用户名: 密码: 验证码:
钢纤维对高性能自密实混凝土构件弯/剪性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对称倾角梁是德国学者提出的一种新型的分析管片力学性能的试验模型,在欧洲盾构法施工隧道的研究中已经得到了广泛认可和应用。而盾构管片是盾构法施工隧道的承重主体,因此对其抗裂性、安全性和耐久性要求很高,但传统钢筋混凝土管片自重较大,在运输、安装过程和运营阶段都可能出现局部开裂、破损现象。单纯提高配筋率或局部加固可能由于新拌混凝土工作性能不足,在管片内部配筋密集区域造成混凝土与钢筋无法形成有效粘结和降低混凝土保护层厚度,从而导致管片在复杂应力作用下形成结构裂缝,使得衬砌结构的整体性被破坏,容易发生渗漏和钢筋锈蚀现象,降低了隧道结构的安全性、耐久性和使用寿命。研究表明高性能钢纤维自密实混凝土具有高性能自密实混凝土高工作性和钢纤维混凝土高韧性的特点,采用增强增韧型长钢纤维可明显提高混凝土的抗拉、抗弯性能,因此可以利用结构型长纤维部分替代传统抗剪钢筋,提高箍筋间距,保证混凝土浇筑质量,提高结构的耐久性。但目前国内针对纤维高性能自密实混凝土的研究相对较少,对于利用结构型长纤维替代管片中钢筋的试验研究尚未见报道。鉴于此,本文尝试从钢纤维高性能自密实混凝土工作性能、抗弯性能和韧性、钢筋钢纤维高性能自密实混凝土梁抗剪性能几个方面对钢纤维高性能自密实混凝土的基本材料性能和利用钢纤维部分甚至完全替代箍筋的可行性进行研究。在此基础上,结合国家自然科学基金项目“混杂纤维对管片的裂缝与力学性能的影响”(51078058),对钢纤维自密实混凝土对称倾角梁的力学性能进行试验研究,本文主要从如下几个方面开展研究工作:
     (1)应用国际上应用较为广泛的自密实混凝土工作度评价方法,采用坍落流动度试验和J-环试验研究了新拌钢纤维自密实混凝土的工作性能。通过工作度试验和材料试验得到了满足工作性能和强度要求的钢纤维自密实混凝土配合比结果。
     (2)参照国际材料与结构联合会推荐弯曲试验标准(RILEM TC162-TDF)对硬化后自密实混凝土的抗弯性能进行试验研究,对比了不同尺寸、不同掺量端部弯钩型钢纤维对抗弯性能和弯曲韧性的影响。根据弯曲试验结果建议了钢纤维混凝土达到挠度硬化时钢纤维掺量的判定公式。基于开口梁的试验曲线采用反分析方法求解得到不同掺量钢纤维自密实混凝土的应力-裂缝口宽度关系,并基于应力-裂缝口宽度关系预测了受弯钢纤维自密实混凝土矩形梁的荷载-挠度全过程曲线,结果表明曲线预测结果与试验结果吻合良好。
     (3)为了消除边壁效应对钢纤维混凝土弯曲韧性试验结果的影响,采用截面尺寸为600mm×100mm的开口简支板进行弯曲试验,参考Rilem TC162-TDF中弯曲韧性的评价标准对板试件的弯曲韧性进行评价,研究了钢纤维对开口板弯曲强度和弯曲韧性的影响。并与开口梁试件进行对比,分析了梁式和板式试件弯曲试验结果的差异。
     (4)以基体强度、钢纤维掺量、钢纤维种类、加载方式、跨度为研究对象,分析了影响钢纤维混凝土梁跨中挠度-裂缝口扩展宽度关系的因素,结果表明当钢纤维掺量低于50kg/m3时:跨中挠度和裂缝口扩展宽度的关系呈线性关系;基体强度、钢纤维掺量和种类对钢纤维混凝土梁跨中挠度和裂缝口扩展宽度的关系曲线的斜率影响较小;跨中挠度和裂缝口扩展宽度的关系曲线的斜率受试件跨度和加载方式的影响。根据试验结果建议了钢纤维掺量低于50kg/m3时钢纤维混凝土受弯试件的跨中挠度与裂缝口扩展宽度的表达式,预测结果与试验结果吻合较好。
     (5)对钢纤维钢筋自密实混凝土简支梁抗剪性能进行试验研究,分析了钢纤维对试件的荷载-挠度曲线、承载力、破坏模式和裂缝形态的影响。建议了发生剪切破坏试件的韧性评价方法,定量地评价了钢纤维对剪切韧性的影响,结果表明:钢纤维的掺入降低了试件表面弯剪区的裂缝间距和裂缝宽度,钢纤维可以明显提高钢纤维混凝土梁的极限承载力、能量吸收能力和韧性,50kg/m3钢纤维可以将配置构造箍筋的试件从脆性的剪切破坏转化为延性的弯曲破坏。在本文的试验条件下,钢纤维无法完全替代箍筋,而箍筋和钢纤维共同使用时表现出明显的正混杂效应,明显优于单独采用箍筋的情况,因此钢纤维部分替代箍筋是可行的。
     (6)以钢纤维掺量、配箍率、纵筋率和剪跨比为主要变量,研究了钢纤维对钢筋自密实混凝土对称倾角梁的破坏形态、荷载-跨中挠度曲线和荷载-跨中纵筋应变曲线的影响。结果表明,倾角梁与简支梁试件破坏模式相似,但倾角梁试件的承载力明显高于简支梁试件,而倾角梁试件由于端部轴力作用纵筋应变明显低于简支梁试件;钢纤维可以有效控制倾角梁试件的跨中挠度和纵筋应变,提高试件的抗剪承载力和能量吸收能力,试件的破坏模式明显趋于延性;纵筋率对倾角梁抗剪承载力和能量吸收能力均有影响,影响效果与纤维掺量和配箍率相关;倾角梁试件中利用钢纤维替代构造箍筋是可行的。
     (7)根据钢筋混凝土梁的抗剪机理和对影响梁试件抗剪强度因素的分析,以抗压强度、纵筋率、剪跨比和钢纤维增强因子为主要参数,通过对142根发生剪切破坏的钢筋混凝土梁和钢筋-钢纤维混凝土梁的试验结果进行回归分析,建立了适用于钢筋-钢纤维混凝土梁抗剪强度的预测经验公式。最后通过分析轴力作用对梁作用和拱作用的增强作用机理,引入增强因子Y来预测钢筋钢纤维倾角梁的抗剪强度,该公式计算结果与试验结果吻合良好。
Symmetric inclation beam is a new test method used to investigate the stress state of tunnel segment. It is developed by German scientist and is widely adopted in the investigation of TBM tunnels. Tunnel segment is the main bearing structure for TBM tunnels, thus the cracking resistance, the security and durability is highly desired. While due to the large weight, brittle characteristics and low tensile strength of concrete, traditional RC tunnel segments are prone to crack or damaged during production, transportation, installation and service periods. The poor workability of fresh concrete may reduce the effective bond between matrix and reinforcement and the thickness of concrete cover at high dense reinforcement region with increasing reinforcement ratio and local reinforcement. Cracks often appear in tunnel lining under complex loading conditions, which may damage the integrity of lining structure. The security, permeability, serviceability and durability of the tunnel are strongly influenced by such macro cracks.
