用户名: 密码: 验证码:
多丝埋弧焊热源模型与焊缝成形的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多丝埋弧焊有着较高的熔敷率与生产效率,逐渐成为管线钢焊接与压力容器焊接的主要焊接工艺,然而多丝埋弧焊工艺参数确定仍需通过进行反复的试验才能确定。目前多丝埋弧焊热源模型参数确定方法主要为试算,由于研究人员的经验及时间限制,容易引入人为误差,很难保证热源模型的精度,同时在另一方面又增加了开发成本。为此,急需设计一种更为合理的热源模型以及获得其参数的方案,以降低在试算过程中引入的人为误差。反演计算作为一种“由果及因”的算法,能够在输入参数与结果参数之间的映射关系尚不明确的情况下根据结果参数确定对应的最适合的输入参数。将反演算法引入至焊接热源模型参数的确定工作,可以提高数值模拟的精度,减少工艺试验,节约开发成本。然而反演计算的结果基于试验结果,无法获得未经试验的工艺参数条件对应的热源模型参数,从而导致计算结果离散化。对于未经试验的焊接工艺参数,采用智能优化算法能够对反演结果进行扩展,并使计算结果连续化,从而能够获得在一定范围内的任意工艺参数组合所对应的热源模型参数。经过反演算法与智能优化算法的共同计算,能够直接获得不同焊接工艺参数所对应的热源模型参数,将焊接模拟的试算工作量大大降低,并大幅提升了模拟的精度。本文采用这一方案,将多丝埋弧焊的焊缝成形参数预测误差控制在5%以内。
     为进行反演算法与智能优化算法对热源模型参数的预测,首先进行了焊接工艺试验。设计了一种全新的热物理性能测量的方法,通过模式搜索法获得了母材以及埋弧焊剂随温度变化的的热导率及热容等热物理性能。对多丝埋弧焊的焊缝成形测量方法进行了设计,并采用调整焊接工艺参数的方式,获得了不同工艺条件下的多丝埋弧焊焊缝成形结果。焊缝成形结果采用熔宽、母材上表面2mm深度处熔宽、熔深以及余高四个参数进行描述。对送丝速度随焊接工艺调整后的变化规律进行了测量与总结,发现送丝速度与焊接电流呈较好的线性关系。
     在对目前已经提出的热源模型进行总结的基础上,对现有的热源模型进行了分析与改进。通过对双椭球模型的参数敏感性测试与参数回归,获得了通过焊缝成形结果获得双椭球热源模型参数的回归公式。在对热源模型进行进一步的分析后,提出了一个新的面-体热源复合模型。在这个新的复合热源模型中,面热源基于高斯热源,并根据双椭球热源的构想,对高斯面热源进行了改写。针对多丝埋弧焊,对复合热源进行了分段改写,使其能够在任意焊丝间距的条件下使用。此复合热源考虑了电弧倾角对热源的影响,以模拟在焊接过程中不同电弧倾角对焊缝成形结果的影响。
     基于上述工作,对于常用的多丝埋弧焊焊接工艺参数采用反演算法热源模型参数进行了研究。对于提出的面-体复合热源,讨论了其参数的敏感性,并基于敏感性分析结果,对热源模型进行了相应的简化。根据多丝埋弧焊热源模型的特点,采用模式搜索法作为反演算法进行由果及因的分析。针对热源模型参数数量级差异的问题,对模式搜索法进行了改进,并采用改进后的模式搜索法获得了不同焊接电流与电弧电压条件下的热源模型参数。同时,研究了在不同坡口、板厚、焊接速度、散热条件以及筒体纵缝焊条件下等因素对焊缝成形结果带来的影响。
     反演算法只能获得已经经过试验的工艺条件所对应的焊接热源模型参数,为将反演算法获得的热源模型参数加以推广,分别采用最小二乘法拟合、神经网络、支持向量回归机对反演算法获得的热源模型参数进行了函数拟合。发现最小二乘法拟合对单丝焊的预测结果较为准确,而双丝焊的预测结果则出现了较大的偏差。神经网络的预测结果与验证试验的结果普遍较为接近,是一种较为优秀的参数推广方案。支持向量回归机由于其算法中未知参数较多,对热源模型参数预测的结果误差较大。利用三丝埋弧焊验证试验,将参数推广获得的热源模型参数加以验证,发现参数推广方案能够很好的获得多丝埋弧焊的热源模型参数,并通过有限单元法计算获得相应的焊缝成形结果。
     为分析在多丝埋弧焊过程中焊剂的影响以及焊缝成形与熔池内流动状态,根据流体力学的基本方程,构建了埋弧焊在受到重力模型、电磁力模型、能量传输模型、熔化-凝固模型以及表面张力模型等控制的熔滴过渡与熔池流动模型。采用熔池流动行为模型,对三丝埋弧焊的焊缝成形进行了模拟。讨论了表面张力大小、表面张力温度系数、接触角以及送丝速度对焊缝成形的影响。最后获得的三丝焊焊缝成形参数与实际焊接结果相比误差为2.76%。
Because of the high deposition efficiency and production efficiency of multi-wirewelding, it becomes the most important welding process of the pipeline and pressure vesselwelding. However, the welding process parameters are always unavailable, and they areusually decided by experience. The most widely used heat source decision method is trial.Because of the experience limit and the time limit, it is easy to cause the artificial errer, and itis hard to ensure the accuracy of the heat source model. On the other hand, it will increase thedevelopment cost. It is emergent to develop a more reasonable heat source model and themethod to obtain its parameters according to the process parameters, which can reduce theartificial error. Inverse analysis is a from-effect-to-cause algorithm, which can determine themost accurate input parameters