用户名: 密码: 验证码:
食品接触材料中三聚氰胺检测、迁移及控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三聚氰胺(melamine,MEL)及其衍生物三聚氰酸二酰胺(ANE),三聚氰酸一酰胺(ADE)和三聚氰酸(CYA)本身的物质毒性很小,但同时被人体摄入后,三聚氰胺遇强酸或强碱水溶液水解会形成对人体有害的物质。以三聚氰胺-甲醛树脂为原料合成的密胺餐具、食品包装材料等,经光照、加热、遇酸或反复使用后时,残留的MEL、ANE、ADE、CYA等单体会向与之接触的食品发生迁移,污染食品、危害健康。本文建立了稳健的系列检测方法,研究了食品接触材料中三聚氰胺迁移规律,开展了风险评估及工艺控制研究。
     论文共分五章,第一章为文献综述,系统介绍了食品接触材料的分类、迁移过程及分析方法。同时介绍了食品接触材料中三聚氰胺及其类似物检测方法研究进展,食品接触材料中三聚氰胺污染风险评估以及工业控制等方面的研究背景,提出了本论文的研究设想和主要研究内容,指出了本论文解决的关键问题及特色和创新之处。
     在第二章中以色谱技术和电化学分析技术为手段建立了一系列检测食品接触材料中三聚氰胺及其衍生物迁移量的分析方法。本章分为六个部分:
     (1)建立了一种用液相色谱技术检测分析食品接触材料中三聚氰胺与三聚氰酸单体迁移量的方法。在优化条件下,三聚氰胺和三聚氰酸分别在0.1~110mg/L和0.3~135mg/L范围内,峰面积和质量浓度的线性关系良好。在0.5mg/L的添加水平下,三聚氰胺和三聚氰酸的平均回收率分别为101.7%~102.2%和88.0%~88.9%,相对标准偏差分别为2.45%~3.42%和3.54%~4.10%,检出限分别为0.02mg/L和0.08mg/L。
     (2)建立了高效液相色谱同时检测三聚氰胺(MEL)及其衍生物——三聚氰酸二酰胺(ANE)、三聚氰酸一酰胺(ADE)、三聚氰酸(CYA)单体迁移量的方法。在优化条件下,MEL、ANE、ADE和CYA的浓度在0.5~10mg/L范围内与其峰面积的线性关系良好,检出限分别为0.06、0.08、0.12和0.15mg/L(S/N=3)。在1.0mg/L的添加水平下,MEL、ANE、ADE和CYA的平均回收率在96.4%~101.6%之间,相对标准偏差在2.79%~4.39%之间。
     (3)建立了液相色谱串联电喷雾正离子源质谱(LC–ESI-MS/MS)检测密胺餐具中三聚氰胺迁移量的方法。三聚氰胺在5.00–130.00μg/L浓度范围内,目标物的峰面积和质量浓度的线性关系良好,检测限为1.00–3μg/L。在10.00、50.00、80.00μg/L浓度添加水平,样品回收率在98.57–104.08%,RSD在3.05–3.65%之间。
     (4)建立了一种用HILIC-MS/MS质谱联用技术检测分析食品接触材料中三聚氰胺及其衍生物单体迁移量的方法。三聚氰胺在浓度0.1-20μg/L、三聚氰酸二酰胺1-200μg/L、三聚氰酸一酰胺0.5-100μg/L、三聚氰酸1-200μg/L浓度范围内,峰面积和质量浓度的线性关系良好。在1μg/L,10μg/L,20μg/L水平添加回收率中,平均回收率分别为83.4–126.2%,相对标准偏差在2.89-3.37%。
     (5)基于三聚氰胺能猝灭CdS-K_2S_2O_8电化学发光的性质建立了一种检测三聚氰胺的方法。在最优条件下,体系的ECL强度与三聚氰胺浓度在1.0×10~(-9)mol/L-1.0×10~(-7)mol/L范围内与成线性关系,检测限达8.0×10~(-10)mol/L (S/N=3)。
     (6)基于三聚氰胺可猝灭鲁米诺的电化学发光,建立了一种对三聚氰胺的定量的新方法。三聚氰胺在1~100ng/mL浓度范围内与电化学发光强度成线性关系,检测限为0.1ng/mL。方法被应用于检测食品及食品接触材料中三聚氰胺的含量,对实际奶制品检测回收率在98.5%-103.7%,密胺餐具回收率在95.5-106.0%,相对标准偏差小于4.0%,且常见干扰物质对实验测量无影响。
     第三章利用自主建立的灵敏稳健LC-MS/MS测定食品接触材料中三聚氰胺迁移量的方法,研究了代表性食品接触材料——密胺餐具中三聚氰胺单体的迁移规律和迁移模型。
     (1)重点考察了食品模拟物种类、接触时间、接触温度、乙酸浓度、乙醇浓度、重复使用和微波加热等迁移条件下密胺餐具中三聚氰胺迁移量的变化情况。结果表明酸性食品和牛奶中的三聚氰胺迁移风险较高,且需控制密胺餐具的使用温度、盛放时间、重复使用次数及微波加热功率和时间以降低密胺餐具中三聚氰胺迁移风险。
     (2)基于Fick定律,选择密胺餐具作为对象,对食品接触材料中三聚氰胺迁移数学模型进行研究。研究的迁移数学模型包括扩散系数和分配系数;研究的迁移模拟物包括4%乙酸、蒸馏水和10%乙醇;研究的迁移温度为40℃、70℃、90℃。结果表明,温度对扩散系数和分配系数影响较大,温度升高,三聚氰胺扩散系数均随之增大,在密胺餐具和模拟物之间的分配系数随之减小;三聚氰胺在模拟物中的扩散系数大小依次为4%乙酸>水>10%乙醇,在密胺餐具和模拟物之间的分配系数大小依次为4%乙酸<水<10%乙醇。
     在第四章中对1-3岁儿童摄入盛装在密胺餐具中的食品进行安全风险评估。讨论了食品模拟物种类、乙酸浓度、迁移温度、迁移时间、重复使用次数、微波加热的时间和功率等因素的影响下,密胺餐具中三聚氰胺迁移以及1-3岁儿童每日摄入三聚氰胺量的变化规律;同时,通过每日摄入量与世界卫生组织规定的TDI(0.2mg/Kg·bw)比较,对1-3岁儿童摄入盛装在不同使用条件下密胺餐具中的食品进行安全风险评估,并作出相应的建议。
     在第五章中选择代表性的密胺餐具作为研究对象,研究不同生产工艺条件对密胺餐具中三聚氰胺迁移量的影响情况。考察了生产工艺对三聚氰胺单体残留影响的主要环节,“表面贴花”工艺和“保压固化”过程涉及的三个因素(压模温度、压模压力和固化时间)对密胺餐具中三聚氰胺迁移量的影响。利用正交试验,结合考虑经济性分析因素选择了保压固化过程的最佳参数为:上/下模温度190/160℃、压模压力150kg/cm2、固化时间60s。
Melamine and its derivatives (ammeline (ANE), ammelide (ADE), and cyanuricacid (CYA)) are nontoxic by themselves, but if intaked by human, in case of strongacid or alkali solution, melamine will hydrolyse and form a harmful substances.Melamine tablewares and food packaging materials were prepared withmelamine-formaldehyde resin. When treated by light, heat, acid or repeated using,residues of MEL, ANE, ADE, CYA will migrate to the contacted food and cause thepollution to the food, which will be harmful to human. In this dissertation, weestablished several robust detection methods for melamine and its derivatives, andthen study the migration rule of of melamine from food contact materials to food, andcarried out the reasearch of risk assessment and process control of melaminetableware.
