用户名: 密码: 验证码:
液压锻造操作机多学科协同仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造操作机是现代锻造系统的重要设备,是实现锻造工艺的可重复性、提高锻件精度必不可少的装置。本文针对液压锻造操作机自动化、程序化的发展趋势,结合国内液压锻造操作机的开发、研究以及控制现状,运用虚拟样机技术这一近年来快速发展的先进技术开展锻造操作机液压控制系统的研究,重点研究集多学科领域的锻造操作机协同仿真模型,用于锻造操作机液压控制系统的分析优化,对于提高锻造操作机的工作效率和自动化水平具有重要的理论意义和研究价值。本文主要完成的工作和研究内容如下:
     (1)针对锻造操作机动作多、结构复杂的特点,对锻造操作机各执行机构进行了运动学特性分析,建立了夹钳末端与执行元件之间的数学模型,结合锻造操作机具体结构参数对夹钳平行升降逆解近似公式的精度进行了分析,提出了一种锻造操作机夹钳平行升降位移的高次方程逆解解算方法,为锻造操作机高精度控制提供了重要的数学依据,并建立了锻造操作机机械系统多体动力学模型。
     (2)针对锻造操作机液压系统复杂的特点,对液压系统中关键元件如电磁卸荷溢流阀、非线性比例换向阀、蓄能器、执行元件、管道等进行了建模仿真,在此基础上建立了锻造操作机液压系统模型,并进行了封装,为锻造操作机控制特性研究奠定了理论基础。
     (3)对锻造操作机多学科模型间的参数耦合关系进行了分析,建立了锻造操作机多学科模型间数据交换和通讯的接口,采用基于软件接口的方法,搭建了锻造操作机多学科协同仿真模型。
     (4)对锻造操作机液压系统进行了实验测试,对实验压力产生异常变化的原因进行了分析,分析结论对于锻造操作机的结构优化设计、提高操作机的工作可靠性具有重要意义,并采用定量方法对锻造操作机多学科协同仿真模型进行了实验验证,验证了模型的准确性,为其应用研究奠定了基础。
     (5)基于虚拟样机技术研究了锻造操作机的单项动作控制特性、复合动作控制特性以及控制方式,提出了一种锻造操作机自补偿绝对位置控制方式,有利于提高锻造操作机的控制精度,研究结果为锻造操作机液压控制系统的设计优化提供了参考价值。
Forging manipulator is one of important equipments in modern forging system,which can achieve repeatability of forging process and improve the precision of forging.According to the automatic and programmable developing trend of hydraulic forgingmanipulator, combining development, research and control status quo in domestic, thispaper focused on research and developing a multidisciplinary system model of forgingmanipulator based on the virtual prototyping that rapidly developed technology in recentyears. The model, which is used in analyzing and optimizing hydraulic control system,can improve the work efficiency and automation level of forging manipulator and it isgreat valuable for academic research. This paper mainly completed works and researchcontents as follows:
     (1)According to the actions and structure characteristics of complex, the kinematiccharacteristics of forging manipulator mechanisms were analyzed and the mathematicalmodel between tongs terminal and actuator was built. Combined with the structureparameters of forging manipulator, the approximation formula accuracy of tongs parallellifting action was analyzed, and a method of reducing the calculation error was proposed,which uses higher equation of approximation formula and provides an importantmathematical basis for the realization high precision control in forging manipulator. Andthe mult-body dynamics model of forging manipulator was built.
     (2)According to the hydraulic system characteristics of complex, the model of keycomponents such as electromagnetic unloading relief valve, the proportion of non-linearvalve, accumulators, actuators and pipes etc were built and simulated. Then, thehydraulic system model of forging manipulator was built. which lay the theoreticalfoundation for researching the control characteristics of forging manipulator.
     (3)According to the characteristics of forging manipulator models, the principle ofparameters coupling in multidisciplinary field models was analyzed, and the interfaces ofdata exchange and communication were created. Then the collaborative simulation modelof forging manipulator was built.