according to the effect parameters without the mapping ofthem. When the inverse analysis is introduced to the determination of the heat source modelparameters, it can increase the precision of the simulation, reduce the experiment and save thetrail cost. However, the reverse analysis is based on the result of the experiment, and it is notable to obtain the heat source parameters according to the unexperimented process parameters.The result is discrete. For the process parameters without experiment, the intelligentoptimization method which is based on the results of the inverse analysis can extent theparameters and make the results continuous. With the analyse of the inverse analysis and theintelligent optimization method, the heat source parameters according to the different weldingprocess parameters can be obtained directly. The method can reduce the cost of trail andincrease the precision of the simulation greatly. In this work, the error of the prediction modelwas controlled within5%.
     For the prediction of the heat source parameters by the reverse analysis and intelligentoptimization method, the welding experiment was applied. A new measuring method was designed to obtain the temperature-dependent thermal conductivity and the heat capacity ofthe base metal and the welding flux. The size of weld measurement was designed. Byadjusting the welding process parameters, the different sizes of weld of the correspondingprocess conditions were obtained. The size of weld is composed by the weld width, the weldwidth at2mm depth from the top surface, the penetration and the reinforcement. The weldfeed rate influenced by the welding process parameters was also measured and analyzed. Theresults showed that the weld feed rate was proportional to the welding current.
     Based on the summarization of the heat source models which were available nowadays,the heat source models were analyzed and improved. The parameter sensitivity of the doubleellipsoid heat source model was analyzed, and a regress function of the weld size influencedby the double ellipsoid heat source model parameters was obtained. A new surface-bodyhybrid heat source model was put forward. In the new hybrid heat source model, the surfaceheat source was based on Gaussian heat source model. Considering the character of thedouble ellipsoid model, the surface heat source model was rewritten. According to the requestof the multi-wire welding, the hybrid heat source model was rewritten to be a separated model,and it could be applied on the multi-wire welding of any distance of the wires. The deflectangle of the welding arc was also considered. It makes the heat source model can simulate thedifferent deflect angel of the welding wire.