     In Chapter1, we reviewed the materials used in food contact materials and therelated analytical methods. Specially, the analytical methods in determination ofmelamine and its analogues in food contact products had been reviewed in detail. Theresearch background of the melamine contamination in food contact materials and therelated risk assessment, and industrial control were introduced. The research ideas,main contents, characteristics and innovations of this thesis had been pointed out.
     In the second chapter, including6parts, a series of methods for detection ofmelamine and its derivatives in food contact materials base on chromatography andelectrochemical analysis technology were established.
     (1) A HPLC method was developed for determination of melamine and cyanuricacid. Under the optimum conditions, linear responses were in the range of0.1–110mg/L and0.3–135mg/L, respectively. And the recoveries were in the range of101.7-102.2%and88.0-88.9%with the concentration of0.5mg/L melamine and cyanuricacid, R.S.D. were2.45–3.42%and3.54–4.10%, respectively. The LOD were0.02mg/L for melamine and0.08mg/L for cyanuric acid.
     (2) A novel HPLC method of determining monomer of melamine (MEL) and its derivatives including ammeline (ANE), ammelide (ADE) and cyanuric acid (CYA)was developed. Under the optimum conditions, the calibration curves were linearfrom0.5to10mg/L with LODs (S/N=3) of0.06mg/L,0.08mg/L,0.12mg/L and0.15mg/L for MEL, ANE, ADE and CYA, respectively. The method providedrecoveries of96.4–101.6%at the spiked concentration of1.0mg/kg, and RSD of thepeak height were between2.79~4.39%.
     (3) A liquid chromatography electrospray ionization tandem mass spectrometric(LC–ESI-MS/MS) method was developed to determine melamine migration fromfood contact materials and melamine tableware. The result indicated that thecalibration curves were linear over melamine concentration in the range o f3.00-130.00μg/L for different simulant solutions with LODs of1.00–3μg/L. The averagerecoveries at three spiked concentration levels of10.00,50.00and80.00μg/kg werein the range o f98%-104%with RSDs of3.05–3.65%.
     (4) HILIC-MS/MS was developed for simultaneously qualitative and quantitativedetermination of melamine and triazine-related by-products including ammelide,ammeline, and cyanuric acid in food contact materials. Linear responses wereobserved for samples ranging from0.1-20mg/L,1-200,0.5-100and1-200μg/Lfor melamine, ammelide, ammeline, and cyanuric acid, respectively. The methodprovided recoveries of83.4–126.2%at the spiked concentration of1μg/kg,10μg/kg,20μg/kg, and RSD of the peak height were between2.89-3.37%.
     (5) Melamine was found to have the ability of significant quenching of the ECLof CdS-K_2S_2O_8system, based on which a highly sensitive approach for detection ofmelamine was proposed. Under the optimum conditions, the logarithmic plot of theinhibited ECL versus the concentration of melamine was linear over the range of1.0×10~(-9)mol/L~1.0×10~(-7)mol/L. The corresponding LOD was8.0×10~(-10)mol/L formelamine(S/N=3).
