用户名: 密码: 验证码:
不锈钢/碳钢覆层钢筋轧制理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢筋混凝土建筑结构由于钢筋的腐蚀而破坏越来越受到人们的关注,新型的建筑用钢筋被不断的研究和设计。由于不锈钢/碳钢覆层钢筋在各种防腐措施中效果较好,可以满足人们对钢筋混凝土建筑结构设计寿命提高的要求,近些年学者和工程技术人员对这种钢筋的研究越来越多。随着科技的进步以及生产技术的发展,多种方法被应用于不锈钢/碳钢覆层钢筋的生产上。热轧是不锈钢/碳钢覆层钢筋生产方式中最有前途的一种,人们已经对其进行了研究并取得一定的成果,但该方法仍处于试验阶段,并存在一定的问题。覆层钢筋轧制是多因素耦合作用下的复杂过程,对于孔型的设计,变形过程中的金属流动规律等尚无系统理论或研究成果,国外对该领域的研究刚刚起步,而我国对不锈钢/碳钢覆层钢筋的生产以及理论的研究仍是空白。
     本文首先建立了正确反映不锈钢/碳钢覆层钢筋轧制过程的有限元模型。在轧制过程中,覆层钢筋两金属的接触复合状态是发生变化的并且常用方法不能解决该问题。因此,对商业有限元软件MSC.MARC进行二次开发,编写子程序,通过程序判断节点与接触面是否粘结,并和其它常用界面处理方法以及实验结果进行比较,证明了使用本文方法可以合理判断轧制过程中两金属的接触复合状态。
     合理的设计孔型系统,研究了不锈钢/碳钢覆层钢筋轧制过程中金属的变形以及与单一金属轧制的区别,发现两者的变形存在一定的差异,轧制单一金属的孔型系统不能够轧制覆层钢筋。
     在有限元模拟的基础上,对比研究了平椭-圆孔型系统和菱-菱孔型系统轧制不锈钢/碳钢覆层钢筋过程中,对界面间接触应力、不锈钢壁厚分布规律的影响。之后,对覆层钢筋的轧制工艺进行了考察。以菱-菱孔型系统轧制过程为研究对象,研究了孔型参数、不锈钢壁厚、轧辊与轧件间的摩擦对双金属复合效果和宽展的作用,讨论了中心压实法和张/推力轧制在覆层钢筋热轧过程中的应用效果。通过研究发现,表面温度提高有利于两金属的复合,张力轧制不利于金属间复合但有利于不锈钢壁厚分布均匀,这些为不锈钢覆层钢筋的实际轧制奠定理论基础。
     为进一步了解不锈钢/碳钢芯覆层钢筋的实际轧制复合效果,进行了热轧实验。对比了平椭-圆孔型系统和菱-菱孔型系统热轧覆层钢筋的优缺点,发现使用菱-菱孔型轧制复合效果较明显,并在菱-菱孔型热轧的基础上,研究了覆层钢筋的机械性能和金属间的元素扩散情况,分析了轧制道次、压下量、轧制温度、微推力等工艺对覆层钢筋变形及复合效果的影响。随轧制道次,压下量,轧制温度的提高以及微推力的使用,金属间复合效果改善。
     接下来,研究了碳钢屑的热压成型工艺,分析了压制工艺参数,如压制力、温度、金属粘结剂对碳钢屑材料的性能影响,探讨了碳钢屑粘结机理,证明了碳钢屑可以经过一定的工艺制备成具有一定强度的金属材料。进而研究了不锈钢/碳钢屑芯覆层钢筋的热轧成型工艺,热轧制备出不锈钢/碳钢屑芯覆层钢筋。考察轧制道次、轧制温度、石墨添加量、退火工艺对不锈钢/碳钢屑芯覆层钢筋机械性能的影响。研究发现,轧制工艺条件以及石墨添加量对覆层钢筋性能的影响很大,可以通过调整轧制工艺条件来提高不锈钢/碳钢屑芯覆层钢筋的机械性能。
With more attention of people paying on reinforced concrete structures’ damagebecause of corrosion of reinforcing steel bar, new reinforced bar for building has beencontinuously research and design. Stainless steel/carbon steel cladding bar is the mostanticorrosive method which can meet the requirement of people on increasing lifeexpectancy of concrete buildings. With the development of technology andmanufacturing technique, lots of methods have been used in this kind production. Hotrolling is the most promising method and some achievements had made. However, it isstill experimental, and there are some problems. It is a complex process under coupledeffects of multi-factors, and there is no system theory or research on pass design andmetal flow law. The researches on this field of overseas just start, but still blank in China.