     Fiber reinforced high performance self-consolidating concrete (FRHPSCC) has great potential significance of the high workability of high performance self-consolidating concrete (HPSCC) and high toughness of fiber reinforced concrete (FRC). The macro fiber could improve the tensile and flexural behavior of concrete, replace the steel reinforcement partially, enhance the bar spacing and ensure the ductility of concrete structure. At present the investigation on the workability and mechanical behavior of FRHPSCC is still insufficient, and the experimental study on the application of FRHPSCC in tunnel segment is limited. Therefore, the workability of FRHPSCC, flexural behavior and shear behavior of FRHPSCC beams are firstly investigated in this study. Furthermore, symmetric inclination beam is used to investigate the load-carrying capacity and the toughness of tunnel segment. On this basis and funded by the National Natural Science Foundation-The influence of hybrid fibers on the crack and mechanical behavior of tunnel segment (NO.51078058), the mechanical behavior of FRHPSCC tunnel segment is investigated. The details of the investigation in this dissertation are introduced as follows:
     (1) The workability of fresh concrete mixture is studied using the wildly used methods in the world, slump flow test and J-ring test. Through the workability test and compressive strength test, the proposed mix design produces the concrete that meet satisfactorily the requirement for workability and strength of SFRSCC.
     (2) According to RILEM recommendation, flexural behavior of SFRSCC is studied. The influence of fiber size and dosage on flexural behavior and toughness is compared. According to the test results, prediction equation for critical fiber contents to achieve deflection hardening behavior in bending is proposed. Based on the load-deflection curves of notched beam, the a-w relationships of SFRSCC with different fiber contents are derived by inverse analysis method. A model based on σ-w relationship and simple principles of mechanics is proposed to predict the load-deflection behavior. The model is shown to be in good agreement with experimental results.
     (3) In order to eliminate the influence of wall effect of steel fiber on flexural toughness, a new kind of notched panel with a sectional dimension of600mm×100mm is adopted. Reference to Rilem TC162-TDF, the influence of fiber on the flexural toughness of panels are evaluated. Compared with notched beam, the difference of panel and beam test results is analyzed.