     (6) An electrochemiluminescent (ECL) method has been developed for thedetermination of melamine based on the inhibition of luminol ECL system. Thedecrease of ECL intensity was linearly proportional to the logarithm of melamineconcentration in the range of1~100ng/mL with the detection limit of0.1ng/mL. Themethod has been successfully applied to determine melamine in dairy products andthe melamine tableware, and the recoveries were in the range98.5~103.7%and95.5~106.0%in dairy products and the melamine tableware, respectively. Some possibleco-existing species showed no interference in the determination of melamine.
     In the third chapter, a LC-MS/MS method had been applied to determine themelamine migration from food contact materials, and melamine monomer migrationrule and migration model had been established. Specially two parts had been studied.
     (1) The difference of melamine migration under different conditions such asdifferent types of food simulants, contact time and temperature, reuse times and thecondition of being heated by microwave had been studied in detail. The resultsshowed that melamine migration increases in acid foods and milk. In order to reducethe risk of melamine migration, the using temperature, bloom time, re-use frequencyand microwave heating power and time should be controlled when the melaminetableware is used.
     (2) A mathematical model (including diffusion coefficients and partitioncoefficients) for melamine migration from the food contact materials had beenestablised based on Fick law. The effect of soaking solution (4%acetic acid, waterand10%elthanol) and soaking time (40℃,70℃and90℃) were discussed. Theresults show that temperature has great influence on the diffusion coefficient andpartition coefficient. Diffusion coefficient of melamine increases with temperature,meanwhile the partition coefficient between the melamine tableware and simulantsolutions decreases. The diffusion coefficient of simulant solutions was in sequence of4%acetic acid> water>10%ethanol, the partition coefficient was in sequence of4%acetic acid      In Chapter4, a security risk assessment about the foods for1-3years old childrenin the melamine tableware had been performed. The effect of types of food, aceticacid concentration, migration temperature, migration time and frequency of repeatedusing dan the microwave heating time and power on the rules of melamine migrationand the daily intake amount of melamine of1-3years old children had been discussed.And the results reached had been compared with data from the WHO TDI (0.2mg/Kg·bw), security risk assessment on the food intake of1-3year-old children up indifferent conditions of use melamine tableware had been performed and theappropriate recommendations had been put forward also.
     In Chapter5, the effect of different production process conditions on themigration of melamine in tableware melamine had been studied. The major processeswhich have great impact on melamine monomer residues were studied. In addition,we also examined the effects of the three factors (temperature, pressure and curing time) in "surface applique" and "pressure curing" process on melamine migrationfrom melamine tableware. Combined with the economic analysis, the orthogonal testresults showed that the optimal parameters of pressure and curing process was190/160℃for top/bottom temperature,150kg/cm~2for pressure and60s for curingtime.
引文
[1] Regulation (EC) No.1935/2004of the European Parliament and of the Council of27October2004onmaterials and articles intended to come into contact with food and repealing Directives80/590/EEC and89/109/EEC,2004.
    [2] Carbas P, Meloni M, Spaneedda L. High-performane liquid chromatographicseparation of cyromazine andits metabolite melamine[J]. Journal of Chromatography,1990,505(2):413-416.
    [3] Barboza D. China’s tainted-food inquiry widens amid worries over animal feed. New York. Times31October;[cited2009Mar10]. Available from: www.nytimes.com/2008/11/01/world/asia/01china.html?n Top/Reference/Times%20Topics/Subjects/C/Consumer%20Product%20Safety&pagewanted all/.
    [4] Xin H, Stone R, Tainted milk scandal. Chinese probe unmasks high-tech adulteration with melamine[J].Science,2008,322:1310-1311.
    [5] Kirk O (4th ed.). Encyclopedia of chemical technology (Vol.7). New York: John wiley&Sons.834-851.
    [6] Kowalsky L, Certified pool-SPA operator. National swimming pool fundation: Taxas,1992:46.
    [7] Jutzik, Cook A M, Hutter R. The degradative pathway of the s-triazine melamine. The steps to ringCleavage[J]. Biochemistry Journal,1982,208(3):679-684.
    [8] Shelton D R, Karns J S, McCarty G W, et al. Metabolism of melamine by Klebsiella terragena[J]. AppliedEnvironmental Microbiology,1997,63(7):2832-2835.
    [9] Ono S, Funato T, Inoue Y, et al. Determination of melamine derivatives, melame, meleme, ammeline andammelide by high-performance cationexchange chromatography[J]. Journal of Chromatograph A,1998,815:197-204.
    [10] Emsley A M, Stevens G C, Advances in fire retardant materials. Cambridge (UK): Woodhead.Chapter14, The risks and benefits of flame retardants in consumer products,2008.
    [11] World Health Organization (WHO). Expert meeting to reviewtoxicological aspects of melamine andcyanuricacid.http://www.who.int/foodsafety/fs_management/Exec_Summary_melamine. pdf.
    [12] Davidson M B, Thakkar S, Hix J K, et al. Pathophysiology, clinical consequences, and treatment of tumorLysissyndrome[J]. American Journal of Medicine,2004,116:546-554.
    [13] Tsai I L, Sun S W, Liao H W, et al. Rapid analysis of melamine in infant formula by sweeping-micellarelectrokinetic chromatography[J]. Journal of Chromatograph A,2009,1216(47):8296-8303.
    [14] Jia L, Huan Y Q, Yan P S. Determination of melamine residues in milk products by zirconia hollow fibersorptive microextraction and gas chromatography-mass spectrometry[J]. Journal of Chromatograph A,2009,1216(29):5467-5471.
    [15] Venkatasami G, Sowa J R. A rapid, acetonitrile-free, HPLC method for determination of melamine ininfant formula[J]. Analytica Chimica Acta,2010,665(2):227-230.