     First, a finite element model which can reflect of rolling process of the stainlesssteel/carbon steel cladding bar correctly was established in this article. The bonding stateof the contact surface of the metals is variation and the common software cannot solvethis problem. So a subprogram was compiled based on the secondary development ofMSC.MARC and it used to judge whether the nodes bonding to the contact surface. Then,the result was compared with other three methods commonly used,and it proved that thebonding state of the contact surface in the rolling process can be gotten using the methodin this article.
     With reasonable pass designing, the metal flow and the difference to homogeneousmetal rolling were studied. It was found that the deformation between two kinds bar isdifferent, so the passes used for homogeneous metal cannot be used for cladding bar.
     Based on the finite element simulation, the contact stress of interface and wallthickness distribution of stainless steel were comparatively studied in the rolling processof stainless steel/carbon steel cladding bar using flat oval-round pass system anddiamond-diamond pass system. Later, the rolling process of cladding bar wasinvestigated. By using the diamond-diamond pass system,the effect of pass parameters, wall thickness of stainless steel and friction between roller and workpiece on bondingand spread were studied. It emphatically discussed the application effect of surfacetemperature difference method and tensile/thrust on rolling of the cladding bar. Theresults indicated it is advantageous to bonding with rising the surface temperature andtensile rolling is disadvantageous to bonding but advantageous to the thickness ofstainless steel wall. All will lay the theoretical foundation for the actual rolling ofstainless steel/carbon steel bar.
     In order to find out the bonding effect of the actual rolling, a hot rolling experimentwas carried out. The bonding effect in the rolling process by using flat oval-round passsystem and diamond-diamond pass system were comparatively. The obvious bondingresult using diamond-diamond pass system can be found. On the foundation of using thediamond-diamond pass system, the properties and elements diffusion of cladding barwere studied. Then, the effect of rolling pass, pass reduction, rolling temperature andmicro thrust on deform and bonding of cladding bar were analyzed. The bonding resultsimproved with the increment of passes, reduction, temperature and micro thrust.
     Next, the hot press process of iron chips and the effect of the process parameters(such as press force, temperature and metallic binder) on properties of chips materialwere studied, which proved that the iron chips can become into a kind of material using aspecial process. The bonding mechanism of the iron chips was discussed and hot rollingprocess of stainless steel/iron chips core cladding bar were carried out, from which theeffect of rolling pass, rolling temperature, graphite content and annealing process onmechanical properties of cladding bar were analyzed. It is found out that great effect ofrolling process and graphite content on the properties of carbon steel chips core claddingbar, so the mechanical property of this bar can be adjusted by changing rolling process.
引文
[1]赵玉涛,戴起勋,陈刚.金属基复合材料[M].北京:机械工业出版社,2007:2-3.
    [2]沃丁柱.复合材料大全[M].北京:化学工业出版社,2000:360-376.
    [3]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出版社,2003:1-20.
    [4]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006:148-196.
    [5]赵祖德.复合材料固-液成形理论与工艺[M].北京:冶金工业出版社,2008:195-198.
    [6]陈铮.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001:1-10.
    [7]陶杰,赵玉涛,潘蕾,等.金属基复合材料制备新技术导论[M].北京:化工工业出版社,2007:51-56.
    [8] Wang Xuesheng, Li Peining, Wang Ruzhu. Study on Hydro-Forming Technology ofManufacturing Bimetallic Cra-Lined Pipe[J]. International Journal of Machine Tools andManufacture,2005,45(4-5):373-378.
    [9]秦建平,周存龙,於方.双金属复合管冷斜轧工艺的成形过程分析[J].塑性工程学报,2004,11(1):71-75.
    [10]尹兴东,朱刚.碳钢-不锈钢缝焊包覆管的生产工艺及孔型设计[J].钢管,2006,35(1):54-57.
    [11]王铁福.不锈钢/普碳钢爆炸焊接与轧制[J].爆炸与冲击,2004,24(2):163-169.
    [12]周俊杰,庞玉华,苏晓莉.不锈钢/铝复合板的成形性能研究[J].轻合金加工技术,2005,33(9):23-26.
    [13]李民权,张辉,李落星.热轧钢/铝复合板结合强度及界面的研究[J].热加工工艺,2008,37(24):34-37,41.
    [14] S. Berski, H. Dyja, A. Maranda, et al. Analysis of Quality of Bimetallic Rod after ExtrusionProcess[J]. Journal of Materials Processing Technology,2006,177(1-3):582-586.
    [15]罗奕兵,刘新华,谢建新.铜包铝复合扁线轧制变形行为的数值模拟与实验研究[J].中国有色金属学报,2009,19(7):1245-1251.
    [16] S. Mroz, P. Szota, H. Dyja, et al. Theoretical and Experimental Analysis of the Cu-AlBimetallic Bar Rolling Process[J]. METALURGIJA,2011,50(2):85-88.