     The inverse analysis was applied to research the relationship between the welding processparameters and the heat source model parameters. The parameter sensitivity of the hybrid heatsource model was analyzed. Based on the parameter sensitivity results, the hybrid heat sourcemodel was simplified. According to the character of the multi-wire submerged arc welding,the pattern search method was applied. The pattern search method was improved with theproblem of the magnitude of the different heat source parameters. The relationship betweenthe different welding process parameters and the heat source model parameters was obtained.The different groove, thickness of the base metal, welding speed, heat dissipation and basemetal shape were obtained. The sizes of weld were also analyzed.
     The inverse analysis can only obtain the heat source corresponding to the experimentedprocess parameters. In order to extend the results of the heat source model, the least squaremethod regression, the artificial neural network and the support vector machine was applied on the inverse analysis results. It showed that the least square method regression result of thesingle wire welding was accurate, and that of the tandem wire welding was in a high error.The artificial neural network results showed good agreement with the verification results. Thesupport vector machine results had a high error with the verification results since it had manyunknown parameters. The regression results were verified by the triple wire welding. The heatsource parameters predicted by the regression model was applied on the triple wire weldingmodel, and the size of weld was simulated. It showed that the regression result could predictthe heat source model parameters very well.
     In order to analyze the influence of the flux, the appearance of the weld and the flow in theweld pool, a hydrodynamic model was designed. The model was controlled by the basefunction of the hydrodynamics. The model considered the gravity model, the electromagneticforce model, the heat transfer model, the solidification model and the surface tension model.The appearance of the weld and the flow in the weld pool of triple wire welding weresimulated by the hydrodynamic model. The simulation results showed that the weld pool sizeof triple wire welding was in little difference with the experiment result, and the error was2.76%.
引文
[1]苗承武.西气东输工程及其管线钢的选择[J].焊管.2000,23(3):26-31.
    [2]潘家华.西气东输工程[J].焊管.2000,23(3):21-25.
    [3]李树庆,潘贻芳.管线钢的研发过程及方向[J].天津冶金.2006(1):6-10.
    [4]薛振奎,隋永莉.国内外油气管道焊接施工现状与展望[J].焊接技术.2001,30(1):16-18.
    [5] T.Ashton. Twin-arc submerged arc welding[J]. Welding Journal.1954,33(4):350-355.
    [6] A.R.Lytle, E.L.Frost. Submerged-melt welding with multiple electrodes in series [J].Welding Journal.1951,30(2):103-110.
    [7] R.A.Kubli, H.I.Shrubsall. Multipower submerged arc welding of pressure vessels andpipe [J]. Welding Journal.1956,35(11):1128-1135.
    [8] D.T.Magnusson, R.C.Threlfo. Longitudinal welding of line pipe with a three arcsubmerged-arc process[J]. Welding Journal.1969,48(3):198-203.
    [9]韩彬,邹增大,曲仕尧,王新洪,李立英,王育福.双(多)丝埋弧焊方法及应用[J].焊管.2003,26(4):41-44.
    [10]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社.2003.
    [11]侯志刚.薄板结构焊接变形的预测与控制[D].武汉:华中科技大学.2005.
    [12] A.De, T.DebRoy. Reliable calculations of heat and fluid flow during conduction modelaser welding through optimization of uncertain parameters[J]. Welding Journal.2005,84(7):101-112.
    [13] P.C.Zhao, C.S.Wu, Y.M.Zhang. Modelling the transient behaviours of a fully penetratedgas-tungsten arc weld pool with surface deformation[J]. Proceedings of the Institution ofMechanical Engineers, Part B: Journal of Engineering Manufacture.2005,219(1):99-110.
    [14] A.Slimani, M.Rachik. High temperature indentation test to improve constitutive modelfor welding simulation[J]. Journal of Shanghai Jiaotong University (Science).2011,16(3):286-290.
    [15] A.N.Tikhonov, V.Y.Arsenin. Solutions of ill-posed problems[M]. New York: John Wileyand Sons.1977.
    [16] M.Z.Nashed. Generalized inverses and applications[M]. New York: Academic Press.1976.
    [17] V.A.Morozov. Methods for solving incorrectly posed problems[M]. New York: Springer.1984.