     (4) The influences of concrete strength, fiber content, fiber type, span and load method on the relationship of central span deflection and CMOD are studied. The results indicate that the deflection-CMOD curves have a linear relationship. The concrete strength, fiber content, fiber type do not show an obvious influence on the relationship between CMOD and central deflection for SFRC member with fiber content less than50kg/m3. The span and load method show clear influence on the gradient of CMOD and central deflection relationship. A relationship for modeling of the central span deflection and CMOD relationship has been proposed, the experimental data of panel test agree well with the suggested model.
     (5) Shear behavior of simply support SFRSCC beams is studied. The influences of steel fibers on load-deflection curve, load-bearing capacity, crack pattern and failure mode are investigated. Shear ductility indexed are defined and the influence of steel fiber on shear ductility is analyzed quantitatively. The results show that steel fiber can reduce the crack width and space in shear span, and enhance the shear capacity, energy absorption capacity and toughness. The addition of50kg/m3steel fiber can change the failure mode of the beam reinforced with constructive reinforced stirrups from brittle shear to ductile flexure. Stirrups cannot totally replaced by steel fiber. The combination of steel fiber and stirrups shows obvious positive hybrid effect, and the amount of stirrups can be reduced by the addition of steel fiber.
     (6) The influence of steel fibers on the crack pattern, load-deflection relationship and load-tensile reinforcement strain relationship of symmetric inclination beam is investigated. The main parameters are fiber content, stirrup ratio, tensile reinforcement ratio and shear span ratio. The results show that the failure modes of symmetric inclination beams are similar with their simply supported beam counterparts. The axial force of symmetric inclination beam can enhance the load-bearing capacity and decrease the longitudinal reinforcement strain. Inclusion of steel fiber can restrict mid-span deflection and steel strain, improves the energy absorption capacity and tends to change failure mode to more ductile one. The longitudinal reinforcement ratio show obvious influence on load bearing capacity and energy absorption capacity, according to fiber content and stirrup ratio. The constructive reinforced stirrups can be replaced by steel fibers in symmetric inclination beam.
     (7) An empirical equation is proposed to predict the shear strength of RC beams and steel fiber reinforced RC beams based on the shear transfer mechanisms and the published experimental data of142beams failed in shear mode. The main variables considered are the compressive strength of concrete, longitudinal reinforcement ratio, shear span to depth ratio and fiber factor. A correction factor to account for the effect of axial force on the beam action and arch action of symmetric inclination beam is included in the equation for predicting the shear strength of symmetric inclination beam. It is shown that the equation predicts with adequate accuracy shear strength of symmetric inclination beams.
引文
[1]刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [2]孙钩,侯学渊.地下结构[M].北京:科学出版社,1987.
    [3]朱世友.国内地铁盾构区间隧道管片结构设计的现状与发展[J].现代隧道技术.2002,39(02):23-28.
    [4]陈俊生,莫海鸿,梁仲元.盾构隧道施工阶段管片局部开裂原因初探[J].岩石力学与工程学报.2006,25(05):906—910.
    [5]韩士钊.盾构隧道管片裂缝产生原因分析及处理措施[J].西部探矿工程.2010(03):151-153.
    [6]姜敦灿.盾构在推进时隧道管片产生裂缝、碎裂的原因及防治措施[J].隧道建设.2009(06):694—698.
    [7]梁仲元,陈俊生,莫海鸿,竺维彬.广州地铁盾构施工阶段管片开裂原因初探[J].广东土木与建筑.2004(03):23-25.
    [8]彭飞,田文杰.盾构隧道管片开裂原因分析及应对措施[J].建筑技术.2009(11):1013—1015.
    [9]齐锋,都成.地铁工程混凝土开裂原因及综合防治[J].工程建设与设计.2006(04):115-118.
    [10]徐军.盾构管片开裂原因分析及应对措施[J].交通标准化.2009(13):184-186.
    [11]张彦,刘新.盾构隧道管片破损、错台等原因分析及应对措施[J].黑龙江科技信息.2009(36):414.
    [12]钟长平.广州地铁盾构隧道管片开裂原因分析[J].广东土木与建筑.2000(04):93—95.
    [13]竺维彬,鞠世健.盾构隧道管片开裂的原因及相应对策[J].现代隧道技术.2003,40(01):21-25.
    [14]Mashimo H, Isago N, Kitani T, Endou T. Effect of fiber reinforced concrete on shrinkage crack of tunnel lining[J]. Tunnelling and Underground Space Technology.2006,21 (3-4):382-383.
    [15]Toussaint E, Destrebecq J F, Grediac M. A detailed study of crack propagation in cement-based fibre composite beams under bending[J]. Cement and Concrete Composites. 2005,27 (3):399-411.
    [16]Wei S, Jianming G, Yun Y. Study of the fatigue performance and damage mechanism of steel fiber reinforced concrete[J]. ACI materials Journal.1996,93 (3):206-212.