    [16] Jin Y W, Lian M J, Qing C, et al. Residue analysis of melamine in milk products by micellarelectrokinetic capillary chromatography with amperometric detection[J]. Food Chemistry,2010,121(1):215-219.
    [17]赵玉娟,李如华,周文芳,等. UPLC-MRM法测定饲料中的三聚氰胺[J].分析试验室,2009,28(8):119-122.
    [18]栾伟.液相色谱串联质谱法(LC-MS/MS)分析宠物食品中三聚氰胺[J].分析测试学报,2007,26(s1):285-286.
    [19] Vail T, Jones P R, Sparkman O D. Rapid and unambiguous identification of melamine in contaminatedpet food based on mass spectrometry with four degrees of confirmation[J]. Journal of analytical toxicology2007,31:304-312.
    [20] Tran B N, Okoniewski R, Storm R, et al. Use of methanol for the efficient extraction and analysis ofmelamine and cyanuric acid residues in dairy products and pet foods[J]. Journal of Agricultural and FoodChemistry,2010,58(1):101-107.
    [21] Andersen W C, Turnipseed S B, Karbiwnyk C M, et al. Determination and confirmation of melamineresidues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry[J].Journal of Agricultural and Food Chemistry,2008,56(12):4340-4347.
    [22]刘永涛,杨红,艾晓辉.高效液相色谱法检测水产品中三聚氰胺的残留量[J].分析试验室,2009,28(z1):138-141.
    [23] Ehling S, Tefera S, Ho I P. High-performance liquid chromatographic method for the simultaneousdetection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide,and cyanuric acid[J]. Food Additives and Contaminants,2007,24:1319-1325.
    [24] Esteban E. LC/MS/MS screen for the presence of melamine in swine and poultry tissues. FoodEmergency Response Network (FERN), Athens, GA, USA. FERNCHE.2007,0003.00:1-15.
    [25] Dobson R L, Motlagh S, Quijano M, et al. Identification and characterization of toxicity ofcontaminants in pet food leading to an outbreak of renal toxicity in cats and dogs[J]. Toxicological Sciences,2008,106:251-262.
    [26] Garber E A. Detection of melamine using commercial enzyme-linked immunosorbent assayTechnology[J]. Journal of Food Protection,2008,71(3):590-594.
    [27] Heller D N, Nochetto C B. Simultaneous determination and confirmation of melamine and cyanuricacid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry[J].Rapid Communications in Mass Spectrometry,2008,22:3624-3632.
    [28] Kim B, Perkins L B, Bushway R J, et al. Determinatian of melamine in pet food by enzymeimmunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquidchromatography with tandem mass spectrometry[J]. Journal of Aoac International,2008,91:408-414.
    [29] Muniz V R, Ceballos M S, Rosales M D, et al. Method development and validation for melamineand its derivatives in rice concentrates by liquid chromatography[J]. Application to animal feed samples.Analytical and Bioanalytical Chemistry.2008,392(3):523-531.
    [30] Puschner B, Poppenga R H, Lowenstine L J, et al. Assessment of melamine and cyanuric acidtoxicity in cats[J]. Journal of Veterinary Diagnostic Investigation,2007,19:616-624.
    [31] Filigenzi M S, Puschner B, Aston L S, et al. Diagnostic determination of melamine and relatedcompounds in kidney tissue by liquid chromatography/tandem mass spectrometry[J]. Journal of Agricultural andFood Chemistry,2008,56:7593-7599.
    [32] Ishiwata H, Inoue T, Yamazaki T, et al. Liquid chromatographic determination of melamine inBeverages[J]. Journal-Association of Official Analytical Chemists,1987,70:457-460.
    [33] Bradley E L, Boughtflower V, Smith T L, et al. Survey of the migration of melamine and formaldehydefrom melamine food contact articles available on the UK market[J]. Food Additives and Contaminants,2005,22:597-606.
    [34] Lund K H, Petersen J H. Migration of formaldehyde and melamine monomers from kitchen-andtableware made of melamine plastic[J]. Food Additives and Contaminants,2000,23:948-955.
    [35] Gorbunova V N, Yashinaa V Z, Moiseyeva V D, et al. Study of the formation of aminoformaldehydeOligomers[J]. Polymer Science USSR,1976,18(11):2927-2934.
    [36] Battum D V, Rijk M A, Verspoor R, et al. Draft eec method for the determination of the globalmigration of plastics constituents into fatty-food simulants: Applicability to lacquers, plastics and laminates[J].Food and Chemical Toxicology,1982,20(6):955-959.
    [37] Xiao Y W, Yi C. Determination of aromatic amines in food products and composite food packaging bagsby capillary electrophoresis coupled with transient isotachophoretic stacking[J]. Journal of Chromatography A,2009,1216:7324-7328.
    [38] Lu J, Xiao J, Yang D J, et al. Study on Migration of Melamine from Food Packaging Materials onMarkets[J]. Biomedical and Environmental Sciences,2009,22:104-108.
    [39] Jin G X, Nai Y Z, Cong Z, et al. Simultaneous determination of melamine and related compounds byhydrophilic interaction liquid chromatography electrospray mass spectrometry[J]. Separation Science andTechnology,2010,33:2688-2697.
    [40] Yi F H, Kuan T C, Yu W L, et al. Determination of melamine and related triazine by-products ammeline,ammelide, and cyanuric acid by micellar electrokinetic chromatography[J]. Analytica Chimica Acta,2010,673:206-211.