     (4)The experimental test for hydraulic system of forging manipulator was finished,and the experimental abnormal pressure changes were analyzed. The conclusion hadgreat significance for structure optimization and improvement of working reliability offorging manipulator. Using quantitative methods, the collaborative simulation model offorging manipulator was experimentally verified, which validated that the model hadhigh accuracy and lay a foundation for application research.
     (5)The control characteristics of single action, compound action and control mode offorging manipulator were researched based on virtual prototyping, and aself-compensating absolute position control mode of forging manipulator was proposed,which can improve the position control accuracy. The results provided a theoreticalreference for forging manipulator hydraulic control system design and optimization.
引文
[1]蔡墉.我国自由锻液压机和大型锻件生产的发展历程[J].大型铸锻件,2007,(1):37-44.
    [2]聂绍珉.现代大中型锻造液压机的特点及发展趋势(上)[J].金属加工,2008,(23):20-23.
    [3]聂绍珉.现代大中型锻造液压机的特点及发展趋势(下)[J].金属加工,2009,(1):40-42.
    [4]万胜狄.锻造机械化与自动化[M].北京:机械工业出版社,1983:169-172.
    [5]余发国,高峰,郭为忠,等.锻造操作机的回顾与展望[J].机械设计与研究,2007:12-15.
    [6] Semenov. Use robots and manipulatore in the automation of forging shops[J]. Sovietengineering research,1984,4(8):34-35.
    [7] Araki Kenji, Kubo Akira, Akita Masaki. Full automation of a6000T high speed forging pressline[J]. Sumitomo Metals,1986,38(2):132-138.
    [8] Kopp Reiner, Schaeffer Lirio, Schuler Guenter. Incremental forging with integratedopen-die-foring presses[J]. Metallurgical plant and technology,1982,5(6):78-81.
    [9]余发国.锻造操作机的设计原理研究[D].秦皇岛:燕山大学工学博士学位论文,2009:3-4.
    [10] Pahnke Hans-Joachim. Forging machines with hydraulic drive-development and operatingresults[J]. Stahl und Eisen,1983,108(22):91-94.
    [11] Rail Forging Manipulators.http://www.sms-meer.com/produkte.
    [12] Dango&Dienenthal Forging Manipulator. http://www.dds-gmbh.com.
    [13] Manipulators-Forging. http://www.wepuko.com/wpe-manipulators.html.
    [14] GLAMA Rail-Bound Forging Manipulator.http://www.glama.de.
    [15] QKK Rail Forging Manipulators.http://www.zdas.cz/en/content.aspx?catid=8.
    [16] Rail Forging Manipulators.http://www.tkpo.ryazan.ru/index_e.htm.
    [17]王凤喜.锻造操作机技术近期的发展[J].重型机械,1994,(6):12-17.
    [18]曹自立.100kN锻造操作机试制成功[J].重型机械,1992,(5):52.
    [19]姚保森.我国锻造液压机的现状及发展[J].锻压装备与冲压,2006,(3):84-86.
    [20]蔡墉.世界大型自由锻和模锻压机装备数量分布一览[J].锻压与冲压,2006,(8):85-86.
    [21] http://www.hdjixie.com.cn/index.asp.
    [22] Yan Changya, Gao Feng. Dynamic stability analysis of a novel forging manipulator[C]. LectureNotes in Computer Science,2008,5315(2):449-458.
    [23] Yan Changya, Gao Feng, Zhang Yong. Kinematic modeling of a serial-parallel forgingmanipulator with application to heavy-duty manipulations[J]. Mechanics Based Design ofStructures and Machines,2010,38(1):105-129.
    [24] Tong Xing, Gao Feng, Zhang Yong. Research on decoupling performance of major-motionmechanism for forging manipulators[J]. Journal of Mechanical Engineering,2010,46(11):14-20.
