量为0.5%时,固相含水率最小为20.15%,CAPAM的加量为0.4%时,固相去除率最大为95.30%。
     4、以水玻璃、玉米淀粉、羧甲基纤维素钠(CMC)为原料,制备出阴离子型复合絮凝剂SSCMC,并优化了制备条件;无破胶剂的作用下,当SSCMC的加量为0.4%时,处理效果最好,固相含水率和固相去除率分别为28.08%和89.34%,上清液透光率最高达96.36%;
     5、以上述所制备的四种复合絮凝剂与商品化的絮凝剂分别对废弃钻井液进行处理,结果表明复合絮凝剂形成的絮体大、密实,沉降速率快,其中以CSSAD对废弃钻井液的除油率、除浊率、有机质去除率、CODCr去除率最高,其值分别为95.12%,98.80%,96.54%和99.67%;SSCMC对重金属离子铬、镉和铅的去除率最高,其值分别为84.84%,88.30%,89.29%;CSSAD的絮凝脱水性能最好,固相含水率最低为19.85%,固相去除率最高为95.89%,其次是CAPAM和SSAD;
     6、从废弃钻井液本身的组成及性质入手研究无机–有机复合絮凝剂对废弃钻井液的絮凝作用机理,提出复合絮凝剂的酸化混凝及自组装与沉降作用机理。
As we all know, water is the source of the lives, water pollution is theroot of environment pollution. Humans, animals and plants will be subject tothe harms from water contamination. Waste drilling fluid is a major source ofpollution in the petrochemical industry, which is a stable suspension system,containing a variety of toxic organic additives and inorganic salts, alkalisubstances, and the amount is very large and difficult to treatment. If the wastedrilling fluid is not treated to emission, it will be causing serious harm towater source and soil. With the development of the oil industry, the problemsof pollution caused by waste drilling fluid are being more and more importantto people, and the treatment of the waste drilling fluid also has been developed.Many countries in the world have established the appropriate legal provisionsto promote environmental protection.
     Water pollution treatment cannot be avoided to use the water treatmentchemicals, the largest amount of which is flocculants. The types of flocculantsare very large, as many as two or three hundreds species. The flocculants canbe classified to inorganic flocculants, organic flocculants and microbial flocculants according to the chemical compositions. There also have mixedand composite flocculants between the inorganic and organic flocculants.Because each flocculant has its advantages, disadvantages, and applicationranges, a large number of researches have been shown that two or more thantwo flocculants by mixing or reaction to a composite flocculant being used oradded respectively can overcome many shortcomings of just using one singleflocculant, realize complementary advantages, and reduce the water treatmentcosts and also improve the flocculation effect at the same time, thedevelopment and applicaltion of composite flocculants have become one ofthe research focus in the area of wastewater treatment.
     Inorganic–organic composite polymer flocculant, which has the quick gelbroken performance of inorganic flocculants, the adsorption bridgingcapability of organic polymer flocculants, and low doses, strongerdecolorization ability, good turbidity removal performance, especially thecomposite flocculants formed by inorganic nano–oxides and natural polymerswith a wide source of raw materials, low cost, non–toxic, and easilydegradable, is a new and great potential for development of water treatmentchemicals. Use of inorganic–organic polymer composite flocculant onsolid–liquid separation for waste drilling fluid is suitable for large–scaleintroduction because of less equipment, simple operation, and low cost. Torealize the research objective of the water content of the filtration cake lessthan30%after solid–liquid separation of waste drilling fluid, four new inorganic–organic composite polymer flocculants were developed in thispaper; the main work is as follows:
     1. The basic physical and chemical properties of waste drilling fluid,which from one well of Shengli Oilfield, were analyzed,and the right gelbreaker used for the waste drilling fluid treatment was filtered out.
     2. Inorganic–organic composite polymer floccualnts SSAD and CSSADwere prepared by the reaction of corn starch (St),acrylamide (AM) and(2–methacryloyloxyethyl) trimethyl ammonium chloride (DMC) with apreviously prepared SiO2sol from water glass by using in-situcopolymerization process, and the preparation conditions were optimized;without the function of gel breaker AlCl3, when the dose of SSAD was0.5%,the flocculation performance was the best, solid water content was20.78%,solid weight removal ratio was92.80%, the flocculation performance ofCSSAD was the best in a dosage of0.4%, solid water content and solidremoval ratio were19.85%and95.89%, respectively.
     3. Al2O3colloid prepared by AlCl3was modified on surface with KH570,then the surface modified Al2O3colloid with AM and DMC were used toprepared the cationic inorganic–organic composite polymer flocculantCAPAM, and the preparation conditions of CAPAM were optimized; CAPAMwas used for waste drilling fluid treatment in a dosage of0.3%with AlCl3,solid water content reached a minimum value of19.86%, and solid removalratio was up to98.60%; without the function of gel break, the minimum water content was20.15%at a dosage of0.5%, the maximum solid weight removalwas95.30%at a dosage of0.4%.