    [41] Lambert J B, Shurvel H F, Lightner D, et al. Introduction to organic spectroscopy. New York (NY):Macmillan. Chapter10, Molecular structure from electronic spectroscopy of chromophores.1987.
    [42] Litzau J J, Mercer G E, Mulligan K J. GC-MS screen for the presence of melamine, ammeline, ammelide,and cyanuric acid[OL]. Lab Inform Bull,2008,4423. www.cfsan.fda.gov/-frf/lib4423.html.
    [43] Hong M, Sai F, Yong N W, et al. Simultaneous Determination of Melamine, Ammelide, Ammeline, andCyanuric Acid in Milk and Milk Products by Gas Chromatography-tandem Mass Spectrometry [J]. Biomedical andEnvironmental Sciences,2009,22:87-94.
    [44] Veyrand B, Elaudais S, Marchand P, et al. Identification et dosage de la melamine et de ses produits dedegradation dans les aliments par chromatographie en phase gazeuse couplee a la spectrometrie de mass en tandem[J]. Laberca/08mel-al,2008,7:1-15.
    [47] Hai B W, Ed G. Chemical Analysis. Application Note#CA-270126Determination of Melamine,Ammeline,Ammelide and Cyanuric Acid in Infant Milk-Based Formula and Other Food and Feed Products Using the300-MSTriple Quadrupole GC/MS/MS.
    [46] Smoker M S, Krynitsky A J. Interim method for the determination of melamine and cyanuric acidresidues in foods using LC-MS/MS: version1.0. Laboratory Information Bulletin4422. United States Food andDrug Administration, Center for Food Safety and Applied Nutrition; College Park, MD, USA.2008.
    [47] Turnipseed S B, Casey C, Nochetto C, et al. Determination of melamine and cyanuric acid residues ininfant formula using LC-MS/MS[OL]. Lab Inform Bull,2008,24:1-13. www.cfsan.fda.gov/-frf/lib4421.html.
    [48] Nochetto C, Heller D. Determination and confirmation of melamine and cyanuric acid in animal feed andingredients by liquid chromatography tandem mass spectrometry (LC-MS/MS)[S]. United States Food and DrugAdministration, Center for Veterinary Medicine, Laurel, MD, USA. SOP,2008,510(106):1-26.
    [49] Varelis P, Jeskelis R. Preparation of [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid and theirApplication to the analysis of melamine and cyanuric acid in meat and pet food using liquidchromatography-tandem mass spectrometry [J]. Food Additives and Contaminants,2008,10:1210-1217.
    [50] Taylor A, Sakuma T, Schreiber A. A new, fast and sensitive LC/MS/MS method for the accuratequantitation and confirmation of melamine and cyanuric acid in pet food samples [J]. Applied Biosystems, FosterCity, CA, USA,2008.
    [51] Campbell J A, Wunschel D S, Petersena C E. Analysis of melamine, dyanuric acid, Ammelide, andammeline using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOFMS)[J].Analytical Letters,2007,40:3107-3118.
    [52] Chou S S, Hwang D F, Lee H F. High performance liquid chromatographic determination ofcyromazine and its derivative melamine in poultry meats and eggs[J]. Journal of Food and Drug Analysis,2003,11:290-295.
    [53] Sancho J V, Ibanez M, Grimalt S, et al. Residue determination of cyromazine and its metabolite melaminein chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry[J].Analytica Chimica Acta,2005,530(2):237-243.
    [54] University of Guelph.2008. Determination of residues of melamine and cyanuric acid in animal food byLC-MS/MS. TOXI-062:1–31. University of Guelph.
    [55] Karbiwnyk C M, Andersen W C, Turnipseed S B, et al. Determination of cyanuric acid residues in catfish,trout, tilapia, salmon and shrimp by liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2008,637(1-2):101-111.
    [56] Teresa M V, Patrick R J. Rapid and Unambiguous Identification of Melamine in Contaminated PetFood Based on Mass Spectrometry with Four Degrees of Confirmation[J]. Journal of Analytical Toxicology,2007,31(6):304-312.
    [57] Mark E B, Aisling O C. Waters Corporation, Milford, MA, U.S. Melamine, ammeline and cyanuricacid analysis by UPLC/MS/MS and UPLC/PDA..
    [58] Antignac J P, De W K, Monteau F, et al. The ion suppression phenomenon in liquidchromatography-mass spectrometry and its consequences in the field of residue analysis[J]. Analytica ChimicaActa,2005,529:129-136.
    [59] Schuhmacher J, Zimmer D, Tesche F, et al. Matrix effects during analysis of plasma samples byelectrospray and atmospheric pressure chemical ionization mass spectrometry: practical approaches to theirelimination. Rapid Commun Mass Spectrom[J]. Rapid Communications in Mass Spectrometry,2003,17:1950-1957.
    [60] Abraxis.2009. Enzyme-linked immunosorbent assay for the determination of melamine in contaminatedsamples. Product No.50005B;[cited2009May4]. Available from: http://www.abraxiskits.com/moreinfo/PN50005BUSER.pdf/.
    [61]刘凤玉,杨雪.电化学发光法检测三聚氰胺[J].化工学报,2010,61(S1)l:51-55.
    [62] Liu Feng yu, Yang Xue, Sun Shiguo. Determination of melamine based on electrochemiluminescence ofRu(bpy)3(2+) at bare and single-wall carbon nanotube modified glassy carbon electrodes[J]. Analyst,2011,21;136(2):374-8.