    [25] Yu Faguo, Gao Feng. Coordinated kinematic modelling for motion planning of heavy-dutymanipulators in an integrated open-die forging centre[C]. Proceedings of the Institution ofMechanical Engineers,2009,223(10):1299-1313.
    [26] Wang Wurong, Chen Guanlong, Lin Zhongqin. Forging and kinetics coupling simulation ofmanipulator in heavy forging[J]. Journal of Shanghai Jiaotong University,2009,43(1):33-37.
    [27] Yu Faguo, Gao Feng, Shi Qiaoshuo. Type synthesis for forging manipulators based on GF set[J].Chinese Journal of Mechanical Engineering,2008,44(11):152-159.
    [28] Zhao Kai, Wang Hao, Chen Guanlong, et al. Compliance process analysis for forgingmanipulator[J]. Journal of Mechanical Engineering,2010.46(11):27-34.
    [29] Chen Genliang, Wang Hao, Lin Zhongqin, et al. Performance analysis of a forging manipulatorbased on the composite modeling method[C]. Lecture Notes in Computer Science,2008,5314(2):152-160.
    [30] Zhang Pu, Du Zhengchun. Analysis of forging compliance process and design of the forgingsimulator[J]. Journal of Shanghai Jiaotong University,2009,43(4):674-677.
    [31] Li Qunming, Gao Dan, Deng Hua. Influence of contact forces on stable gripping for large-scaleheavy manipulator[C]. Lecture Notes in Computer Science,2008,5315(2):839-847.
    [32] Chen Mingsong, Lin Yongcheng. Effects of forging manipulator motion trajectory on axialeffective strain in300MW generator rotor forgings[J]. Journal of Mechanical Engineering,2010,46(11):9-13.
    [33] Li Qunming, Gao Dan, Deng Hua. Calculation of contact forces of large-scale heavy forgingmanipulator grippers[J]. Key Engineering Materials,2010,419:645-648.
    [34]何竞飞,陈艳,聂荣光等.巨型重载夹持机构反作用力响应盲区和承载能力的研究[J].机械设计,2010,26(2):55-58.
    [35]王立平,吴旻,关立文.锻造操作机相似试验台设计和仿真[J].制造技术与机床,2009,8:57-62.
    [36]任云鹏,张计磊,韩清凯,等.锻造操作机结构系统的动力有限元建模方法研究[J].机械设计与制造,2008,(7):103-105.
    [37]任云鹏,张天侠,韩清凯,等.锻造操作机机械结构的模态匹配分析[J].机械设计与制造,2008,(12):186-187.
    [38]郑江.锻造操作机电液比例位置控制系统研究[D].武汉:华中科技大学硕士学位论文,2003:1-3.
    [39]郑江,陈柏金.电液比例位置控制系统的参数自整定Fuzzy-PI控制[J].液压与气动,2003,(5):33-35.
    [40]巨鹏飞.锻造操作机典型运动的动态分析和精度控制[D].太原:太原科技大学硕士学位论文,2007:1-3.
    [41]燕山大学科技成果选编(1958~2003).秦皇岛:燕山大学,2003:12-15.
    [42] Xu Yundou, Zhao Yongsheng. Comparative analysis of two typical mechanisms of forgingmanipulator[C].2010International Conference on Mechanic Automation and ControlEngineering, MACE2010:2314-2317.
    [43]权修华.无轨锻造操作机研究[J].锻压技术,1986,(6):47-51.
    [44]李贵闪,何晓燕,荣兆杰.我国液压机行业的现状及发展[J].锻压装备与制造技术,2006,(4):17-19.
    [45]高俊峰.我国快锻液压机的发展与现状[J].锻压技术,2008,33(6):1-5.
    [46] Nowitzki Werner. Manipulators with mass division increase throughput and save energy inhigh-precision forging[J]. MPT Metallurgical Plant and Technology International,2008,31(5):46-48.