     4. Anionic composite flocculant SSCMC was prepared by the reaction ofcorn starch, sodium carboxymethyl cellulose (CMC) with a previouslyprepared SiO2sol from water glass, and the preparation conditions of SSCMCwere optimized; the flocculation performance of SSCMC was best when thedose of SSCMC was0.4%without of the function of gel breaker, and solidwater content and weight removal ratio were28.08%and89.34%,respectively, and the transmittance of the upper clear layer was up to96.36%.
     5. The four prepared composite flocculants and the commercializationflocculants were used for waste drilling fluid treatment; the results showedthat the flocs formed by composite flocculants were large, dense and rapidsedimentation, in which CSSAD had the highest oil removal, turbidityremoval, organic matter removal, and CODCr removal, and the value were95.12%,98.80%,96.54%, and99.67%, respectively; SSCMC had the highestCr, Cd and Pb removal, and the value were84.84%,88.30%,89.29%,respectively; CSSAD had the best flocculation and dewater performance withthe lowest solid water content of19.85%and the highest solid removal of95.89%, followed by CAPAM and SSAD.
     6. The flocculation mechanism of inorganic–organic compositeflocculants was researched from the components and properties of wastedrilling fluid, and the acidification coagulation and self–assembly and settlement mechanism was first proposed to explain the flocculation action onwaste drilling fluid.
引文
[1]刘国伟.两性絮凝剂的制备研究[D].北京化工大学,2008
    [2]李睿.天然高分子改性絮凝剂的制备及应用研究[D].西安:长安大学,2010
    [3]夏军,黄国和.可持续水资源管理[M].北京:化学工业出版社,2005:7
    [4]容锵桃,张鸿郭,周少奇.水回用及其经济效益分析[J].广东化工,2005,5:36–38
    [5]张越群.我国工业废水处理现状及趋势[J].水工业市场,2011,6:23–26
    [6]赵雄虎,王风春.废弃钻井液处理研究进展[J].钻井液与完井液,2004,21(2):43–48
    [7]王学川,胡艳鑫,郑书杰,强涛涛.国内外废弃钻井液处理技术研究现状[J].陕西科技大学学报(自然科学版),2008,28(6):169–173
    [8] Jones F V, Rushing J H, Churan M A. The chronic toxicity of mineral oil–wet andsynthetic liquid–wet cuttings on an estuarine fish,fundulus grandis [J]. Society ofPetroleum Engineers,1991,11:721–730
    [9]陈琼,赵长征,梁宏.钻井废水处理技术及展望[J].油气田环境保护,2008,18(2):49–52
    [10]催之建,梅宏,韩新芳,于海宁,陈军. XG–泥浆固化剂在井场的实际应用[J].新疆石油学院学报,1999,11(2):26–28
    [11]宋明全,蔡利山,刘四海,钻井废浆液固化剂BH–1的研制与应用,石油钻探技术,2001,29(3):53–55
    [12]朱和平.泥浆转化为水泥浆(MTC)[J].西南石油学院学报,1996,18(4):116–119
    [13] Wilson W N, Carpenter R B, Bradshaw R D. Conversion of mud cement [J]. Society ofPetroleum Engineers,1990,9:485–494
    [14] Cowan K M, Hale A H, Nahm J J. Conversion of drilling fluids to cements with blastfurnace slag: performance properties and applications for well cementing [J]. Society ofPetroleum Engineers,1992,10:277–288
    [15] Fisher. Knock–down separation of emulsions [P]. United States Patent,6214219,2001–04–10
    [16] Scalliet. Process for breaking an emulsion [P]. United States Patent,6214236,2001–04–10
    [17] Vega C, Delgado M. Treatment of waste–water/oil emulsions using microwave radiation[J]. Society of Petroleum Engineers,2002,3:531–543
    [18]姜子东.钻井排放物的环境效应初探[D].北京:中国石油大学,1992
    [19] Getiff J M. Waste management and disposal of cuttings and drilling fluid waste resultingfrom the drilling and completion of wells to produce Orinoco very heavy oil in easternVenezuela. SPE46600,1998,6
    [20]李海波,胡筱敏,罗茜.含油废水的膜处理技术[J].过滤与分离,2000,10(4):10–14
    [21]郭晓.低渗油层石油废水的回用技术[J].中国给排水,2002,18(4):80–82
    [22]陈中元,陈晓,富坚.高聚物絮凝剂的研究进展[J].杭州化工,2007,37(2):5–8
    [23]汤鸿霄.无机高分子复合絮凝剂的研制趋势[J].中国给水排水,1999,15(2):1–5
    [24] Lu S J, Sun X M. Study on Synthesis of AmPhoterie Polyaerylamide in Inverse Emulsion[J]. Transactions of Tianjin University,2000,6(1):90–94