    [18] C.W.Groetsch. The theory of Tikhonov regularization for Fredholm Equations for thefirst kind[M]. Pitman Advanced Publishing Program.1984.
    [19]王彦飞.反问题的优化与正则化算法[D].北京:中国科学院数学与系统科学研究院.2002.
    [20]田明俊.智能反演算法及其应用研究[D].大连:大连理工大学,2005.
    [21]蒋树屏.岩体工程反分析研究的新进展[J].地下空间.1995,15(1):25-33.
    [22]席少霖.非线性最优化方法[M].北京:高等教育出版社.1992.
    [23]施光燕,董加礼.最优化方法[M].北京:高等教育出版社.2002.
    [24] R.S.Rosenberg. Simulation of genetic populations with biochemical properties[D].Michigan: University of Michigan.1967.
    [25] V.Cerny. Thermodynamical approach to the travelling salesman problem: an efficientsimulation algorithm[J]. Journal of Optimization Theory and Applications.1985,45(1):41-45.
    [26] S.Kirkpatrick, C.D.Gelatt, Jr., M.P.Vecchi. Optimization by simulated annealing[J].Science.1983,220(13):671-680.
    [27] A.Colorni, M.Dorigo, V.Maniezzo. Distributed optimization by ant colonies[C].Proceeding of1st European Conference on Artificial Life. Paris: ElsevierPubishing.1991:134-142.
    [28] J.Kennedy, R.Eberhart. Particle swarm optimization[C]. IEEE International Conferenceon Neural Networks.1995:1942~1948.
    [29] R.Forestier, E.Massoni, Y.Chastel. Estimation of constitutive parameters using aninverse method coupled to a3D finite element software[J]. Journal of MaterialsProcessing Technology.2002,125(9):594-601.
    [30] L.C.Sousa, C.F.Castro, C.A.C.António, A.D.Santos. Inverse methods in design ofindustrial forging processes[J]. Journal of Materials Processing Technology.2002,128(1-3):266-273.
    [31] C.H.Chen, M.H.Chang. Shape design for a cylinder with uniform temperaturedistribution on the outer surface by inverse heat transfer method[J]. International Journalof Heat and Mass Transfer.2003,46(1):101-111.
    [32] C.K.Chen, L.W.Wu, Y.T.Yang. Application of the inverse method to the estimation ofheat flux and temperature on the external surface in laminar pipe flow[J]. AppliedThermal Engineering.2006,26(14):1714-1724.
    [33] R.A.Panicker, R.Rajendran, S.Sundar. Pattern search in a shoe sole image databaseusing eigenpatterns[J]. Mathematical and Computer Modelling.2003,37(12-13):1281-1286.
    [34] G.Nicosia, G.Stracquadanio. Generalized pattern search algorithm for peptide structureprediction[J]. Biophysical Journal.2008,95(10):4988-4999.
    [35] R.R.Negenborn, S.Leirens, B.De Schutter, J.Hellendoorn. Supervisory nonlinear MPCfor emergency voltage control using pattern search[J]. Control Engineering Practice.2009,17(7):841-848.
    [36] F.Güne, F.Tokan. Pattern Search optimization with applications on synthesis of linearantenna arrays[J]. Expert Systems with Applications.2010,37(6):4698-4075.
    [37]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社.2007.
    [38] S.Agatonovic-Kustrin, R.Beresford. Basic concepts of artificial neural network (ANN)modeling and its application in pharmaceutical research[J]. Journal of Pharmaceuticaland Biomedical Analysis.2000,22(5):717-727.
    [39] G.Barkó, J.Hlavay. Application of an artificial neural network (ANN) and piezoelectricchemical sensor array for identification of volatile organic compounds[J]. Talanta.1997,44(12):2237-2245.
    [40] I.S.Jalham. Modeling capability of the artificial neural network (ANN) to predict theeffect of the hot deformation parameters on the strength of Al-base metal matrixcomposites[J]. Composites Science and Technology.2003,63(1):63-67.