    [47] Hohenstein K, Holl A, Herndl O. New all-hydraulic radial forging machine at Schmidt&Clemens[J]. Stahl und Eisen,1994,114(7):31-38.
    [48]姚静.锻造油压机液压控制系统的关键技术研究[D].秦皇岛:燕山大学工学博士学位论文,2008:8-10.
    [49]黄火兵,夏伟,屈盛官,等.比例控制与插装阀技术的应用于发展[J].机床与液压,2007,(4):229-231.
    [50] Fu Xin, Xu Ming, Wang Wei, et al. Hydraulic system design and simulation of the forgingmanipulator[J]. Journal of Mechanical Engineering,2010,46(11):49-54.
    [51] Pahnke Hans-Joachim.Forging machines with hydraulic drive-development and operatingresults[J]. Stahl und Eisen,1983,108(22):91-94.
    [52]何春栋.200KN正弦泵控操作机机液系统联合仿真及节能特性研究[D].秦皇岛:燕山大学硕士学位论文,2010:10-11.
    [53]韩永久,张文国.200t·m锻造操作机液压系统改造设想[J].一重技术,2004,(2):56.
    [54]陈柏金,熊晓红,黄树槐.8MN快速锻造液压机组及其控制系统[J].锻压装备,1999,(1):33-35.
    [55] Murphy T.F, Younkin G.W. PCs sequence drop forging and its manipulator[J]. Hydraulics andPneumatics,1979,37(3):73-76.
    [56] Pahnk Hans Joachim. Fundamentals of Programmed Forging[J]. Stahl und Eisen,1984,103(11):547-552.
    [57]毛君,李娜,刘春华.虚拟样机技术在机械工业中的发展与应用[J].现代制造,2007,(7):82-84.
    [58]赵雯,胡晓峰.武器系统虚拟样机技术研究[J].国防科技大学学报,1999,21(1):58-61.
    [59] Tseng Mitchell M, Jiao Jianxin, Su Chuan-Jun. Framework of virtual design for productcustomization[C]. IEEE Symposium on Emerging Technologies&Factory Automation, ETFA,1997:7-14.
    [60] Bloor M S, McKay A. Product and shape Representation for Virtual Prototyping Virtualenvironments and the product design process[M]. ChapMan and Hall Press,1995:3-4.
    [61]祖旭,黄洪钟,张旭.虚拟样机技术及其发展[J].农业机械学报,2004,35(2):168-171.
    [62] Lombardo Joseph S, Mihalak Edward, Osborne Scott R. Collaborative virtual prototyping[J].Johns Hopkins Ap1.Technical Digest,1996,17(3):295-303.
    [63] Ren Yunpeng, Zhang Tianxia, Zhang Jilei, et al. Dynamics simulation on the jig jaw of aforging manipulator based on virtual prototype technology[J]. Journal of NortheasternUniversity,2008,29(2):120-124.
    [64] Ren Yunpeng, Han Qingkai, Zhang Tianxia, et al. Dynamic simulation of forging manipulatorbased on virtual prototyping[J]. Journal of Northeastern University,2010,31(8):1170-1173.
    [65]任云鹏,陈希红,卢崇劭,等.基于虚拟样机技术的锻造操作机的刚柔混合仿真分析[J].技术与应用,2010:50-53.
    [66]陈博翁,关立文,李铁民.基于ADAMS的锻造操作机动力学仿真及优化设计[J].机械设计与制造,2009,(3):6-8.
    [67]同新星.基于虚拟样机技术的锻造操作机缓冲装置研究[J].装备,2010:46-48.
    [68] Tie Ming, Fan Yushun. HLA based multidisciplinary collaborative simulation framework forforging and manipulating process[C]. Lecture Notes in Computer Science,2008,5314(1):1256-1264.
    [69] Fan Miaomiao, Fan Yushun, Huang Shuangxi. Design and simulation supportive platform forforging manipulator system[J]. Journal of Mechanical Engineering,2010,46(11):76-82.