    [25]张亚文,胡东升,彭炳乾.水处理絮凝剂研究进展[J].石化技术与应用,2009,27(5):470–477
    [26]朱富坤,宴井春,闫永胜,唐宏.纳米聚合硫酸铁絮凝剂的水热法制备及其应用[J].能源环境保护,2008,22(1):30–34
    [27] Joo D J, Shin W S, Choi J H, Choi S J, et al. Decolorization of reactive dyes usinginorganic coagulants and synthetic polymer [J]. Dyes and Pigments,2007,73(1):59–64
    [28] Lan W,Qiu H Q,Zhang J,et al.Characteristic of a novel composite inorganic polymercoagulant–PFAC prepared by hydrochloric pickle liquor [J]. Journal of HazardousMaterials,2009,162:174–179
    [29] Zeng Y B,Park J B. Characterization and coagulation performance of a novel inorganicpolymer coagulant–poly–zinc–silicate–sulfate [J]. Colloid surface A: Physicochem. Eng.Aspects,2009,334:147–154
    [30] Gao B Y, Hahn H H. Hofmann E.Evalution of aluminum silicate polymer composite as acoagulant for water treatment [J]. Water Research,2002,36:3573–3581
    [31] Moussas P A, Zouboulis A L.A study on the properties and coagulation behaviour ofmodified inorganic polymeric coagulant–poly–ferric silicate sulphate (PFSiS)[J].Separation and Purification Technology,2008,63(2):475–483
    [32]周庆,余锡宾,吴红娥,刘婕妤.复合絮凝剂聚硅酸铁锌(PSZF)的絮凝性能[J].上海师范大学学报:自然科学版,2008,37(3):286–290
    [33]申娟娟,刘根起,宋金月,杨晶华,程永清.有机高分子絮凝剂的研究现状[J].材料开发与应用,2011,26(2):96–99
    [34] Solberg D, Wagberg L. Adsorption and flocculation behavior of cationic polyacrylamideand colloidal silica [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2003,219:161–172
    [35]曹建苹,张胜,韩宝丽.阳离子型聚丙烯酰胺絮凝剂的合成及表征[J].北京化工大学学报(自然科学版),2011,38(4):52–57
    [36]刘炳选,张亚通,李立,王晓承,靳悦淼.乳液法合成阳离子聚丙烯酰胺污水絮凝剂的研究[J].河北工业科技,2011,28(3):173–176
    [37]岳钦艳,李春晓,高宝玉,等.疏水缔合阳离子型聚丙烯酰胺絮凝剂的制备及其对含油废水的除油效果[J].石油化工,2009,38(2):169–173
    [38] Jones F, Farrow J B, Bronswijk W. An infrared study of a polyacrylate flocculant adsorbedon hematite [J]. Langmuir,1998,14:6512–6517
    [39] Owen A T, Fawell P D, Swift J D. The preparation and ageing of acrylamide/acrylatecopolymer flocculant solutions [D]. Int. J. Miner. Process.,2007,84:3–14
    [40]王斌,孟双明,温月丽,郭永,樊月琴.阴离子絮凝剂的合成及絮凝和脱水性能研究[J].山西化工,2007,27(2):1–2
    [41]刘学勇.羟胺改性氧肟酸型絮凝剂及其絮凝性能研究[D].沈阳:沈阳理工大学,2008
    [42]李业兴.反相乳液聚合新型絮凝剂及性能研究[D].沈阳:沈阳理工大学,2010
    [43] Chen L, Pelton R. PEO flocculation of polystyrene–core poly (vinylphenol)–shell latex: anexample of ideal bridging [J]. Langmuir2001,17:7770–7776
    [44] Yu Y, Zhuang Y Y, Li Y, Qiu M Q. Effect of dye structure on the interaction betweenorganic flocculant PAN–DCD and dye [J]. Ind. Eng. Chem. Res.,2002,41:1589–1596
    [45]王爽,葛建团,常青,徐敏.高分子重金属絮凝剂MAPEI处理含镉废水的研究[J].环境科学与管理,2011,26(6):56–60
    [46] Ryan M S, Mayeda D K, Proverb R J, Dauplaise D L. Ampholytic polymers, polymericmicroemulsions, methods of producing same, and use same as flocculant [P]. EP0669349A1,1995–2–23
    [47]朱胜庆,李小瑞,李培枝.氟碳型两性聚丙烯酰胺絮凝剂的制备及性能[J].石油化工,2009,38(11):1219–1224
    [48]张文俊,胡保安,张艳,宿辉,肖敏.高分散聚合法制备新型两性包被絮凝剂[J].化学工程,2009,37(2):67–70
    [49]刘玉婷,吴宏伟,尹大伟,苗东琳.疏水缔合型两性絮凝剂的合成及其性能[J].精细石油化工,2009,26(6):33–36
    [50]刘中卫.两性聚丙烯酰胺的制备及其絮凝性能的研究[D].北京:北京化工大学,2008
    [51]刘国伟.两性絮凝剂的制备研究[D].北京:北京化工大学,2008
    [52] D. O. Krentz, C. Lohmann, S. Schwarz, S. Bratskaya, T. Liebert, J. Laube, T. Heinze, W.M. Kulicke. Properties and flocculation eEfficiency of highly cationized starch derivatives[J]. Starch/St ke,2006,58:161–169
    [53] Krishnamoorthi S, Singh R P. Synthesis, characterization, flocculation, and archeologicalcharacteristics of hydrolyzed and unhydrolyzed polyacrylamide–grafted poly(vinylalcohol)[J]. Journal of Applied Polymer Science,2006,101(5):2109–2122
    [54]饶金星,淀粉类延伸无絮凝剂的研究及其应用进展[J].化工职业技术教育,2007,2,33–35