    [17]Swamy R, Bahia H. The effectiveness of steel fibers as shear reinforcement [J]. Concrete International.1985,7 (3):35-40.
    [18]Narayanan R, Darwish I Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal.1987,84 (3):216-227.
    [19]Casanova P, Rossi P. Can steel fibers replace transverse reinforcements in reinforced concrete beams[J]. ACI materials Journal.1997,94 (5):341-353.
    [20]尤志国,丁一宁,王宝民.钢纤维替代自密实混凝土梁箍筋的试验研究[J].建筑材料学报.2010(05):595—600.
    [21]丁一宁,刘亚军,刘思国,刘赫凯.钢纤维自密实混凝土梁抗剪性能的试验研究[J].水利学报.2011(04):461—468.
    [22]陈相宇,丁一宁Combined effect of steel fibres and steel rebars on impact resistance of high performance concrete[J]中南大学学报:英文版.2011,18(5):1677—1684.
    [23]丁一宁,王岳华,董香军,张峻翔.纤维自密实高性能混凝土工作度的试验研究[J].土木工程学报.2005(11):51-57.
    [24]刘亚军.钢纤维对自密实钢筋混凝土梁受剪性能的影响[D]:(工学硕士论文),大连:大连理工大学,2009.
    [25]刘岳鑫.钢纤维自密实混凝土工作度及钢纤维替代箍筋的有效性[D]:(工学硕士论文),大连:大连理工大学,2009.
    [26]Liu S. Studys on the workability and shear behaviour of self-compacting concrete [D]: (PHD. thesis), Dalian:Dalian university and technology,2009.
    [27]Ding Y, Liu S. The investigation on the workability of fiber cocktail reinforced self-compacting high performance concrete[J]. Construction and Building Materials. 2008,22:1462-1470.
    [28]董香军,丁一宁.纤维高性能混凝土工作度、强度和弯曲韧性的试验研究[J].混凝土与水泥制品.2006(04):43-45.
    [29]Ding Y, Zhang Y, Thomas A. The investigation on strength and flexural toughness of Fiber Cocktail Reinforced Self-Compacting High Performance Concrete[J]. Construction and Building Materials.2009,23:448-452.
    [30]时东东.钢纤维混凝土劈拉与弯曲韧性的试验研究[D]:(工学硕士论文),大连:大连理工大学,2006.
    [31]尹机会.钢-合成纤维混凝土强度与韧性的试验研究[D]:(工学硕士论文),大连:大连理工大学,2006.
    [32]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准[J].建筑材料学报.2005(06):660—664.
    [33]刘思国,丁一宁.钢纤维自密实高性能混凝土抗剪韧性的试验研究[J].建筑结构学报.2008(S1):52-56.
    [34]丁一宁,刘思国.钢纤维自密实混凝土弯曲韧性和剪切韧性试验研究[J].土木工程学报.2010(11):55—63.
    [35]尤志国.混杂纤维自密实混凝土梁式构件的弯剪性能[D]:(工学博士论文),大连:大连理工大学,2010.
    [36]Kooiman A G, Van der Veen C, Djorai M H. Steel fibre einforced concrete (SFRC) tunnel segments suitable for application in the Second Heinenoord Tunnel[C]. Proceedings of the ⅩⅢ Congress on challenges for concrete in the next millennium. Amsterdam,1998: 719-722.
    [37]Gettu R, Barragan B, Garcia T, et al. Steel fiber reinforced concrete for the Barcelona metro line 9 tunnel lining[C].2004:141-156.
    [38]Suter R, Bergmeister K. Tubbinge aus Stahlfaserbeton[J]. Beton-und Stahlbetonbau.2004, 99:858-864.
    [39]Plizzari G, Cominoli L. Numerical simulations of SFRC precast tunnel segments[J]. Proceedings of ITA-AITES.2005:7-12.
    [40]Dobashi H, Konishi Y, Nakayama M. Development of steel fiber reinforced high fluidity concrete segment and application to construction[J]. Tunnelling and Underground Space Technology.2006,21:422.
    [41]Burgers R, Walraven J, Plizzari G, Tiberti G. Structural behaviour of SFRC tunnel segments during TBM operations[C]. The 14th Dimension of Metropolises,2007: 1461-1467.
    [42]Chiaia B, Fantilli A, Vallini P. Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings[J]. Materials and Structures.2007,40 (6):593-604.
    [43]Angerer W, Chappell M. Design of Steel Fibre Reinforced Segmental Lining for the Gold Coast Desalination Tunnels[C].13th Australian Tunneling Conference,2008:263-470.
    [44]Benoit D R. Steel fiber reinforced concrete (SFRC):The use of SFRC in precast segment for tunnel lining[C]. World Tunnel Congress 2008-Underground Facilities for Better Environment and Safety. India,2008:2007-2017.