    [63] Guo Z, Gai P, Hao T, et al. Determination of melamine in dairy products by an electrochemiluminescentmethod combined with solid-phase extraction[J]. Talanta,2011,83(5):1736-41.
    [64] Wang Z, Chen D, Gao X, et al. Subpicogram Determination of Melamine in Milk Products Using aLuminol Myoglobin Chemiluminescence System[J]. Journal of Agricultural and Food Chemistry,2009,57(9):3464-3469.
    [65]高向阳,郝梅,朱盈蕊.固相萃取-流动注射化学发光法测定奶粉中的三聚氰胺[J].食品科学,2011,32(10):199-202.
    [66] Xiaoshuang Tang, Xiyan Shi, Yuhai Tang, et al. Flow-injection chemiluminescence determination ofmelamine in urine and plasma[J]. Luminescence,2011,132(10):1341-1346.
    [67]《实施卫生与植物卫生措施协定》
    [68]吴雪原.用SPS原则剖析欧盟茶叶农药残留标准[J].中国检验检疫,2001,12,25~26.
    [69]李朝伟,陈青川.食品风险分析[J].检验检疫科学,2001,1:58~61.
    [70] Sharon J M, Bjorn G H. EU risk assessment: Science and policy [J]. Toxicology,2002,(181):281-285.
    [71] Richardson M L. Risk Assessment of Chemicals in the Environment [M]. London: Royal Society ofChemistry,1988.
    [72] IPCS. Environmental health Criteria210: Principles for the Assessment of Risks to Human Health fromExposure to Chemicals. Geneva, Who.1999.
    [73]罗伟成.结构蒙特卡罗方法在度量信贷风险中的应用[J].北方工业大学学报,2004,(01):74~77.
    [74]周浩,康建伟,陈建华.蒙特卡罗方法在电力市场短期金融风险评估中的应用[J].中国电机工程学报,2004,24(12):74~77.
    [75] Andrews C. Evaluating risk management strategies in resource planning. IEEE Trans[J]. Power System,1995,(10):420-426.
    [76]贺仲雄.模糊数学及其应用[M].天津:天津科学技术出版社,1985.
    [77]宋晓莉,余静,孙海传,等.模糊综合评价法在风险评估中的应用[J].信息安全,2006,22(12):71-79.
    [78]朱灵波,戴冠中.一种模糊综合评价的信息安全评估模型[J].信息安全与通信保密,2006,12(8):13-15.
    [79]侯升杰,王辉,丁明玉.中国科学B辑:化学,2009,39(8):845.
    [80]Thoma S R, Kulkarni I G U. A hydrogen-bonded channel structure formed by a complex of uracil andmelamine[J]. Beilstein Journal of Organic Chemistry,2007,3:17-20.
    [81]Cathy A. Brown, Kyu-Shik Jeong, Robert H. Poppenga, et al. Outbreaks of Renal Failure Associated withMelamine and Cyanuric Acid in Dogs and Cats in2004and2007[J]. Journal of Veterinary DiagnosticInvestigation,2007,19(5):525-529.
    [82] ZL200820229301.1吕水源,石坚,陈旻实,陈锦东.中国.1308471.2009.11.11.
    [83] Wu Y N, Zhao Y F, Li J G, et al. A Survey on Occurrence of Melamine and Its Analogues in Tainted InfantFormula in China[J]. Biomedical and Environmental Sciences,2009,22(2):95-99.
    [84]陈葭玲.高效液相色谱法测定三聚氰胺—甲醛食品容器中三聚氰胺单体迁移量[J].质量技术监督研究,2010,2:40-43.
    [85]肖道清,曹国洲,朱晓艳,等.高效液相色谱法测定蜜胺-甲醛制品中三聚氰胺的特定迁移量[J].分析试验室,2010,29(5):76-78.
    [86]孙建伟.分光光度法测定食品容器用三聚氰胺-甲醛成型品中甲醛单体迁移量[J].福建分析测试,2010,19(1):93-95.
    [87]井伟,唐熙,吕水源,等. LC-ESI MS/MS测定蜜胺餐具中三聚氰胺的迁移量[J].分析测试学报,2011,30(3):269-273.
    [88] Eugene C and R Arora. Varian, Inc. Application Note01916. http://www.fda.gov/AboutFDA/CentersOffices/CVM/WhatWeDo/ucm134742.htm.
    [89] EC2002, Commission Directive2002/72/EC of August2002relating to plastic materials and articlesintended to come into contact with foodstuffs. Official Journal of European Communities L220:18.
    [90]彭少杰,顾振华,胡晓丽,等. GB/9690-2009食品容器、包装材料用三聚氰胺-甲醛成型品卫生标准
    [S].北京:中国标准出版社,2009.
    [91]杨云霞,刘彤,周桂英,等.小麦谷元粉中三聚氰胺的高效液相色谱法测定[J].分析测试学报,2008,27(3):322-324.
    [92]李锋格,姚伟琴,苏敏,等.气相色谱-质谱法快速测定牛奶中的三聚氰胺和三聚氰酸[J].色谱,2009,27(2):233-236.
    [93] Zongyi Wang, Xi Ma, Liying Zhang, et al. Screening and determination of melamine residues in tissue andbody fluid samples [J]. Analytica Chimica Acta,2010,662(1):69-75.
    [94]栾伟.宠物食品中三聚氰胺及三聚氰酸的液相色谱串联质谱法分析[J].分析测试学报,2008,27(11):203-206.