    [55] Bratskaya S, Schwarz S, Liebert T, Thomas Heinze, Starch derivatives of high degree offunctionalization10. Flocculation of kaolin dispersions [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,254:75–80
    [56] Dogu I, Arol A I. Separation of dark–colored minerals from feldspar by selectiveflocculation using starch [J]. Powder Technology,2004,13(9):258–263
    [57] Wei Y P, Cheng F, Zheng H. Synthesis and flocculating properties of cationic starchderivative [J]. Carbohydrate Polymers,2008,74:673–679
    [58] Krentz D O, Lohmann C, Schwarz S, Bratskaya S, Liebert T, Laube J, Heinze T, KulickeW M. Properties and flocculation efficiency of highly cationized starch derivatives.Starch/St rke,2006,58:161–169
    [59] Schwarz S, Liebert T, Heinze T. Starch derivatives of high degree of functionalization20.Flocculation of kaolin dispersions [J]. Colloids and Surface A: Physicochem. Eng.Aspects,2005,254:75–80
    [60] Jiraprasertkul W, Nuisin R, Jinsart W, Kiatkamjornwong S. Synthesis and characterizationof cassava starch graft poly(acrylic acid) and poly[(acrylic acid)–co–Acrylamide] andpolymer flocculants for wastewater treatment [J]. Journal of Applied Polymer Science,2006,102:2915–2928
    [61]达超超,闫沙沙,赵亚州,马雄,刘军海. S–DMDAAC–AM阳离子型高分子絮凝剂的合成及性能研究[J].化工技术与开发,2011,40,(3):1–3
    [62]马希晨,吴星娥,曹亚峰.淀粉基两性天然高分子改性絮凝剂的合成[J].吉林大学学报:2004,42(2):273–277
    [63] Hebeish A, Higazy A, El–Shafei A, Sharaf S. Synthesis of carboxymethyl cellulose (CMC)and starch–based hybrids and their applications in flocculation and sizing [J].Carbohydrate Polymers,2010,79(1):60–69
    [64] You L J, Lu F F, Li D, Qiao Z M, Yin Y P. Preparation and flocculation properties ofcationic starch/chitosan crosslinking–copolymer [J]. Journal of Hazardous Materials,2009,172:38–45
    [65]郭红玲,李新宝.改性羧甲基纤维素絮凝剂的制备与应用[J].人民黄河,2010,32(9):46–47
    [66] Yang F, Li G, He Y G, Ren F X, Wang G X. Synthesis, characterization and appliedproperties of carboxymethyl cellulose and polyacrylamide graft copolymer [J].Carbohydrate Polymers,2009,78:95–99
    [67]钱晓荣,王连军,冒爱荣,朱志祥.季铵化改性木屑纤维素的制备及对氟离子的吸附研究[J].环境污染与防治,2009,31(10):33–35,56
    [68]郭建欣,麻晓霞.改性木质素类絮凝剂的合成及其应用效果研究[J].化学世界,2011,5:310–313
    [69]杨爱丽,高伟,魏文韫,蒋文举.新型木质素季铵盐絮凝剂的合成与絮凝性能[J].中国造纸学报,2008,23(2):60–63
    [70]罗渊,李云雁,赵军涛,颜涛.木质素基阳离子型絮凝剂的制备与性能研究[J].武汉工业学院学报,2009,28(4):55–59
    [71]顾玲,马宇峰.木质素基两性絮凝剂的制备及其用于模拟燃料废水脱色处理的研究[J].应用化工,2009,38(1):87–94
    [72] Area M C, Sanchez A L, Felissia F E, Venica A D, Valade J L. Grafting of NSSClignosulfonates for cationic flocculating agents production [J]. Cellulose Chemistry andTechnology [J],2002,36(1–2):105–121
    [73]石永安,张玉苍,孙岩峰,何连芳,丛日昕.木质素磺酸盐复配絮凝剂的研究[J].安徽农业科学,2011,39(4):2189–2191
    [74]王杰.两性高分子絮凝剂在污泥脱水上的应用研究[J].工业水处理,2000,20(8):28–33
    [75]王一鸣.有机高分子絮凝剂的应用与研究进展[J].四川环境,2009,28(3):71–74
    [76] Ho Y C, Norli I, Alkarkhi A F M, Morad N. Characterization of biopolymer flocculant(pectin) and organic synthetic flocculant (PAM): A comparative study on treatment andoptimization in kaolin suspension [J]. Bioresource Technology,2010,101:1166–1174
    [77] Mishra A, Yadav A, Agarwal M, Bajpai M.Fenugreek mueilage for solid removal fromtannery effluent [J].Reactive and Functional Polymers,2004,59(1):99–104
    [78]薛学佳,周钰明,吕波.天然植物胶絮凝剂的改性和性能研究[J].精细化工,2001,18(7):405–407
    [79]刘四清,黄少兵.天然植物胶粉的改性及其对高岭土的絮凝效果[J].有色金属,1996,48(3):22–25
    [80] M. Rebhun, S. Meir, Y. Laor, Using dissolved humic acid to remove hydrophobiccontaminants from water by complexation–flocculation process, Environ. Sci. Technol.,1998,32,981–986
    [81]王镇,王孔星,谢玉敏.一株絮凝剂产生菌的特性研究[J].微生物学报,1995,35(2):121–129
    [82]余荣升,徐龙君.微生物絮凝剂的现状与前景分析[J].环境污染与防治,2003,25(2):77–79
    [83]任文萍,柴涛.微生物絮凝剂的研究及在废水处理中的应用[J].广州化工,2011,39(12):34–35.