    [45]Kasper T, Edvardsen C, Wittneben G, Neumann D. Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments [J]. Tunnelling and Underground Space Technology.2008,23 (5):574-587.
    [46]Pereira E N B, Barros J A O, Camoes A. Steel Fiber-Reinforced Self-Compacting Concrete: Experimental Research and Numerical Simulation[J]. Journal of Structural Engineering. 2008,134:1310.
    [47]Tiberti G, Plizzari G, Walraven J, Blom C. Concrete tunnel segments with combined traditional and fiber reinforcement[C]. Tailor Made Concrete Structures-Walraven & Stoelhorst. London,2008:199-205.
    [48]Chiaia B, Fantilli A P, Vallini P. Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings[J]. Engineering Structures.2009,31 (7):1600-1606.
    [49]De Rivaz B. Steel fiber reinforced concrete (SFRC):The use of SFRC in precast segment for tunnel lining[J]. Water and Energy International.2009,66 (1):75-84.
    [50]Caratelli A, Meda A, Rinaldi Z, Romualdi P. Structural behaviour of precast tunnel segments in fiber reinforced concrete [J]. Tunnelling and Underground Space Technology. 2011,26 (2):284-291.
    [51]de la Fuente A, Pujadas P, Blanco A, Aguado A. Experiences in Barcelona with the use of fibres in segmental linings [J]. Tunnelling and Underground Space Technology.2012, 27 (1):60-71.
    [52]Chiaia B, Fantilli A P, Vallini P. Evaluation of crack width in FRC structures and application to tunnel linings[J]. Materials and Structures.2009,42 (3):339-351.
    [53]冯乃谦.高性能混凝土[M].北京:建筑工业出版社,1996.
    [54]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [55]覃维祖.高性能混凝土的回顾与展望[J].建筑技术.2004,35(1):12-16.
    [56]Burge T A.14,000 psi in 24 hours[J]. Concrete International.1983,5(9):36-41.
    [57]Okamura H, Ouchi M. Self-compacting high performance concrete[J]. Progress in Structural Engineering and Materials.1998,1(4):378-383.
    [58]Aitcin P C, Neville A. High-performance concrete demystified[J]. Concrete International.1993,15 (1):21-26.
    [59]Mehta P K. Advancements in concrete technology[J]. Concrete International.1999, 21:69-76.
    [60]中华人民共和国行业标准.海港工程混凝土结构防腐蚀技术规范(JTJ275—2000)[S].北京:人民交通出版社,2001.
    [61]安雪晖,黄锦松,大内雅博.自密实混凝土技术手册[M].北京:中国水利水电出版社,2008.
    [62]刘运华,谢友军,龙广成.自密实混凝土研究进展[J].硅酸盐学报.2007,35(5):671-678.
    [63]Okamura H, Ouchi M. Self-compacting concrete[J]. Journal of Advanced Concrete Technology.2003,1 (1):5-15.
    [64]EFNARC. Guidelines for Self-Compacting Concrete[S]. Farnham, UK:2002.
    [65]Ozawa K, Maekawa K, Okamura H. Development of high performance concrete[J]. Journal of the Faculty of Engineering.1992,41 (3):381-439.
    [66]徐宝华,孙明杰.自密实混凝土在不同施工条件下的应用[J].商品混凝土.2010,2:40—42.
    [67]李风亮,黄绵松,李红旭.自密实混凝土在窄口水库泄洪洞衬砌工程中的应用[J].水科学与工程技术.2010,4:67—69.
    [68]赵文成.自密实混凝土特性与在台湾的应用[J].商品混凝土.2009,1:27—33.
    [69]Kasemchaisiri R, Tangtermsirikul S. Deformability prediction model for self-compacting concrete[J]. Magazine of Concrete Research.2008,60 (2):93-108.
    [70]Hwang S D, Khayat K H, Bonneau 0. Performance-based specifications of self-consolidating concrete used in structural applications[J]. ACI Materials Journal-American Concrete Institute.2006,103 (2):121-129.
    [71]Khayat K H, Assaad J, Daczko J. Comparison of field-oriented test methods to assess dynamic stability of self-consolidating concrete[J]. ACI materials Journal.2004,101 (2):168-176.
    [72]Bui V K, Geiker M R, Shah S P. Rheology of fiber-reinforced cementitious materials [J]. RILEM PR030 High Performance Fibre Reinforced Composites HPFRCC4.2003:221-232.
    [73]Khayat K H, Assaad J. Air-void stability in self-consolidating concrete[J]. ACI materials Journal.2002,99 (4):408-416.
    [74]Grunewald S, Walraven J C. Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete [J]. Cement and concrete research.2001,31 (12):1793-1798.
    [75]Yurugi M, Sakata N, Iwai M, Sakai G. Mix proportion for highly workable concrete [J]. Proceedings of Concrete.2000:579-589.