    [95] Yu-Tse Wu, Chih-Min Huang, Chia-Chun Lin, et al. Determination of melamine in rat plasma, liver, kidney,spleen, bladder and brain by liquid chromatography–tandem mass spectrometry[J]. Journal of ChromatographyA,2009,1216(44):7595-7601.
    [96] IBANEZ María, SANCHO Juan V, HERNANDEZ Félix. Determination of melamine in milk-basedproducts and other food and beverage products by ion-pair liquid chromatography–tandem massspectrometry[J]. Analytica Chimica Acta,2009,649(1):91-97.
    [97] Jingen Xia, Naiyuan Zhou, Yujun Liu, et al. Simultaneous determination of melamine and relatedcompounds by capillary zone electrophoresis[J]. Food Control,2010,21:912-918.
    [98]李利军,郝学超,程昊,等.胶束在线扫集毛细管电泳法测定三聚氰胺[J].分析试验室,2010,29(1):76-79.
    [99]龚燕,吴杰,周雷,等. ELISA法检测乳制品中的三聚氰胺质量浓度[J].中国乳品工业,2009,37(9):30-32.
    [100] DD CEN/TS13130-27-2005Materials and articles in contact with foodstuffs-Plastics substances subjectto limitation-Part27: Determination of2,4,6-triamino-1,3,5-triazine in food simulants.
    [101]陈志锋,崔海容,孙利,等. GB/T23296.15-2009食品接触材料高分子材料食品模拟物中2,4,6-三氨基-1,3,5-三嗪(三聚氰胺)的测定高效液相色谱法[S].北京:中国标准出版社,2009.
    [102] Jie G F, Liu B, Miao J J, et al. Electrogenerated chemiluminescence from US nanotubes and its sensingapplication in aqueous solution[J]. Talanta,2007,71(4):1476-1480.
    [103]国家技术监督局. GB/T9567-1997.《GB/T9567-1997工业三聚氰胺》北京:中国标准出版社,1997.
    [104] Liang R N, Zhang R M, Qin W. Potentiometric sensor based on molecularly imprinted polymer fordetermination of melamine in milk[J]. Sensors and Actuators B: Chemical,2009,141(2):544-550.
    [105] Yin W W, Liu J T, Zhang T C, et al. Preparation of Monoclonal Antibody for Melamine and Developmentof an Indirect Competitive ELISA for Melamine Detection in Raw Milk, Milk Powder, and Animal Feeds[J].Journal of Agricultural and Food Chemistry,2010,58(14):8152-8157.
    [106]黄芳,黄晓兰,吴惠勤,等.高效液相色谱-质谱法对饲料及食品添加剂中三聚氰胺的测定[J].分析测试学报,2008,273,313-315.
    [107]吴惠勤,黄芳,林晓珊,等.气相色谱-质谱法测定奶粉及奶制品中的三聚氰胺[J].分析测试学报.2008,27(10):1044-1048.
    [108] Yan N, Zhou L, Zhu Z F, et al. Determination of melamine in dairy products, fish feed, and fish bycapillary zone electrophoresis with diode array detection[J]. Journal of Agricultural and Food Chemistry.2009,57(3):807-811.
    [109]王英.手持式近红外仪Phazir实现三聚氰胺的快速检测[J].食品安全导刊,2008,6:43.
    [110] Cao QA, Zhao H, Zeng L X, et al. Electrochemical determination of melamine using oligonucleotidesmodified gold electrodes[J]. Talanta,2009,80(2):484-488.
    [111] Ren T, Xu J Z, Tu Y F, et al. Electrogenerated chemiluminescence of CdS spherical assemblies[J].Electrochemistry Communications,2005,7(1):5-9.
    [112] Ding Z, Quinn B M, Haram S K, et al. Electrochemistry and Electrogenerated Chemiluminescence fromSilicon Nanocrystal Quantum Dots[J]. Science,2002,296(5571):1293-1297.
    [113] Cox J, Jaworski R, and Kulesza P J. Electroanalysis with electrodes modified by inorganic films[J].Electroanalysis,1991,3(9):869-877.
    [114] Cui H, Zou G Z, Lin X Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode[J]. Chemical Science,2003,75(2):324-331.
    [115] Sugita T, Ishiwata H, Yoshihira K, et al. Determination of melamine and three hydrolytic products byliquid chromatography[J]. Bulletin of Environmental Contamination and Toxicology,1990,44,567–571.
    [116] AndersenW C, Turnipseed S B, Karbiwnyk C.M, et al. Determination and confirmation of melamineresidues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem massspectrometry[J]. Journal of Agricultural and Food Chemistry,2008,56,4340–4347.
    [117] Cook H A, Klampfl C W, Buchberger W. Analysis of melamine resins by capillary zone electrophoresiswith electrospray ionization‐mass spectrometric detection[J]. Electrophoresis,2005,26,1576-1583.
    [118] Zhu L, Gamez G, Chen H, et al. Rapid detection of melamine in untreated milk and wheat gluten byultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS)[J]. ChemicalCommunications,2009,559-561.
    [119] A W. Knight, G M. Greenway. Relationship between structural attributes and observed electrogeneratedchemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II)ECL reaction[J]. Analyst,1996,129(11):121.
    [120] A W. Knight, G M. Greenway. Occurrence, mechanisms and analytical applications of electrogeneratedchemiluminescence[J]. Analyst,1994,119:879-890.