    [84]徐美娟,胡惠仁,刘秋娟.环境友好絮凝剂——微生物絮凝剂[J].上海造纸,2004,35(1):52–55
    [85] Butterfield C T. Studies of sewage purification Ⅱa zooloeaforming bacterium isolatedfrom activated sludge [J]. United Sates Public Health Reports,1935,50:671–681
    [86]张晶.微生物絮凝剂的研究及应用前景[J].环境保护科学,2006,35(4):17–20
    [87]宋京津,李科林.微生物絮凝剂在重金属废水处理方面的研究进展[J].精细化工中间体,2011,41(2):14–16
    [88] Yim J H, Kim S J, Ahn S H, Lee H K. Characterization of a novel bioflocculant p–KG03from a marine dinoflagellate gyrodinium impudicum KG03[J]. Bioresource Technology,2007,98(2):361–367
    [89]曾艳,张明青,唐琳,邵淋飞,张鹏.曝气池活性污泥胞外聚合物对高分散悬浊液的絮凝性能研究[J].工业水处理,2011,31(5):24–26
    [90] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on theformation and stability of biogranules [J]. Appl. Micobiol. Biotechnol.,2004,65:143–148
    [91]苏春彦,康春莉,郭平.天然水中优势菌胞外聚合物及其中主要成分对铅的吸附[J].应用化学,2008,25(1):1–4
    [92]郑怀礼.生物絮凝剂与絮凝技术[M].北京:化学工业出版社,2002
    [93]彭丽风.壳聚糖的制备及其在废水处理中得应用[J].化学世界1999,4:176–179
    [94] Zeng D F, Wu J J, John F K. Application of a chitosan flocculant to water treatment [J].Carbohydrate Polymers,2008,71:135–139
    [95] Van D Y, Thome J P. Purification of PCB contaminated water by chitosan a biological testof efficiency using the common barbell barbus [J]. Bull Environ Contam Toxicol,1986,37:858–865
    [96] Tanada S, Kyotani S, Nakamura T, et al. Adsorption removal of Paraquat by chitosanbeads [J]. Chem. Express,1991,6(10):795–798
    [97]齐爱玖,李万海,王红,郭景海,李强,董适,孟宪勇.由虾蟹壳制取天然高分子絮凝剂壳聚糖[J].吉林化工学院学报,2006,23(1):15–18
    [98]刘晓娜.壳聚糖絮凝剂对污泥脱水性能的影响研究[J].贵州师范大学学报(自然科学版),2011,29(2):29–32
    [99]李莉,刘光东,张卫东.天然絮凝剂壳聚糖对皂素废水的深度处理实验[J].三峡环境与生态,2010,3(2):11–13
    [100]嵇胜全,朱爱萍,潘颖楠. N–羧乙基聚糖对重金属汞离子絮凝效果的研究[J].工业水处理,2011,31(10):71–74
    [101] Suh H H, Kwon G S, Lee C H, Kim H S, Oh H M, Yoon B D. Characterization ofbioflocculant produced by bacillus sp. DP–152[J]. Journal of Fermentation andBioengineering,1997,84(2):108–112
    [102]陶淘,卢秀清,冷静. MBF的研究与应用进展[J].环境科学进展,1999,7(6):7–8
    [103]韩宇.根瘤菌絮凝剂的研究[D].广西大学,2010
    [104] Lian B, Chen Y, Zhao J, Teng H H, Zhu L J, Yuan S. Microbial flocculantion by bacillusmucilaginosus: applications and mechanisms [J]. Bioresource Technology,2008,99(11):4825–4831
    [105]刘敬武,单爱琴,周海霞,李海花,黄媛媛.微生物絮凝剂处理矿井水实验研究[J].环境科学与管理,2008,33(11):109–111
    [106]高宝玉.水和废水处理用复合高分子絮凝剂的研究进展[J].水处理信息报导,2011,4:1–5
    [107] Yan M Q, Wang D S, Qu J H, Ni J R, Chow C. W. K. Enhanced coagulation for highalkalinity and micro–polluted water: the third way through coagulant optimization [J].Water Research,2008,42:2278–2286
    [108] Gao B Y, Yue Q Y, Wang B J, Chua Y B. Poly–aluminum–silicate–chloride (PASiC)—anew type of composite inorganic polymer coagulant [J]. Colloid and Surfaces A:Physicochem. Eng. Aspects,2003,229(1–3):121–127
    [109] Joo D J, Shin W S, Choi J H, Choi S J, et al. Decolorization of reactive dyes usinginorganic coagulants and synthetic polymer [J]. Dyes and Pigments,2007,73(1):59–64
    [110]张景香,陆金仁,单宝田,贝利平.聚硅酸铁镁絮凝剂制备及其脱色作用的研究[J].工业水处理,2009,29(8):56–58
    [111]刘雄才,张玉,周集体,曹同川,王国栋.复合絮凝剂PFMS的制备及其絮凝性能研究[J].工业水处理,2009,29(9):41–44
    [112] Zeng Y B, Park J B. Characterization and coagulation performance of a novel inorganicpolymer coagulant—poly–zinc–silicate–sulfate [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,334:147–154