    [41] I.Yilmaz, A.G.Yuksek. An example of artificial neural network (ANN) application forindirect estimation of rock parameters[J]. Rock Mechanics and Rock Engineering.2008,41(5):781-795.
    [42] C.Cortes, V.Vapnik. Support-vector networks [J]. Machine Learning.1995,20(3):273-297.
    [43] S.F.Fang, M.P.Wang, M.Song. An approach for the aging process optimization ofAl–Zn–Mg–Cu series alloys[J]. Materials and Design.2009,30(7):2460-2467.
    [44] J.A.K.Suykens, J.Vandewalle. Least squares support vector machine classifiers[J].Neural Processing Letters.1999,9(3):293-300.
    [45] A.Bertoni, R.Folgieri, G.Valentini. Bio-molecular cancer prediction with randomsubspace ensembles of support vector machines[J]. Neurocomputing.2005,63:535-539.
    [46] G.Guo, S.Z.Li, K.L.Chan. Support vector machines for face recognition[J]. Image andVision Computing.2001,19(9-10):631-638.
    [47] L.B.Jack, A.K.Nandi. Fault detection using support vector machines and artificial neuralnetworks, augmented by genetic algorithms[J]. Mechanical Systems and SignalProcessing.2002,16(2-3):373-390.
    [48]陶军,李冬青,范成磊,方洪渊,张绍娟.焊接过程参数反演分析进展[J].焊接.2005,(9):13-16.
    [49] A.De, T.DebRoy. Probing unknown welding parameters from convective heat transfercalculation and multivariable optimization[J]. Journal of Physics D.2004,37(1):140-150.
    [50] I.S.Kim, K.J.Son, Y.S.Yang, P.K.D.V. Yaragada. Sensitivity analysis for processparameters in GMA welding processes using a factorial design method[J]. InternationalJournal of Machine Tools and Manufacture.2003,43(8):763-769.
    [51] S.Karaoglu, A.Se gin. Sensitivity analysis of submerged arc welding processparameters[J]. Journal of Materials Processing Technology.2008,202(1-3):500-507.
    [52]王煜,赵海燕,吴甦,张建强.高能束焊接双椭球热源模型参数的确定[J].焊接学报.2003,24(2):67-70.
    [53]于成奎,于有生,黄应涛,韩洪伟. CO2焊热源特性的反演分析[J].焊接技术.2007,36(4):22-24.
    [54] S.Babu, T.S.Kumar, V.Balasubramanian. Optimizing pulsed current gas tungsten arcwelding parameters of AA6061aluminium alloy using Hooke and Jeeves algorithm[J].Transactions of Nonferrous Metals Society of China.2008,18(5):1028-1036.
    [55] W.Bu, Z.Liu, J.Tan. Industrial robot layout based on operation sequence optimization[J].International Journal of Production Research.2009,47(15):4125-4145.
    [56]郭晓凯,李培麟,陈俊梅,陆皓.加速步长法反演多丝埋弧焊双椭球热源参数[J].焊接学报.2009,30(2):53-56.
    [57] Andersen, Kristinn, Cook, E.George, Karsai, Gabor, Ramaswamy, Kumar. Artificialneural networks applied to arc welding process modeling and control[J]. IEEETransactions on Industry Applications.1990,26(5):824-830.
    [58] D.S.Nagesh, G.L.Datta. Prediction of weld bead geometry and penetration in shieldedmetal-arc welding using artificial neural networks[J]. Journal of Materials ProcessingTechnology.2002,123(2):303-312.
    [59] P.Sukhomay, K.P.Surjya, K.S.Arun. Artificial neural network modeling of weld jointstrength prediction of a pulsed metal inert gas welding process using arc signals[J].Journal of Materials Processing Technology.2008,202(1-3):464-474.
    [60] F.Karimzadeh, A.Ebnonnasir, A.Foroughi. Artificial neural network modeling forevaluating of epitaxial growth of Ti6Al4V weldment[J]. Materials Science andEngineering: A.2006,432(1-2):184-190.