    [76]Sedran T. Rheologie et rheometrie des betons. Application aux betons autonivelants[D]: (PHD-thesis), Paris:Universite de soutenance,1999.
    [77]Oh S G, Noguchi T, Tomosawa F. Toward mix design for rheology of self-compacting concrete[C]. RILEM publications PRO 7. Cachan,1999:361-372.
    [78]Maeyama A, Maruyame K, Midorikawa T, Sakata N. Characterization of powder for self-compacting concrete[C]. Concrete Engineering Series, No.30, Japan Society of Civil Engineers,1999:191-200.
    [79]De Larrard F. Concrete mixture proportioning:a scientific approach[M]. London:Taylor & Francis,1999.
    [80]Hoy C W. Mixing and Mix Proportioning of Fibre Reinforced Concrete[D]:(PhD-thesis), Scotland:University of Paisley, Advanced Concrete and Masonry Centre,1998.
    [81]ACI Committee. Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete[S].1993.
    [82]Kennedy C T. The Design of Concrete Mixtures[J]. ACI Journal Proceeding.1940, 36:373-400.
    [83]Krell J. Die Konsistenz von Zementleim, Mortel und Beton und ihre zeitliche Veranderung[D]:(PhD-thesis), Dusseldorf:Schriftenreihe der Zementindustrie,1985.
    [84]Brandt A M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering[J]. Composite structures.2008,86 (1-3):3-9.
    [85]Zollo R F. Fiber-reinforced concrete:an overview after 30 years of development[J]. Cement and Concrete Composites.1997,19 (2):107-122.
    [86]黄承奎.纤维混凝土结构[M].北京:机械工业出版社,2005.
    [87]Narayanan R, Kareen-Palanjian A. Factors influencing the workability of steel-fibre reinforced concrete, pt.1[J]. Concrete.1982,16 (10):45-48.
    [88]Swamy R. Fibre reinforcement of cement and concrete [J]. Materials and Structures.1975, 8 (3):235-254.
    [89]Swamy R, Mangat P. Influence of fibre-aggregate interaction on some properties of steel fibre reinforced concrete[J]. Materials and Structures.1974,7(5):307-314.
    [90]Grunewald S, Walraven J C. Parameter-study on the influence of steel fibers and coarse gaaregate content on the fresh properties of self-compacting concrete [J]. Cement and concrete research.2001,31:1793-1798.
    [91]Soroushian P, Lee C D. Distribution and orientation of fibers in steel fiber reinforced concrete[J]. ACI materials Journal.1990,87 (5):433-439.
    [92]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [93]Romualdi J P, Batson G B. Behavior of reinforced concrete beams with closely spaced reinforcement[J]. ACI Journal Proceedings.1963,60 (6):775-790.
    [94]Tattersall G, Urbanowicz C. Bond strength in steel fibre reinforced concrete [J]. Magazine of Concrete Research.1974,26 (87):105-113.
    [95]Hughes B, Fattuhi N. Fibre bond strengths in cement and concrete[J]. Magazine of Concrete Research.1975,27 (92):161-166.
    [96]Wei S, Mandel J A, Said S. Study of the interface strength in steel fiber-reinforced cement-based composites[J]. ACI Journal Proceedings.1986,83:597-605.
    [97]Naaman A E, Shah S P. Pull-out mechanism in steel fiber-reinforced concrete[J]. Journal of the Structural Division.1976,102 (8):1537-1548.
    [98]Banthia N, Trottier J F. Concrete reinforced with deformed steel fibers, Part I: bond-slip mechanisms[J]. ACI materials Journal.1994,91 (5):435-446.
    [99]Chanvillard G, Aitcin P C. Pull-out behavior of corrugated steel fibers::Qualitative and statistical analysis[J]. Advanced cement based materials.1996,4(1):28-41.
    [100]Shannag M J, Brincker R, Hansen W. Pullout behavior of steel fibers from cement-based composites[J]. Cement and concrete research.1997,27 (6):925-936.
    [101]Alwan J M, Naaman A E, Guerrero P. Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices[J]. Concrete Science and Engineering.1999,1(1):15-25.
    [102]Leung C K Y, Shapiro N. Optimal steel fiber strength for reinforcement of cementitious materials[J]. Journal of materials in civil engineering.1999,11 (2):116-123.
    [103]Robins P, Austin S, Jones P. Pull-out behaviour of hooked steel fibres [J]. Materials and Structures.2002,35 (7):434-442.
    [104]Cunha V M C F. Steel Fibre Reinforced Self-Compacting Concrete [D]:(PHD-thesis), Minho:University of Minho,2010.
    [105]Cunha V M C F, Barros J A 0, Sena-Cruz J M. Pullout behavior of steel fibers in self-compacting concrete[J]. Journal of materials in civil engineering.2010,22 (1):1-9.