    [113]刘东京,邱祖民,邱俊明.稀土絮凝剂的制备及其在印钞废水处理中的应用[J].南昌大学学报:工科版,2011,33(3):227–230
    [114]王海霞,何海宾,谷晋川,孙雪舱.粉煤灰絮凝剂处理甲基橙废水的实验研究[J].科技信息,2011,24:123,125
    [115]刘志远,李昱辰,王鹤立,居玉坤.复合絮凝剂的研究进展及应用[J].工业水处理,2011,31(5):5–8
    [116]杨鹜远,钱锦文,方明晖,杨典勇,沈之荃. Al2(SO4)3–CPAM复合絮凝剂在造纸脱墨废水中的应用[J].水处理技术,2003,29(2):99–101
    [117]杨鹜远,钱锦文,沈之荃,赵兴军.氢氧化铝–聚丙烯酰胺杂化复合絮凝剂的合成与表征[J].高分子材料科学与工程,2004,20(1):68–71
    [118] Wang Y, Gao B Y, Yue Q Y, Wei J C, Li Q. The characterization and flocculationefficiency of composite flocculant iron salts–polydimethydiallylammonium chloride [J].Chemical Engineering Journal,2008,142(2):175–181
    [119]赵树发,赵立群,戴继伟,孙承林,张增磊.无机/有机高分子复合絮凝剂处理含油废水[J].环境保护科学,2006,32(5):29–32
    [120]魏艳平.新型有机–无机混合絮凝剂的研制及应用[D].武汉:武汉理工大学,2005
    [121]谢玲玲,何国利,张磊,周鹏,刘永德.新型污水处理复合絮凝剂的制备及应用研究[J].广东化工,2011,6:124–125
    [122] Zeng D F, Wu J J, Kennedy J F. Application of a chitosan flocculant to water treatment [J].Carbohydrate Polymers,2008,71(1):135–139
    [123] Fernandez M E, Ascencio J A, Mendoza–Anaya D, Rodriguez L, Jose–Yacaman M.Experimental and theoretical studies of palygorskite clays [J]. Journal of MaterialsScience,1999,34:5243–255
    [124]陈辉,强颖怀,尹慧.凹凸棒土/聚丙烯酰胺杂化絮凝剂的合成及其絮凝特性研究[J].非金属矿,2011,34(2):36–39
    [125]杨友强,方勇.一种新型改性蒙脱石复合絮凝剂的制备及其应用研究[J].非金属矿,2009,32(5):24–26
    [126]杨万政,蒲维维,王捷.稀土–甲壳素复合絮凝剂的研究[J].稀土,2005,26(3):55–57
    [127] Mishra S, Mukul A, Sen G, Jha U. Microwave assisted synthesis of polyacrylamidegrafted starch (St–g–PAM) and its applicability as flocculant for water treatment [J].International Journal of Biological Macromolecules,2011,1(1):106–111
    [128] Sen G, Ghosh S, Jha U, Pal S. Hydrolyzed polyacrylamide grafted carboxymethylstarch(Hyd. CMS–g–PAM): An efficient flocculant for the treatment of textile industrywastewater [J]. Chemical Engineering Journal,2011,171(2):495–501
    [129] Yang Z, Yuan B, Huang X, Zhou J Y, Cai J C, Yang H, Li A M, Cheng R S. Evaluation ofthe flocculation performance of carboxymethyl chitosan–graft–polyacrylamide, a novelamphoteric chemically bonded composite flocculant [J]. Water Research,2012,46(1):107–114
    [130] Fang R, Cheng X S, Xu X R. Synthesis of lignin–based cationic flocculant and itsapplication in removing anionic azo–dyes from simulated wastewater [J]. BioresourceTechnology,2010,101(19):7323–7329
    [131] Mishra S, Sen G, Rani G U, Sinha S. Microwave assisted synthesis of polyacrylamidegrafted agar (Ag–g–PAM) and its application as flocculant for wastewater treatment [J].International Journal of Biological Macromolecules,2011,49(4):591–598
    [132] Kathmann E E, White L A, Mccormick C L. Effects of methylene versus propylenespacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporatingcarboxybetaine monomers [J]. Polymer,1997,38(4):879–886
    [133] Yu Y, Zhuang Y Y, Zou Q M. Interactions between organic flocculant PAN–DCD and dyes[J]. Chemosphere,2001,44(5):1287–1292
    [134]诸晓锋,苏秀霞,杨祥龙,程磊,李铭杰,郝明德,李仲谨,张超武.海泡石/黄原胶复合絮凝剂的制备及应用研究[J].应用化工,2009,38(9):1241–1244
    [135]董军芳,林金清,曾颖,林文銮,黄惠莉.微生物/硫酸铝复合絮凝剂在自来水原水中的应用[J].应用化工,2002,31(2):35–38