    [17]赵路遇.奥氏体不锈钢—钢爆炸复合板微观组织的特性及热处理后的变化[J].材料开发与应用,1995,10(6):20-28.
    [18]康显桂,郑远谋,康君笃.不锈钢—碳钢爆炸复合板结合区的电子探针研究[J].广东有色金属学报,1996,6(2):125-132.
    [19]张寿禄,王立新,裴海祥,等.不锈钢-钢爆炸复合板结合区组织的分析[J].特殊钢,2003,24(3):13-16.
    [20] M. Acarer, B. Demir. An Investigation of Mechanical and Metallurgical Properties of ExplosiveWelded Aluminum–Dual Phase Steel[J]. Materials Letters,2008,62(25):4158-4160.
    [21] N. Venkateswara Rao, G. Madhusudhan Reddy, S. Nagarjuna. Weld Overlay Cladding of HighStrength Low Alloy Steel with Austenitic Stainless Steel–Structure and Properties[J].Materials&Design,2011,32(4):2496-2506.
    [22]郑远谋,黄荣光,陈世光.金属爆炸复合材料的热处理[J].金属热处理,1999,(1):26-30.
    [23]史长根,冯健.304/A36爆炸+轧制复合板轧制工艺研究[C].第二届层压金属复合材料生产技术开发与应用学术研讨会,北京,2010.
    [24] F. Grignon. Explosive Welding of Aluminum to Aluminum: Analysis, Computations andExperiments[J]. International Journal of Impact Engineering,2004,30(10):1333-1351.
    [25] A. Akbarimousavi, S. Alhassani. Numerical and Experimental Studies of the Mechanism of theWavy Interface Formations in Explosive/Impact Welding[J]. Journal of the Mechanics andPhysics of Solids,2005,53(11):2501-2528.
    [26] A. Akbarimousavi, S. Burley, S. Alhassani. Simulation of Explosive Welding Using theWilliamsburg Equation of State to Model Low Detonation Velocity Explosives[J]. InternationalJournal of Impact Engineering,2005,31(6):719-734.
    [27] S. Akbarimousavi, P. Farhadisartangi. Experimental Investigation of Explosive Welding ofCp-Titanium/Aisi304Stainless Steel[J]. Materials&Design,2009,30(3):459-468.
    [28] J. Yong, P. Dashu, L. Dong, et al. Analysis of Clad Sheet Bonding by Cold Rolling[J]. Journalof Materials Processing Technology,2000,105(1-2):32-37
    [29] M. Abbasi, A.K. Taheri, M.T. Salehia. Growth Rate of Intermetallic Compounds in Al-CuBimetal Produced by Cold Roll Welding Process[J]. Journal of Alloys and Compounds,2001,319(1-2):233-241.
    [30] D. Manesh, K. Taheri. An Investigation of Deformation Behavior and Bonding Strength ofBimetal Strip During Rolling[J]. Mechanics of Materials,2005,37(5):531-542.
    [31] H. Manesh, A. Taheri. Theoretical and Experimental Investigation of Cold Rolling of Tri-LayerStrip[J]. Journal of Materials Processing Technology,2005,166(2):163-172.
    [32] G.P. Chaudhari, V. Acoff. Cold Roll Bonding of Multi-Layered Bi-Metal LaminateComposites[J]. Composites Science and Technology,2009,69(10):1667-1675.
    [33] Y.M. Hwang, H.H. Hsu, Y.L. Hwang. Analytical and Experimental Study on Bonding Behaviorat the Roll Gap During Complex Rolling of Sandwich Sheets[J]. International Journal ofMechanical Sciences,2000,42(12):2417-2437.
    [34] G. Xu, B. Li, J. Cui. Interfacial Microstructure of Al-Sn-Pb Alloy/Steel During Liquid-SolidBonding Rolling[J]. Journal of Iron and Steel Research, International,2006,13(4):40-43.
    [35] H. Kang, J. Kim, M. Huh, et al. A Combined Texture and Fem Study of Strain States DuringRoll-Cladding of Five-Ply Stainless Steel/Aluminum Composites[J]. Materials Science andEngineering: A,2007,452-453:347-358.
    [36] J. Lee, D. Bae, W. Chung, et al. Effects of Annealing on the Mechanical and InterfaceProperties of Stainless Steel/Aluminum/Copper Clad-Metal Sheets[J]. Journal of MaterialsProcessing Technology,2007,187-188:546-549.
    [37] M. Eizadjou, A. Kazemitalachi, H. Daneshmanesh, et al. Investigation of Structure andMechanical Properties of Multi-Layered Al/Cu Composite Produced by Accumulative RollBonding (Arb) Process[J]. Composites Science and Technology,2008,68(9):2003-2009.
    [38] M. Soltanalinezhad, A. Haerianardakani. A Study of Joint Quality of Aluminum and LowCarbon Steel Strips by Warm Rolling[J]. Materials&Design,2009,30(4):1103-1109.