    [61] A.G.Olabi, G.Casalino, K.Y.Benyounis, M.S.J.Hashmi. An ANN and Taguchi algorithmsintegrated approach to the optimization of CO2laser welding[J]. Advances inEngineering Software.2006,37(10):643-648.
    [62] H.Okuyucu, A.Kurt, E.Arcaklioglu. Artificial neural network application to the frictionstir welding of aluminum plates[J]. Materials and Design.2007,28(1):78-84.
    [63] X.Huang, S.Chen. SVM-based fuzzy modeling for the arc welding process[J]. MaterialsScience and Engineering: A.2006,427(1-2):181-187.
    [64] Y.Wang, Y.Sun, P.Lv, H.Wang. Detection of line weld defects based on multiplethresholds and support vector machine[J]. NDT and E International.2008,41(7):517-524.
    [65] M.G.Na, J.W.Kim, D.H.Lim, Y.J.Kang. Residual stress prediction of dissimilar metalswelding at NPPs using support vector regression[J]. Nuclear Engineering and Design.2008,238(7):1503-1510.
    [66] J.Tu ek. Submerged arc surfacing with a multiple-wire electrode[J]. Metalurgija.2002,41(4):295-300.
    [67] J.Tu ek. A mathematical model for the melting rate in welding with a multiple-wireelectrode[J]. Journal of Physics D.1999,32(14):1739-1744.
    [68] J.Tu ek. Narrow-gap submerged-arc welding with a multiple-wire electrode[J].Metalurgija.2002,41(2):83-88.
    [69] J.Tu ek. Bridging of welding gaps in welding with a multiple-wire electrode[J].Metalurgija.2003,42(1):21-25.
    [70] B.Bajcer, M.Hrzenjak, K.Pompe, B.Jez. Improvement of energy and materialsefficiencies by introducing multiple-wire welding[J]. Metalurgija.2007,46(1):47-52.
    [71] D.Rosenthal, H.Schmenber. Thermal study of arc welding[J]. Welding Journal.1938,17(4):2-8.
    [72] D.Rosenthal. Mathematical theory of heat distribution during welding and cutting[J].Welding Journal.1941,20(5):220-234.
    [73] C.M.Adams. Cooling rate and peak temperature in fusion welding[J]. Welding Journal.1958,37(5):210-215.
    [74]刘敏,康继东,李瑜,陈士煊. Ti合金电子束焊接三维温度场计算[J].金属学报.2001,37(3):301-306.
    [75]沈以赴,顾冬冬,余承业,杨家林,王洋.直接金属粉末激光烧结成形过程温度场模拟[J].中国机械工程.2005,16(1):67-73.
    [76] R.Courant. Variational methods for the solution of problems of equilibrium andvibrations[J]. Bulletin of the American Mathematical Society.1943,49(1):1-23.
    [77] M.J.Turner, R.W.Clough, H.C.Martin, L.C.Topp. Stiffness and deflection analysis ofcomplex structures[J]. Journal of the Aeronautical Sciences.1956,23(9):805-823.
    [78] R.W.Clough. The finite element method in plane stress analysis[C]. Proceedings of2ndASCE Conference on Electronic Computation, Pittsburgh, PA.1960.
    [79] Z.Paley. Computation of temperature in actual weld designs[J]. Welding Journal.1975,54(11):385-392.
    [80] G.W.Krutz, L.J.Segerlind. Finite element analysis of welded structures[J]. WeldingJournal.1978,57(7):211-216.
    [81] H.A.Nied. The finite element modeling of the resistance spot welding process[J].Welding Journal.1984,63(4):123-132.
    [82]莫春立,钱百年,国旭明,于少飞.焊接热源计算模式的研究进展[J].焊接学报.2001,22(3):93-96.
    [83] D.Klob ar, J.Tu ek, B.Taljat. Finite element modeling of GTA weld surfacing applied tohot-work tooling[J]. Computational Materials Science.2004,31(3):368-378.