    [136] Yang Z H, Huang J, Zeng G M, Ruan M, Zhou C S, Li L, Rong Z G. Optimization offlocculation conditions for kaolin suspension using the composite flocculant of MBFGA1and PAC by response surface methodology [J]. Bioresource Technology,2009,100(18):4233–4239
    [137]马放,刘俊良,李淑更,杨基先,张立秋,吴波,朱艳彬.复合型微生物絮凝剂的开发[J].中国给水排水,2003,19(4):1–4
    [138]赵军,赵晓祥,鲁丹.复合微生物絮凝剂的培养及其对印染废水处理的研究[J].工业用水与废水,2008,39(6):71–74,77
    [139]靳慧霞,马放,孟路,杨基先.复合微生物絮凝剂与化学絮凝剂的复配及其应用[J].化工进展,2006,25(1):105–109
    [140] Chen J S, Liu M C, Zhang L, Zhang J D, Jin L T. Application of nano TiO2towardspolluted water treatment combined with electro–photochemical method [J]. WaterResearch,2003,37(16):3815–3820
    [141] Byrne J A, Davidson A, Dunlop P S M, Eggins B R. Water treatment usingnano–crystalline TiO2electrodes [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1–3):365–374
    [142] Hildebrand H, Mackenzie K, Kopinke F D. Pd/Fe3O4nano–catalysts for selectivedehalogenation in wastewater treatment processes—influence of water constituents [J].Applied Cataylysis B: Environmental,2009,91(1–2):389–396
    [143]邹萍,隋贤栋,黄肖容,范红娟.纳米材料在水处理中的应用[J].环球科学与技术,2007,30(4):87–90
    [144] Bahgat M, Farghali A A, EI Rouby W M A, Khedr M H. Synthesis and modification ofmulti–walled carbon nano–tubes (MWCNTs) for water treatment applications [J]. Journalof Analytical and Applied Pyrolysis,2011,92(2):307–313
    [145]施周,张文辉.环境纳米技术[M].北京:化学工业出版社,2003
    [146]孙伟民,张广成,李俨,李东东,李佩佩,刘伯辰,张叠.纳米材料在水处理中的应用[J].材料开发与应用,2011,4:65–69
    [147]徐立新,王丹灵,宋艳青,张诚.纳米氧化硅表面聚苯乙烯接枝包覆及在聚丙烯中相态研究.稀有金属材料与工程,2008,37:284–287
    [148] An F Q, Feng X Q, Gao B J. Adsorption mechanism and property of a novel adsorptionmaterial PAM/SiO2towards2,4,6–trinitrotoluene [J]. Journal of Hazardous Materials,2009,168(1):352–357
    [149] Gao B J, Chen Y X, Zhang Z G. Preparation of functional composite grafted particlesPDMAEMA/SiO2and preliminarily study on functionality [J]. Applied Surface Science,2010,257(1):254–260
    [150] Kurane R, Takaeda K, Sezuki T. Screening for and characteristic of microbial flocculants.Agriculture Biolchemistry,1986,50(9):2301–2307
    [151]张德仁.利用磷化渣制备复合磷化液和絮凝剂[D].大连:大连理工大学,2010
    [152]栾兆坤,李科,雷鹏举.微絮凝–深床过滤理论与应用研究[J].环境化学,1997,16(6):590
    [153] Amirtharajah A, Asce M, Trusler S L. Destabilization of particles by turbulent mixing[J].Journal of Environmental Engineering,1986,112(6):1085–1108
    [154]张占梅.聚合氯化铝铁絮凝剂的制备及絮凝性能研究[D].重庆:重庆大学,2006
    [155]王绍文,姜安玺.混凝动力学的涡旋理论探讨[J].中国给水排水,1991,7(1):4–7
    [156] Kashlki I, Suzuki A. Flocculation system as a particulate assemblage: a necessarycondition for flocculation to be effective [J]. Ind. Chem. Fundam.1986,25(3):444–449
    [157] Attia Y, Yu S. Adsorption thermodynamics of a hydrophobic polymeric flocculant onhydrophobic colloidal coal particles [J]. Langmuir,1991,7:2203–2207
    [158] Wang D S, Tang H X, Cao F C. Particle speciation analysis of inorganic polymerflocculants: an examination by correlation spectroscopy [J]. Colloid and Surfaces A:Physicochemical and Engineering Aspects,2000,166(1–3):27–32
    [159] Chen Y X, Liu S Y, Wang G Y. A kinetic investigation of cationic starch adsorption andflocculation in kaolin suspension [J]. Chemical Engineering Journal,2007,133:325–333