    [39] D. Zhao, J. Yan, Y. Wang, et al. Relative Slipping of Interface of Titanium Alloy to StainlessSteel During Vacuum Hot Roll Bonding[J]. Materials Science and Engineering: A,2009,499(1-2):282-286.
    [40] M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani. Investigation on the Bond Strength ofAl-1100/St-12Roll Bonded Sheets, Optimization and Characterization[J]. Materials&Design,2011,32(6):3143-3149.
    [41] Yuan Jiawei, Pang Yuhua, Li Ting. Multilayer Clad Plate of StainlessSteel/Aluminum/Aluminum Alloy[J]. Journal of Wuhan University of Technology-Mater. Sci.Ed,2011,26(1):111-113.
    [42]许秀梅,张文志,宗家富,等.不锈钢-碳钢板热轧复合最小相对压下量的确定[J].重型机械,2004,(5):46-49.
    [43]朱旭霞,彭大暑,黎祚坚.多层复合板热轧复合过程的数值模拟[J].锻压技术,2004,29(1):30-32,56.
    [44] Jiang Wenchun, Liu Zibai., J. M. Gong, et al. Numerical Simulation to Study the Effect ofRepair Width on Residual Stresses of a Stainless Steel Clad Plate[J]. International Journal ofPressure Vessels and Piping,2010,87(8):457-463.
    [45] C. Wu, R. Hsu. Extrusion Analysis and Workability Prediction of Three-Layer CompositeHexagonal Clad Rods[J]. Journal of Materials Processing Technology,2006,174(1-3):312-317.
    [46] A. Khosravifard, R. Ebrahimi. Investigation of Parameters Affecting Interface Strength inAl/Cu Clad Bimetal Rod Extrusion Process[J]. Materials&Design,2010,31(1):493-499.
    [47] P. Eslami, A. Karimi Taheri. An Investigation on Diffusion Bonding of Aluminum to CopperUsing Equal Channel Angular Extrusion Process[J]. Materials Letters,2011,65(12):1862-1864.
    [48] M. Zebardast, A. Karimi Taheri. The Cold Welding of Copper to Aluminum Using EqualChannel Angular Extrusion (Ecae) Process[J]. Journal of Materials Processing Technology,2011,211(6):1034-1043.
    [49] K.S. Lee, H.J. Jun, Y.S. Lee. Fabrication of Bimetallic Rods Consist of a Zr-Based BulkMetallic Glass and a Crystalline Copper by Co-Extrusion[J]. Intermetallics,2010,18(10):1958-1963.
    [50] H. Haghighat, G.R. Asgari. A Generalized Spherical Velocity Field for Bi-Metallic TubeExtrusion through Dies of Any Shape[J]. International Journal of Mechanical Sciences,2011,53(4):248-253.
    [51] L. Menga, S.P. Zhou, F.T. Yang, et al. Diffusion Annealing of Copper–Silver Bimetallic Stripsat Different Temperatures[J]. Materials Characterization,2001,47(3-4):269-274.
    [52] N. Orhan, T.I. Khan, M. Erolu. Diffusion Bonding of a Microduplex Stainless Steel toTi–6al–4v[J]. Scripta Materialia,2001,45(4):441-446.
    [53]安子良,轩福贞,涂善东.316l不锈钢扩散焊接头的微观结构和力学性能[J].中国有色金属学报,2006,16(10):1765-1770.
    [54] B. Kurt. The Interface Morphology of Diffusion Bonded Dissimilar Stainless Steel and MediumCarbon Steel Couples[J]. Journal of Materials Processing Technology,2007,190(1-3):138-141.
    [55] S. Li, F. Xuan, S. Tu. In Situ Observation of Interfacial Fatigue Crack Growth in DiffusionBonded Joints of Austenitic Stainless Steel[J]. Journal of Nuclear Materials,2007,366(1-2):1-7.
    [56] B. Kurt, A. Alik. Interface Structure of Diffusion Bonded Duplex Stainless Steel and MediumCarbon Steel Couple[J]. Materials Characterization,2009,60(9):1035-1040.
    [57] S. Kundu, S. Chatterjee. Interfacial Microstructure and Mechanical Properties ofDiffusion-Bonded Titanium–Stainless Steel Joints Using a Nickel Interlayer[J]. MaterialsScience and Engineering: A,2006,425(1-2):107-113.
    [58] W. Deqing, S. Ziyuan, Q. Ruobin. Cladding of Stainless Steel on Aluminum and Carbon Steelby Interlayer Diffusion Bonding[J]. Scripta Materialia,2007,56(5):369-372.