    [84] V.Pavelic, R.Tanbakuchi, O.Auyehara. Experimental and computed temperaturehistories in gas tungsten arc welding of thin plates[J]. Welding Journal ResearchSupplement.1969,48(7):295-305.
    [85] V.I.Gromovyk, M.S.Yavorskii. Thermal stress state of the cylindrical shell caused bymoving heat sources[J]. Physics and chemistry of materials treatment.1986,20(2):132-135.
    [86] A.Kotousov, J.W.H.Price. Stress intensity factor for semi-infinite crack formed bymoving thermal source[J]. International Journal of Fracture.1998,90(3):39-42.
    [87] T.W.Eager, N.S.Tsai. Temperature fields produced by traveling distributed heatsources[J]. Welding Journal.1983,62(12):346-355.
    [88] L.M.Chong. Predicting welding hardness[D]. M, Eng, Thesis. Ottawa, Canada: CarletonUniversity,1982.
    [89] C.L.Tsai, C.A.Hou. Theoretical analysis of weld pool behavior in the pulsed currentGTAW process[J]. Journal of Heat Transfer.1988,110(1):160-165.
    [90] M.Jou. Experimental study and modeling of GTA welding process[J]. Journal ofManufacturing Science and Engineering.2003,125(4):801-807.
    [91] M.Marya, S.K.Marya. A Theoretical and Experimental Analysis of Variances in WeldBead Morphologies[J]. Journal of Materials Engineering and Performance.1998,7(4):515-523.
    [92] N.S.Shanmugam, G.Buvanashekaran, K.Sankaranarayanasamy, K.Manonmani. Somestudies on temperature profiles in AISI304stainless steel sheet during laser beamwelding using FE simulation[J]. International Journal of Advanced ManufacturingTechnology.2009,43(1-2):78-94.
    [93] J.Goldak. A new finite model for welding heat source[J]. Metallurgual Transactions.1984,15(2):299-305.
    [94] J.P.Jansen, J.C.Coiffier, J.Claeys, F.Roger. Modeling of heat transfer during thesubmerged arc welding of large pipes[C]. The Ritz Carlton Pentagon City: PRCI-EPRG,11th Biennial Joint Technical Meeting.1997.
    [95] D.Gery, H.Long, P.Maropoulos. Effects of welding speed, energy input and heat sourcedistribution on temperature variations in butt joint welding[J]. Journal of MaterialsProcessing Technology.2005,167(2-3):393-401.
    [96] S.D.Ji, X.S.Liu, H.Y.Fang, Q.G.Meng. Influence of welding sequence on weldingresidual stress of aluminum alloy flat butt welding[J]. Transactions of the NonferrousMetals Society of China.2005,15(2):51-55.
    [97] A.K.Dhingra, C.L.Murphy. Numerical simulation of welding-induced distortion inthin-walled structures[J]. Science and Technology of Welding and Joining.2005,10(5):528-536.
    [98] H.Wang, Y.W.Shi, S.L.Gong. Numerical simulation of laser keyhole welding processesbased on control volume methods[J]. Journal of Physics D.2006,39(21):4722-4730.
    [99] G.A.Tailor, M.Hughes, K.Pericleous. The application of three dimension finite volumemethod to the modeling of welding phenomena[C]. Modeling of casting, welding andadvanced solidification process Ⅸ. San Diego. Prter. R. Sahm,2000:852-859.
    [100]A.Lundback, H.Runnemalm. Validation of three-dimensional finite element model forelectron beam welding of Inconel718[J]. Science and Technology of Welding andJoining.2005,10(6):717-724.
    [101]M.A.Wahab, M.J.Painter, M.H.Davies. The prediction of the temperature distributionand weld pool geometry in the gas metal arc welding process[J]. Journal of MaterialsProcessing Technology.1998,300(3):233-239.
    [102]B.Taljat, T.Zacharia, X.L.Wang, J.R.Keiser, R.W.Swindeman, Z.Feng, M.J.Jirinec.Numerical analysis of residual stress distribution in tubes with spiral weld cladding[J].Welding Research Supplement.1998,77(8):328-335.