    [160] Bolto B, Gregory J. Organic polyelectrolytes in water treatment [J]. Water Research,2007,41:2301–2324
    [161]曾玉彬.锌基复合絮凝剂的制备与应用基础研究[D].武汉:华中科技大学,2007
    [162] Duan J, Gregory J. Coagulation by hydrolyzing metal salts [J]. Advances in Colloid andInterface Science,2003,100–102:475–502
    [163] Menezes F M, Amal R, Luketina D. Removal of particles using coagulation andflocculation in a dynamic separator [J]. Powder Technology,1996,88:27–31
    [164] Hahn H H, Stumm W. Kinetics of coagulation with hydrolyzed Al (Ⅲ): the rate–determining step [J]. Journal of Colliod and Interface Science,1968,28(1):133–144
    [165] James R O, Healy T W. Adsorption of hydrolysable metal ions at the oxide–waterinterface. I. Co(II) adsorption on SiO2and TiO2as model systems [J]. Journal Colloid andInterface Science,1972,40(1):42–52
    [166] Ruehrwein R A, Ward D W. Mechanism of clay aggregation by polyelectrolytes [J]. SoilScience,1952,73(6):485–492
    [167] Michcals A S. Aggregation of suspensions by polyelectrolytes. Industrial and EngineeringChemistry,1954,46:1485–1490
    [168] Lamer V K, Healy T W. Adsorption–flocculation reactions of macromolecules at thesolid–liquid interface. Reviews of Pure Appied Chemistry,1963,13:112–132
    [169] Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzingsalts[J]. Journal of Colloid Science,1965,20(1):81–92
    [170]张锁兵,马自俊,丁唯,赵梦云.油田采油污水处理用絮凝剂研究进展(一)[J].内蒙古石油化工,2010,6:83–84
    [171]严煦世,范瑾初.给水工程[M].第4版,北京:中国建筑工业出版社,1999
    [172]王圃,池年平,李江涛.基于分型维数的絮凝效果定量化试验[J],四川大学学报,2006,38(6):79–82
    [173]李建中.废弃钻井液的治理与利用[J].油气田环境保护,1996,6(4):21–23
    [174]王浩.胜利油田化学驱采出液油水界面性质及乳化规律研究[D].北京:中国石油大学(北京),2007
    [175] CJ/T221–2005.城市污水处理厂污泥检验方法[S].2005
    [176]贺飞.污泥薄膜炭复合材料(ACMCM)的制备及其吸附性能研究[D].广州:中山大学,2009
    [177] GB8978–1996.污水综合排放标准[S].1998
    [178]刘煜.疏水缔合阳离子淀粉的合成及性能评价[D].北京:中国石油大学,2010
    [179]吴修利,黄玉珍,薛冬桦.阳离子淀粉在水处理上的絮凝研究[J].化学与生物工程,2010,27(11):80–82
    [180] Wei Y P, Cheng F, Zheng H. Synthesis and flocculating properties of cationic starchderivatives [J]. Carbohydrate Polymers,2008,74(3–4):673–679
    [181] Dogu I, Arol A L. Separation of dark-colored minerals from feldspar by selectiveflocculation using starch [J]. Powder Technology,2004,139(3):258–263
    [182] Chang Q, Hao X K, Duan L L. Synthesis of crosslinked starch-graft-polyacrylamide–co-sodium xanthate and its performances in wastewater treatment [J]. Journal ofHazardous Materials,2008,159(2–3):548–553
    [183]佟琦,高丽华.莫尔法与自动电位滴定法测定水中氯离子含量的比较[J].工业水处理,2008,28(11):69–71
    [184]林树涛.纳米级氧化物复合PAM絮凝剂的制备及在石化废水处理中的应用[D].山东东营:中国石油大学(华东),2008
    [185]郭红玲. NIPA改性羧甲基纤维素絮凝剂N–CMC的制备及其在城市废水处理中的应用[D].郑州:华北水利水电学院,2011
    [186]魏艳平.新型有机–无机混合絮凝剂的研制及应用[D].武汉:武汉理工大学,2005
    [187]孙成军.油田排放污水中的水质分析研究[D].大庆:大庆石油大学,2006
    [188]王国强.焦化废水微生物深度脱色的应用研究[D].武汉:武汉科技大学,2007
    [189] Dalia Sableviciene, Rima Klimaviciute, Joana Bendoraitiene, Algirdas Zemaitaitis.Flocculation properties of high–substituted cationic starches. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,259:23–30
    [190]牛艳,关晓辉,尹荣.纳米复合絮凝剂的制备及其除油性能研究[J].无机盐工业,2010,42(4):52–54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700