    [106]董振英.纤维混凝土细观机理及应用研究[D]:(博士学位论文),北京:清华大学,2003.
    [107]杨萌.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究[D]:(博士学位论文),大连:大连理工大学,2006.
    [108]Park R, Paulay T. Reinforced concrete structures[M]:John Wiley & Sons Inc,1975.
    [109]Hognestad E. Study of combined bending and axial load in reinforced concrete members[D]:(PHD-thesis), University of Illinois Engineering Experimental Station, 1951.
    [110]Carreira D J, Chu K H. Stress-strain relationship for plain concrete in compression [J]. Journal ACI Proceedings.1985,82 (6):797-804.
    [111]Wee T, Chin M. Stress-strain relationship of high-strength concrete in compression[J]. Journal of materials in civil engineering.1996,8(2):70-77.
    [112]CNR.2006. Istruzioni per la progettazione,1'esecuzione ed il controllo di interventi di consolidamento statico mediante 1'utilizzo di compositi fibrorinforzato[S]. Rome:2006.
    [113]Rilem TC 162-TDF. Test and design methods for steel fibre reinforced concrete:σ-ε-design methods[J]. Materials and Structures.2003,36:560-567.
    [114]Nanakorn P, Horii H. A fracture-mechanics-based design method for SFRC tunnel linings[J]. Tunnelling and Underground Space Technology.1996,11 (1):39-43.
    [115]Soroushian P, Lee C. Constitutive modeling of steel fiber reinforced concrete under direct tension and compression[J]. Elsevier Applied Science.1989:363-377.
    [116]Ezeldin A S, Balaguru P N. Normal-and high-strength fiber-reinforced concrete under compression[J]. Journal of materials in civil engineering.1992,4 (4):415-429.
    [117]Nataraja M, Dhang N, Gupta A. Stress-strain curves for steel-fiber reinforced concrete under compress ion [J]. Cement and Concrete Composites.1999,21 (5):383-390.
    [118]Mansur M A, Chin M S, Wee T H. Stress-strain relationship of high-strength fiber concrete in compression[J]. Journal of materials in civil engineering.1999,11 (1):21-29.
    [119]Wafa F F, Ashour S A. Mechanical properties of high-strength fiber reinforced concrete[J]. ACI materials Journal.1992,89 (5):449-455.
    [120]Barros J A O, Figueiras J A. Flexural behavior of steel fiber reinforced concrete: testing and modelling[J].1999,37:152-161.
    [121]Jo B W, Shon Y H, Kim Y J. The evalution of elastic modulus for steel fiber reinforced concrete[J]. Russian journal of nondestructive testing.2001,37 (2):152-161.
    [122]Dwarakanath H V, Nagaraj T S. Comparative study of predictions of flexural strength of steel fiber concrete [J]. ACI Structural Journal.1991,88 (6):714-720.
    [123]Bencardino F, Rizzuti L, Spadea G, Swamy R N. Stress-strain behavior of steel fiber-reinforced concrete in compression[J]. Journal of materials in civil engineering.2008,20 (3):255-263.
    [124]DBV. Merkblatt Bemessungsgrundlage fur Stahlfaserbeton im Tunnelbau [S]. Wiesbaden:Eigenverlag,1998.
    [125]JSCE G552. Method of Test for Flexural Strength and Flexural Toughness of Steel Fiber Reinforced Concrete[S]. Tokyo:Japan Society of Civil Engineers,1999.
    [126]ASTM C 1018. Standard test method for flexural toughness and first crack strength of fibre reinforced concrete(Using beam with third-point loading)[S]. West Conshohocken:American Society of Testing and Materials,1997.
    [127]Rilem TC 162-TDF. Test and design methods for steel fibre reinforced concrete:bending test[J]. Materials and Structures.2002,35:579-582.
    [128]中国工程建设标准化协会.纤维混凝土结构技术规程CECS 13:2009[S].北京:中国计划出版社,2009.
    [129]Tjiptobroto P, Hansen W. Tensile Strain Hardening and Multiple Cracking in High performance cement based composites Containing Discontinuous Fibers[J]. ACI materials Journal.1993,90 (1):16-25.
    [130]Soranakom C, Mobasher B. Closed-Form solutions for Flexural Response of Fiber Reinforced Concrete Beams[J]. Journal of Engineering Mechanics.2007,133 (8):933-941.
    [131]Naaman A E. Strain Hardening and Deflection Hardening Fiber Reinforced Cement Composites[C]. High Performance Fiber Reinforced Cement Composites (HPFRCC-4),2003: 95-113.
    [132]Jones P A, Austin S A, Robins P J. Predicting the flexural load-deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data[J]. Materials and Structures.2008,41 (3):449-463.
    [133]Armelin H S, Banthia N. Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pollout of single fibers [J]. ACI materials Journal. 1997,94 (1):18-31.