    [59] P. He, X. Yue, J. Zhang. Hot Pressing Diffusion Bonding of a Titanium Alloy to a StainlessSteel with an Aluminum Alloy Interlayer[J]. Materials Science and Engineering: A,2008,486(1-2):171-176.
    [60] A. Elrefaey, W. Tillmann. Solid State Diffusion Bonding of Titanium to Steel Using a CopperBase Alloy as Interlayer[J]. Journal of Materials Processing Technology,2009,209(5):2746-2752.
    [61]张彩碚,崔建中.不锈钢/Al固液轧制复合板材界面剪切强度与界面结构[J].金属学报,1999,35(2):113-116.
    [62]许光明,李兴钢,崔建中.液固相铝-不锈钢板复合轧制温度场的模拟计算[J].钢铁研究学报,2000,12(4):19-22.
    [63]崔建忠.液-固相轧制复合法生产铝不锈钢复合带[J].材料导报,2001,15(2):15,16.
    [64]李兴刚,谢水生,许光明,等.液-固相轧制复合法生产含硅中锡-钢复合轴瓦带的凝固组织[J].稀有金属,2004,28(1):224-228.
    [65]方晓英.液固相复合-轧制铜包钢线的组织性能及界面冶金行为[J].热加工工艺,2006,35(9):9-11,16.
    [66]王渠东.喷射沉积金属基复合材料的研究进展[J].兵器材料科学与工程,1994,(3):11-18.
    [67]傅定发,宁洪龙,陈振华.喷射沉积技术与双金属材料的制备[J].兵器材料科学与工程,2001,24(1):65-67.
    [68]彭超群,黄伯云.喷射沉积技术[J].有色金属学报,2002,54(1):12-15,26.
    [69] M. Milanova, I. Koleva, R. Todorovska, et al. Polymetallic Citric Complexes as Precursors forSpray-Pyrolysis Deposition of Thin Ferrite Films[J]. Applied Surface Science,2011,257(17):7821-7826.
    [70] X. L. Zhou, A. F. Chen, J. C. Liu, et al. Preparation of Metallic Coatings on Polymer MatrixComposites by Cold Spray[J]. Surface and Coatings Technology,2011,206(1):132-136.
    [71]宁洪龙,王一平,黄福祥,等.多层喷射沉积铝/钢双金属板材的研究[J].功能材料,2002,33(2):166-168.
    [72]袁武华,徐海洋,夏伟军,等.多层喷射沉积制备大尺寸耐热铝合金管坯的研究[J].宇航材料工艺,2001,(6):51-54.
    [73]张豪,陈振华.喷射沉积6066al/Sicp复合材料[J].中南工业大学学报,1997,28(5):465-469.
    [74]李宝绵. H90-钢反向凝固复合工艺及理论研究[D].沈阳:东北大学工学博士学位论文,2003:5-30.
    [75]温景林,赵红亮,齐克敏,等.反向凝固与高温轧制过程中元素互扩散对复合界面的作用[J].塑性工程学报.2002,9(1):34-36.
    [76]赵红亮,齐克敏,高德福,等.反向凝固复合不锈钢带的轧制工艺及界面结合[J].钢铁研究学报,2000,12(1):73-76.
    [77]孙跃军,仲伟深,高顺利,等.反向凝固铜-钢电车线的研究[J].铸造技术,2004,25(8):607-609.
    [78]卢琦,李金国,金涛,等.镍基双晶高温合金定向凝固过程中的竞争成长[J].金属学报,2011,47(6):1-7.
    [79]祖国胤.利用中间夹层促进不锈钢与碳钢复合的实验研究[D].沈阳:东北大学博士学位论文,2002:9-12.
    [80] W. Gregory. Service Life Modeling of Virginia Bridge Decks[D]. Virginia: Virginia PolytechnicInstitute and State University,2007:1-5.
    [81] G. Fajardo, P. Valdez, J. Pacheco. Corrosion of Steel Rebar Embedded in Natural PozzolanBased Mortars Exposed to Chlorides[J]. Construction and Building Materials,2009,23(2):768-774.
    [82] J. Grubb, J. Blunt, C. Ostertag, et al. Effect of Steel Microfibers on Corrosion of SteelReinforcing Bars[J]. Cement and Concrete Research,2007,37(7):1115-1126.
    [83] P. Venkatesan, N. Palaniswamy, K. Rajagopal. Corrosion Performance of Coated ReinforcingBars Embedded in Concrete and Exposed to Natural Marine Environment[J]. Progress inOrganic Coatings,2006,56(1):8-12.
    [84] X. Fu, D.D.L. Chung. Sensitivity of the Bond Strength to the Structure of the Interface betweenReinforcement and Cement, and the Variability of This Structure[J]. Cement and ConcreteComposites,1998,28(6):787-793.