    [70]吴永宏.重载锻造操作机夹持机构的优化设计及相似性研究[D].长沙:中南大学硕士学位论文,2009:2-3.
    [71]安子军.机械原理[M].北京:机械工业出版社,1998:12.
    [72]赵凯.锻造操作机缓冲过程仿真与顺应性评价[D].上海:上海交通大学硕士学位论文,2009:12-13.
    [73]欧阳富,刘彦华,孙东民.关于重新建立空间机构自由度计算公式的探索[J].机械工程学报,2003,29(1):60-64.
    [74] Ambrósio Jorge A.C. Multibody System Dynamics: Preface[J]. Multibody System Dynamics,2008,19(1):1-2.
    [75] Lu Xueqin, Zhang Kewu, Yi Xiong. ADAMS and its application research on robot[J]. MaterialScience and Technology,2004,(12):21-23.
    [76]翟玉生,李安,张金中.应用摩擦学[M].山东:石油大学出版社,1996:1-3.
    [77] Janiec M. Friaion compensation by the use of friction observer[M]. Lund: Lund InstituteofTechnology,2004:22-23.
    [78] Bo Lichun, Pavelescu D. The friction-speed relation and its influence on the critical velocity ofthe stick-slip motion[J].Wear,1982,82(3):277-289.
    [79] Tustin A. The effects of backlash and of speed dependent friction on the stability ofclosed-cycle control systems[J]. Institution of Electrical Engineers,1994,(2):143-151.
    [80] Dahl P.R. Solid friction damping of mechanical vibrations[J]. AIAA Journal,1976,14(12):1675-1682
    [81] Haessig Jr.D.A, Friedland B. On the modeling and simulation of friction[J].Journal ofDynamic Systems, Measurement and Control, Transactions of the ASME,1991,103(3):354-362.
    [82]权凌霄.参数自适应型蓄能器研究[D].秦皇岛:燕山大学工学博士学位论文,2009:21-23.
    [83]刘琳琳,王艾伦,马强,等.卸荷溢流阀动态特性的数字仿真研究[J].机床与液压,2006,(9):124-126.
    [84]冀宏,王东升,丁大力,等.非全周开口滑阀阀口面积的计算方法[J].兰州理工大学学报,2008,34(3):48-51.
    [85]付永领,赵克,龙满林.低换向冲击直动式非线性比例换向阀设计与仿真[J].机床与液压,2010,38(3):84-86.
    [86]蔡亦钢.流体传输管道动力学[M].浙江:浙江大学出版社,1990):23-25.
    [87]张玮,冀宏,于振燕.管道配置对阀控缸液压系统动态特性的影响[J].机床与液压,2008,36(10):74-76.
    [88]张勇,程珩.软管集中参数模型的建立和仿真研究[J].机械工程与自动化,2007,(3):4-6.
    [89]赵宇,权龙,李银玉.考虑软管粘弹性的液压伺服系统建模与仿真研究[J].流体传动与控制,2005,(3):5-8.
    [90]付永领,祁晓野. AMEsim系统建模和仿真[M].北京:北京航空航天大学出版社,2006:1-3.
    [91] Chen Long, Niu Li Minjiang, Hao Bin, et al. Application of AMESim in integrated model ofsuspension and steering[J]. Journal of Zhejiang University,2007,41(10):1763-1767.
    [92] Xu XiangLi, Zhi Xiong, Qin Hongling. Design and integrated simulation of theelectro-hydraulic servo system based on AMESim and Matlab[J]. Applied Mechanics andMaterials,2011,(44):1355-1359.
    [93] Zhao Hengli, Ping Kang, Du Xiuxia. Simulation of hydraulic buffering valve for vehicle powertransmission system using AMESim[J]. Journal of Jilin University,2007,(37):22-25.
    [94]夏明长,江雨燕,李洁.复杂产品协同仿真与设计技术的研究[J].计算机技术与发展,2009,19(3):70-73.