    [121] H Cui, Z F Zhang, G Z, et al. Potential-dependent electrochemiluminescence of luminol in alkalinesolution at a gold electrode[J]. Journal of Electroanalytical Chemistry,2004,556:305–313.
    [122]Lin X Q, Sun Y G, Cui H, et al. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode[J]. Analytica Chimica Acta,2000,423(2):247-253.
    [123]Vitt J E, Johnson D C. The Effect of Electrode Material on the Electrogenerated Chemiluminescence ofLuminol[J]. Journal of Electrochemical Society,1991,138:1637-1645.
    [124] Sun Y G, Cui H, Lin X Q, et al. Flow injection analysis of pyrogallol with enhancedelectrochemiluminescent detection[J]. Analytica Chimica Acta,2000,423(2):247–253.
    [125] Y G Sun, H Cui, X Q Lin, et al. Flow injection analysis of pyrogallol with enhancedelectrochemiluminescent detection[J]. Analytica Chimica Acta,2000,423(2):247–253.
    [126] Y G Sun, H Cui, Y H Li, et al. Determination of some catechol derivatives by a flow injectionelectrochemiluminescent inhibition method[J]. Talanta,2000,53(3):661–666.
    [127]鲁杰,肖晶,杨大进,等.食品餐具及奶制品包装中三聚氰胺迁移量的调查研究[J].卫生研究,2009,38(2): l78.
    [128] GB9690-2009.食品容器、包装材料用三聚氰胺-甲醛成型品卫生标准[S].
    [129]2002/72/EC. COMMISSION DIRECTIVE2002/72/EC of6August2002relating to plastic materials andarticles intended to come into contact with foodstuffs [S].
    [132] Wei Jing, Shuiyuan Lv, Xiaojing Li, et al. Determination of melamine in dairy products and melaminetableware by inhibition electrochemiluminescent method [J]. Chinese Journal of Chemistry,2011,29:1601-1605.
    [131]黄伯俊,黄毓麟.农药毒理学[M].北京:人民军医出版社,2004,10,309-313.
    [132] Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL [M]. Japan: JapanChemical Industry Ecology-Toxicology and Information Center,1992.
    [133]江泉观,纪云晶,常元勋.环境化学毒物防治手册[M].北京:化学工业出版社,2004:937.
    [134]邵静君,温家琪,徐世文. Progress of melamine toxicology research[J].现代畜牧兽医,2007,12:52-54.
    [135] MELNICK R L. Urolithiasis and bladder carcinogenicity of melamine in rodents[J]. Toxicology andApplied Pharmacology,1984,72:292-303.
    [136] Material Safety Data Sheet (MSDS)[DB/OL. http://www.Sciencelab. Com/xMSDS-Melamine9924600.
    [137] U. S. National Toxicology Program acute toxicity studies for melamine [DB/OL]. http://www.Pesticideinfo. org/List-NTPStudies. jsp? Rec-Id=PC35459.
    [138] OECD SIDS Analysis UNEP Publications:Melamine[M].2002: Melnick R L. Urolithiasis and bladdercarcinogenicity of melamine in rodents [J]. Toxicology and Applied Pharmacology,1984,72:292—303.
    [139] U. S. Food and Drug Administration.Interim Melamine and Analogues Safety/Risk Assessment[DB/OL].[2007-10-26].
    [140] Clayton G D. Patty’s industrial hygiene and toxicology [J]. Toxicology,1981,3:2771.
    [141] Okumura M, Hasegawa R, Shirai T, et a1. Relationship between calculus formation and carcinogenesis inthe urinary bladder of rats administered the non-genotoxic agents thymine or melamine [J]. Carcinogenesis,1992,13(6):1043—1045.
    [142] Hammond B G, Barbee S J,Inoue T, et a1. A review of toxicology studies on cyanurate and its chlorinatedderivatives [J]. Environmental Health Perspectives,1986,69:287-292.
    [143]林祥梅,王建蜂,贾广乐,等.三聚氰胺的毒性研究[J].毒理学杂志,2008,22(3):216-218.
    [144] U. S. Food and Drug Administration. Interim melamineand analogues safety/risk assessment[EB/OL].(2007—5-25)[2008—10—1].
    [145] Melnick R L, Boorman G A, Haseman J K, et a1. Urolithiasis and bladder carcinogenicity of melamine inrodents[J]. Toxicology and Applied Pharmacology,1984,72(2):292—303.
    [146] Ogasawara H, Imaida K, Ishiwata H, et a1. Urinary bladder carcinogenesis induced by melamine in F344male rats: correlation between carcinogenicity and urolith formation[J]. Carcinogenesis,1995,16(11):2773—2777.
    [147]汪晶,阎雷生.健康风险评价的基本程序与方法[J].环境科学研究,1993,6(5):53-56.
    [148] Boon P E, Lignell Svan, Klaveren J D, et al. Estimation of the acute dietary exposure pesticides using theprobabilistic approach and the point estimate methodology [R/OL]. Sweden: The National Food Administration,2004.[2007-08-09].
    [149] Boon P E, Van der Voet H, Van Raaij M T, et aL. Cumulative risk assessment of the exposure toorganophosphorus and carbamate insecticides in the Dutch diet[J]. Food and Chemical Toxicology,2008,46:3090-3098.
    [150] Suhre F B. Pesticide residues and acute risk assessment-the US EPA approach[J]. Food Additives andContaminants,2000,17:569-573.
    [151] Felsot A. Pesticide risk assessment-dietary, Aggerate, Cumulative [R/OL].2005.[2007-10-11].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700