    [85] J. Perezquiroz, J. Teran, M. Herrera, et al. Assessment of Stainless Steel Reinforcement forConcrete Structures Rehabilitation[J]. Journal of Constructional Steel Research,2008,64(11):1317-1324.
    [86] Arminox. Mexico Inspection Report. Evaluation of the Stainless Steel Reinforcement[R].Mexico:Viborg Arminox,1999:18-25.
    [87] L.K. Jennifer, D. David, E.J. Carl. Evaluation of Corrosion Protection Methods[R].LAWRENCE: University of Kansas Center for Research,2000:2-10.
    [88] R.S. John, F.H. Michael. Investigation of the Corrosion Propagation Characteristics of NewMetallic Reinforcing Bars[R]. Virginia: Department of Materials Science and EngineeringUniversity,2007:15-33.
    [89] R. Ricardo. New Development in Steel Reinforcement Protection from Corrosion[D].Massachusetts Institute of Technology,2001:57-65.
    [90] M. Jalili, S. Moradian, D. Hosseinpour. The Use of Inorganic Conversion Coatings to Enhancethe Corrosion Resistance of Reinforcement and the Bond Strength at the Rebar/Concrete[J].Construction and Building Materials,2009,23(1):233-238.
    [91] R. Selvaraj, M. Selvaraj, S.V.K. Iyer. Studies on the Evaluation of the Performance of OrganicCoatings Used for the Prevention of Corrosion of Steel Rebars in Concrete Structures[J].Progress in Organic Coatings,2009,64(4):454-459.
    [92] M. Manna, N. Bandyopadhyay, D. Bhattacharjee. Effect of Plating Time for Electroless NickelCoating on Rebar Surface: An Option for Application in Concrete Structure[J]. Surface andCoatings Technology,2007:3-8.
    [93] M. Manna, G. Naidu, N. Rani, et al. Characterisation of Coating on Rebar Surface UsingHot-Dip Zn and Zn-4.9al-0.1Misch Metal Bath[J]. Surface and Coatings Technology,2008,202(8):1510-1516.
    [94] J.K. Cable, M.L. Porter. Demonstration and Field Evaluation of Alternative Portland CementConcrete Pavement Reinforcement Materials[R]. Ames: Department of Civil, Construction andEnvironmental Engineering Iowa State University,2003:10-15.
    [95] W.A.H. Poppmeier, J.C. Vreugdenburg. The Manufacture of Stainless Clad Steels[J]. TheSouthern African Institute of Mining and Metallurgy,1991,91(12):435-439.
    [96] Y. Purk. Flexural Performance of Mmfx Reinforcing Rebars in Concrete Structures[D]. NorthCarolina State University,2003:145.
    [97] D.B Mcdonald, D.W Pfeifer, M.R Sherman. Corrosion Evaluation of Epoxy-Coated, MetallicClad and Solid Metallic Reinforcing Bars in Concrete[R]. Washington: Department ofTransportation Federal Highway Administration,1998,1-30.
    [98] H.H. William, G.P. Rodney, K.L. Diane, et al. Job Site Evaluation of Corrosion-ResistantAlloys for Use as Reinforcement in Concrete[R]. Dania Center for Marine Materials FloridaAtlantic University,2006:12-15.
    [99] H. Castro. Mechanical Properties and Corrosion Behaviour of Stainless Steel ReinforcingBars[J]. Journal of Materials Processing Technology,2003,143-144:134-137.
    [100] U. Nürnberger. Stainless Steel Reinforcement-a Survey[J]. Otto-Graf–Journal,2005,16:111-138.
    [101] G. Markeset, S. Rostam, O. Klinghoffer. Guide for the Use of Stainless Steel Reinforcement inConcrete Structures[R]. Oslo: Norwegian Building Research Institute,2006:45-48.
    [102] F.H. Michael, R.S. John. Chloride Threshold Levels in Clad316l and Solid316ln StainlessSteel Rebar[C].2002. NACE International, Denver,2002:1-24.
    [103]程挺宇.不锈钢/碳钢热轧复合工艺及性能[J].上海金属,2009,31(1):48-50,58.
    [104]焦少阳,董建新,张麦仓,等.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报,2009,23(1):59-62.
    [105]马志新,胡捷,李德富,等.层状金属复合板的研究和生产现状[J].稀有金属,2003,27(6):799-803.
    [106]田德旺,应保胜,王赤.双金属复合板冷轧变形行为的avitzur上限模式分析[J].工艺与工艺装备,2005,2005增:80-82,96.
    [107]王旭东,张迎晖,徐高磊.轧制法制备金属层状复合材料的研究与应用[J].铝加工,2008,(3):22-25.
    [108]朱旭霞,刘浪飞,彭大暑.复合轧制张力对层状复合材料临界变形程度的影响[J].中国有色金属学报,2004,14(9):1599-1603.