    [95]宁琴.机电一体化产品虚拟样机协同建模与仿真技术研究[D].成都:四川大学博士学位论文,2006:54-55.
    [96] Deng Zilong, Liu Jie, Fu Yue. Application of Pro/E in the design of hydraulic excavatorbackhoe working equipment[J]. Journal of Northeastern University,2008,(19):57-60.
    [97] Zhang Maopeng, Chen Weifang. Automatic modeling for modular fixture components based onSolidWorks[J]. Journal of South China University of Technology,2005,33(2):56-59.
    [98] Li Jianqiao, Wen Lige, Zhang Xiuzhi, et al. Parameterized design method for blade to chopstubble based on UG[J]. Journal of Jilin University,2008,38(3):595-598.
    [99] Yuan Qingke, Liu Dahui, Zeng Dedong, et al. Motion modeling and simulation technology ofbonding head mechanisms[J]. Journal of the University of Electronic Science and Technologyof China,2009,38(2):317-320.
    [100] Behbahani-Nejad M, Bagheri A. The accuracy and efficiency of a MATLAB/Simulink libraryfor transient flow simulation of gas pipelines and networks[J]. Journal of Petroleum Science andEngineering,2010,70(3):256-265.
    [101]宋孝臣.入口特性对蓄能器性能影响的研究.秦皇岛:燕山大学硕士学位论文,2006:51-53.
    [102]张雅芹.李力强.液压系统中O型密封圈的使用研究[J].机械工程师,2009,(1):147-149.
    [103] Peng Xiwei, Wang Yu, Wang Xiangzhou. Self-adjusting feedforward compensation trackingcontrol for proportional valve-controlled motor[J]. Journal of Beijing Institute of Technology,1999,8(3):282-287.
    [104] Peng Xiwei, Geng Qingbo, Wang Xiaoping. Experimental study on low-velocity friction torquecharacteristics of hydraulic motor[C]. Transaction of Beijing Institute of Technology,2006,26(11):999-1003.
    [105]刘松柏,邓华,何竞飞.巨型重载夹持装置动态夹持力建模与承载能力分析[J].现代制造工程,2010,(1):107-111.
    [106] Tiselj Iztok, trubelj. On modeling of condensation-induced water hammer in horizontalpipe[C]. Proceedings of the ASME Fluids Engineering Division Summer Conference,2009,(1):907-915.
    [107]倪昊煜.水击理论研究[D].郑州:郑州大学学位论文,2004:7-10.
    [108]邓宏.全液压锻造操作机钳杆旋转液压马达制动回路改进[J].设备管理与维修,2010,(4):37-38.
    [109]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J].自动化学报[J],2003,26(3):347-353.
    [110]于洪国,王平.一种改进的最优PID参数自整定控制方法[J].现代电子技术,2010,(19):162-164.
    [111] Silva Guillermo J, Datta Aniruddha, Bhattacharyya S.P. New results on the synthesis of PIDcontrollers[J]. IEEE Transactions on Automatic Control,2002,47(2):241-252.
    [112]孔祥东,王益群.控制工程基础第3版[M].北京:机械工业出版社,2008:48.
    [113]刘杰.基于虚拟样机的锻造操作机阀控马达系统仿真研究[D].秦皇岛:燕山大学硕士学位论文,2010:26-28.
    [114]孔祥东,李楠,姚静,等.22MN快锻液压机快锻控制特性研究[J].液压与气动,2008,(10):37-39.
    [115]姚静,孔祥东,何龙,等.22MN快锻液压机液压控制系统[J].机床与液压,2010,38(6):24-27.
    [116] Kolmogorov V.L, Parshakov S.I, Plotnikov A.P. Operation regimes optimization for forgingsystem manipulator[J]. Kuznechno-Shtampovochnoe Proizvodstvo,2007,(5):42-45.
    [117]逄振旭,倪其民,庠从心,等.快速锻造操作机的计算机控制[J].锻压机械,2000,(1):53-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700