    [103]P.N.Sabapathy, M.A.Wahab, M.J.Painter. Numerical models of in-service welding of gaspipelines[J]. Journal of Materials Processing Technology.2001,118(1):14-21.
    [104]王煜,赵海燕,吴甦,蔡志鹏,张建强.电子束焊接数值模拟中分段移动双椭球热源模型的建立[J].机械工程学报.2004,40(2):165-169.
    [105]董克权,刘超英,肖奇军.双丝焊温度场仿真的热源模型研究[J].热加工工艺.2006,35(3):49-52.
    [106]Q.G.Meng, H.Y.Fang, J.G.Yang, S.D.Ji. Analysis of temperature and stress field in Alalloy’s twin wire welding[J]. Theoretical and Applied Fracture Mechanics.2005,44(2):178-186.
    [107]孟庆国,方洪渊,徐文立,姬书得.双丝焊热源模型[J].机械工程学报.2005,41(4):110-113.
    [108]H.Y.Fang, Q.G.Meng, W.L.Xu, S.D.Ji. New general double ellipsoid heat sourcemodel[J]. Science and Technology of Welding and Joining.2005,10(3):361-368.
    [109]武传松,陈定华,吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟[J].焊接学报.1988,9(4):263-269.
    [110]郑炜,武传松,吴林.固定电弧脉冲TIG焊接熔池流体流动与传热模型[J].材料科学与工艺.1996,4(4):15-21.
    [111]W.H.Kim, S.J.Na. Heat and fluid flow in pulsed current GTA weld pool[J]. InternationalJournal of Heat and Mass Transfer.1998,41(21):3213-3227.
    [112]W.Zhang, C.H.Kim, T.DebRoy. Heat and fluid flow in complex joints during gas metalarc welding Part I: Numerical model of fillet welding[J]. Journal of Applied Physics.2004,95(9):5210-5219.
    [113]V.A.Nemchinsky. The role of thermocapillary instability in heat transfer in a liquidmetal pool[J]. International Journal of Heat and Mass Transfer.1997,40(4):881-891.
    [114]A.T.Zimmer, P.A.Baron, P.Biswas. The influence of operating parameters onnumber-weighted aerosol size distribution generated from a gas metal arc weldingprocess[J]. Journal of Aerosol Science.2002,33(3):519-531.
    [115]J.Hu, H.L.Tsai. Heat and mass transfer in gas metal arc welding. Part I: The arc[J].International Journal of Heat and Mass Transfer.2007,50(5-6):833-846.
    [116]J.Hu, H.L.Tsai. Heat and mass transfer in gas metal arc welding. Part II: The metal[J].International Journal of Heat and Mass Transfer.2007,50(5-6):808-820.
    [117]A.M.Paniagua-Mercado, P.Estrada-Diaz, V.M.López-Hirata. Chemical and structuralcharacterization of the crystalline phases in agglomerated fluxes for submerged-arcwelding[J]. Journal of Materials Processing Technology.2003,141(1):93-100.
    [118]于帆,张欣欣,何小瓦.材料热物理性能非稳态测量方法综述[J].宇航计测技术.2006,26(4):23-30.
    [119]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社.2007.
    [120]邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社.2009.
    [121]葛哲学,孙志强.神经网络理论与Matlab R2007实现[M].北京:电子工业出版社.2008.
    [122]H.K.Versteeg, W.Malalasekera. An Introduction to Computational Fluid Dynamics: TheFinite Volume Method[M]. New York: Wiley.1995.
    [123]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004.
    [124]H.Schlichting. Boundary Layer Theory,8th ed[M]. New York: McGrawHill.1979.
    [125]陶文铨.数值传热学[M].西安:西安交通大学出版社.2001.
    [126]周雪漪.计算水力学[M].北京:清华大学出版社.1995.
    [127]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社.1998.
    [128]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700