    [109] G.G. Clemena, D.N. Kukreja, C.S. Napier. Trial Use of a Stainless Steel-Clad Steel Bar in aNew Concrete Bridge Deck in Virginia[R]. Charlottesville: U.S. Department of TransportationFederal Highway Administration,2003:4-23.
    [110] F. Cui, A.A. Sagüés. Exploratory Assessment of Corrosion Behavior of Stainless Steel CladRebar: Part2—Modeling of Galvanic Corrosion at Cladding Breaks[J]. Corrosion Science,2006,62(10):918-929.
    [111] S. Dave, H. Ron. Use of Stainless Steel Alternative for a Corrosion Resistance Structure[R].Bismarck: North Dakota Department of Transportation,2001:1-3.
    [112] D. David, B. Joann, V.N. Trung, et al. Evaluation of Metallized Stainless Steel CladReinforcement[R]. Lawrence: University of Kansas Center for Research,200:11-17.
    [113] F. S. Cui, A. Sagüés. Corrosion Performance of Stainless Steel Clad Rebar[R]. Houston: NACEInternational,2003:5-8.
    [114] M. Garciaalonso, M. Escudero, J. Miranda, et al. Corrosion Behaviour of New Stainless SteelsReinforcing Bars Embedded in Concrete[J]. Cement and Concrete Research,2007,37(10):1463-1471.
    [115] T.K. Jason, D. David, E.L.J. Carl. Evaluation of Corrosion Resistance of Type304StainlessSteel Clad Reinforcing Bars[R]. Lawrence: The University of Kansas Center for Research, Inc.,2001:16-25.
    [116] C.M. Abreu, M.J. Cristobal, M.F. Montemor, et al. Galvanic Coupling between Carbon Steeland Austenitic Stainless Steel in Alkaline Media[J]. Electrochimica Acta,2002,47(13/14):2271-2279.
    [117] K. Bhargava, A. Ghosh, Y. Mori, et al. Model for Cover Cracking Due to Rebar Corrosion inRc Structures[J]. Engineering Structures,2006,28(8):1093-1109.
    [118] S. Kim, Y. Lee, B.L. Jang. Modeling of Recrystallization and Austenite Grain Size for Aisi316Stainless Steel and Its Application to Hot Bar Rolling[J]. Materials Science and Engineering A,2003,357(1-2):235-239.
    [119] P. Szota, H. Dyja. Numerical Modelling of the Bimetallic Reinforcement Bar RollingProcess[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,25(1):55-58.
    [120] H. Dyja, S. Mroz, Z. Stradomski. Properties of Joint in the Bimetallic Rods Cu-Al and Cu-Steelafter Explosive Cladding and the Process of Rolling[J]. Metalurgija,2003,42(3):185-191.
    [121] H. Dyja, S. Mroz, A. Milenin, et al. Experimental Investigation and3-D Fem Simulation of theProcess of Rolling Bimetallic Rods [C].44th Mechanical Working and Steel ProcessingConference and the8th International Rolling Conference and International Symposium onZinc-Coated Steels, Orlando,2002,653-662.
    [122] H. Dyja, S. Mroz, A. Milenin. Theoretical and Experimental Analysis of the Rolling Process ofBimetallic Rods Cu-Steel and Cu-Al[J]. Journal of Materials Processing Technology,2004,153-154:100-107.
    [123] H. Dyja, L. Lesik, A. Milenin, et al. Theoretical and Experimental Analysis of Stress andTemperature Distributions During the Process of Rolling Bimetallic Rods[J]. journal ofMaterials Processing Technology,2002,125-126(9):731-735.
    [124] G. C. Antonino, Y. G. Crud. Process for Manufacturing Corrosion Resistant Composite MetalProducts[P]. US:6706416,2001.02.22.
    [125] M. C. William, E. D. F. Duke, J. J. Kellar, et al. Stainless Steel Clad Rebar in Bridge Decks[R].South Dakota Department of Transportation Office of Research,2001:9-16.
    [126] N. Kazuyuki. Method of Manufacturing Clad Bar[P]. US:5004143,1991.04.02.
    [127]黒川宣幸,中筋和行,梶村治彦, et al.熱間傾斜圧延法による異材管继手の開発[J].Society of Materials Science.1997,46(8):919-925.
    [128] Cces01-2004.混凝土结构耐久性设计与施工指南[S].西安:中国建筑工业出版社,2004:1-20.
    [129]华南理工大学.一种碳钢芯不锈钢复合棒材[P].中国: CN2485066,2002.04.10.
    [130]刘小康,张铱洪,潘敏强.碳钢芯/不锈钢复合型材套拉成形工艺研究[J].工具技术,2006,40(10):32-34.
    [131]林刚,杨院生,郭大勇,等.具有复合组织的不锈钢管周期轧制过程的数值模拟[J].金属学报,2004,40(7):779-784.
    [132]陈火红,尹伟奇,薛小香. Msc.Marc二次开发指南[M].北京:科学出版社,2009:1-8.
    [133]陈火红,杨剑,薛小香,等.新编marc有限元实例教程[M].北京:机械工业出版社,2007:1-3.
    [134]刘劲松,张土宏,肖寒,等. Msc.Marc在材料加工工程中的应用[M].北京:中国水利水电出版社,2010:1-2,6.
    [135] S. Masuda, I. Nakauchi, A. Tagane, et al. Rolling Characteristics of Cladding Plates in Hot RollBonding Process[J]. Transactions ISIJ,1988,28:471-477.
    [136]徐春,王全胜,张弛.型钢孔型设计[M].北京:化工工业出版社,2008:25-70.
    [137]廖培根,方刚,雷丽萍,等.大锻件中心压实法(Jts)锻造过程有限元分析[J].锻压技术,2007,32(6):43-46.
    [138]廖培根,方刚,雷丽萍,等.一维温差中心压实法锻造过程的有限元分析[J].热加工工艺,2007,36(17):73-75,78.
    [139]秦泗吉,李纬民,杨煜生.大锻件锻造的新中心压实法-一维温差锻造法[J].锻压技术,2002,(3):18-19,54.
    [140] P Qiu, H Xiao. Temperature Field for Improving Internal Quality of Stretched Round Billet[J].Journal of Iron and Steel Research, International,2009,16(6):17-22.
    [141]杜凤山,于辉,刘玉文,等.无缝钢管张减过程张力对壁厚分布的影响[J].钢铁,2005,40(9):36-40.
    [142]马辉,韩明旭,司富国,等.微张力减径机孔型设计和轧制表计算方法[J].鞍钢技术,2006,(6):53-56.
    [143]于辉,杜凤山,臧新良,等.微张力减径过程热力耦合有限元模拟[J].中国机械工程,2008,19(14):1744-1747.
    [144]于辉,杜凤山,臧新良,等.无缝钢管张力减径过程的有限元分析[J].塑性工程学报,2008,15(4):108-111.
    [145]赵志毅,谢建新,洪慧平,等.钢管热连轧过程横断面壁厚变化的三维有限元模拟[J].塑性工程学报,2009,16(2):109-112.
    [146]臧新良,于辉,杜凤山.张力减径过程管形预测的分组有限元模型[J].钢铁,2009,44(11):51-54.
    [147] J. Fogagnolo. Recycling of Aluminium Alloy and Aluminium Matrix Composite Chips byPressing and Hot Extrusion[J]. Journal of Materials Processing Technology,2003,143-144:792-795.
    [148] Y. Osawa, S. Takamori, K. Minagawa, et al. Ecomaterial Processing for Recycling of IronScrap Containing Impurities[J]. Materials Science Forum,2003,426-432:3347-3352.
    [149] Y. Osawa, S. Takamori, K. Minagawa, et al. Advanced Processing for Recycling of Iron Scrapwith Impurities[J]. NUKLEONIKA,2006,51(Supplement1): S113-S119.
    [150] Z. Sherafat, M.H. Paydar, R. Ebrahimi. Fabrication of Al7075/Al, Two Phase Material, byRecycling Al7075Alloy Chips Using Powder Metallurgy Route[J]. Journal of Alloys andCompounds,2009,487(1-2):395-399.
    [151] A.E. Tekkaya, M. Schikorra, D. Becker, et al. Hot Profile Extrusion of Aa-6060AluminumChips[J]. Journal of Materials Processing Technology,2009,209(7):3343-3350.
    [152] M.D. Fenton. Iron and Steel Recycling in the United States in1998[R]. Reston: U.S.Department of the Interior,2003:13-15.
    [153] H. Krogh, L. Myhre, T. H kkinen, et al. Environmental Data for Production of ReinforcementBars from Scrap Iron and for Production of Steel Products from Iron Ore in the NordicCountries[J]. Building and Environment,2001,36(1):109-119.
    [154]吕中兰,梁宝忠.工厂的碳钢屑处理[J].汽车工艺与材料.2007,(10):33-34.
    [155]宗振华,张海燕.中频炉熔化碳钢屑铸造变速箱壳体[J].铸造技术,2008,29(7):979-980.
    [156] H. Amini Mashhadi, A. Moloodi, M. Golestanipour, et al. Recycling of Aluminium AlloyTurning Scrap Via Cold Pressing and Melting with Salt Flux[J]. Journal of MaterialsProcessing Technology,2009,209(7):3138-3142.
    [157] B. Ruffino, M. Zanetti. Recovery of Exhaust Magnesium Sands: Reclamation Plant Design andCost Analysis[J]. Resources, Conservation and Recycling,2007,51(1):203-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700