    [134]Oh B H, Park D G, Kim J. Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinfroced concrete beams[J]. Cement and Concrete Composites.2005,25:384-392.
    [135]Casanova P, Rossi P. Analysis of metallic fibre-reinforced concrete beams submitted to bending[J]. Materials and Structures.1996,29 (6):354-361.
    [136]Zhang J, Stang H. Applications of stress crack width relationship in predicting the flexural behavior of fibre-reinforced concrete[J]. Cement and Concrete Composites. 1998,28 (3):439-452.
    [137]Rilem TC 162-TDF. Test and design methods for steel fibre reinforced concrete:Design of steel fibre reinforced concrete using the σ-methods[J]. Materials and Structures. 2002,35:262-278.
    [138]Taihan J L, Rossi P, Parant E. Inverse numerical approach to determine the uniaxial tensile behavior of a stress hardening cement composite from its bending behavior[C]. Seventh Intel. RILEM Symp. On Fiber Reinforced Concrete:Design and Applications, 2009:913-921.
    [139]Barros J A 0, Cunha V M C F, Ribeiro A. Post-cracking behavior of steel fibre reinforced concrete [J]. Materials and Structures.2005,38 (1):47-56.
    [140]ASCE-ACI Committee 445. Shear and Torsion Recent approaches to shear design of structural concrete[S].1998.
    [141]Rebeiz K S. Shear strength prediction for concrete members [J]. Journal of Structural Engineering.1999,125 (3):301-309.
    [142]Ashour S A, Hasanain G I S, Wafa F F. Shear behavior of high-strength fiber reinforced concrete beams[J]. ACI Structural Journal.1992,89 (2):176-184.
    [143]Khuntia M, Stojadinovic B, Goel S C. Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups[J]. ACI Structural Journal.1999,96 (2):282-289.
    [144]Narayanan R, Darwish I. Shear in Mortar Beams Containing Fibers and Fly Ash[J]. Journal of Structural Engineering.1988,114 (1):84-102.
    [145]Taylor H P J. Investigation of the Dowel Shear Forces Carried by the Tensile Steel in Reinforced Concrete Beams[R]. London:Cement and Concrete Association,1969.
    [146]Fenwick R, Paulay T. Mechanisms of shear resistance of concrete beams[J]. Journal of the Structural Division.1968,94 (ST10):2325-2350.
    [147]Taylor H P J. Investigation of the forces carried across cracks in reinforced concrete beams in shear by interlock of aggregate[R]. London:Cement and Concrete Association, 1970.
    [148]Cucchiara C, La Mendola L, Papia M. Effectiveness of stirrups and steel fibres as shear reinforcement[J]. Cement and Concrete Composites.2004,26 (7):777-786.
    [149]Kani G N J. Basic facts concerning shear failure[J]. ACI Journal Proceeding.1966, 63:675-692.
    [150]Russo G, Somma G, Angeli P. Design shear strength formula for high strength concrete beams[J]. Materials and Structures.2004,37:680-688.
    [151]F. L. Reducing the shear reinforcement in reinforced beams and slabs[J]. Magazine of Concrete Research.1965,17 (53):187-198.
    [152]Bazant Z P, Kim J K. Size effect in shear failure of longitudinally reinforced beams [J]. ACI Structural Journal.1984,81 (5):456-468.
    [153]Zsutty T C. Beam shear strength prediction by analysis of existing Data[J]. ACI Journal Proceedings.1968,65:943-951.
    [154]Zsutty T C. Shear strength prediction for separate categories of simple beam tests [J]. ACI Journal Proceedings.1971,68:138-143.
    [155]Eurocode. Design of concrete structures:Part 1-1:General rules and rules for buildings[S]. En 1992-1-1:2004,2004.
    [156]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [157]Rajagopalan K S, Ferguson P M. Explaratory shear tests emphasizing percentage of longitudinal steel[J]. ACI Structural Jounal.1968,65 (8):634-637.
    [158]Batson G, Jenkins E, Spatney R. Steel fibers as shear reinforcement in beams [J]. ACI Journal Proceedings.1972,69 (10):640-644.
    [159]Lim D, Oh B. Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams[J]. Engineering Structures.1999,21 (10):937-944.
    [160]Gustafsson J, Noghabai K. Steel fibers as shear reinforcement in high strength concrete beams[R] No.0800-6377. Lulea University of Technology:Division of Structural Engineering,1999.
    [161]Sharma A K. Shear strength of steel fiber reinforced concrete beams [J]. ACI Journal Proceedings.1986,83 (4):624-628.
    [162]Lim T, Paramasivam P, Lee S. Shear and moment capacity of reinforced steel fibre concrete beams[J]. Magazine of Concrete Research.1987,39 (140):148-160.
    [163]晏浩,朱合华,傅德明.钢纤维混凝土在盾构隧道衬砌管片中应用的可行性研究[J].地下工程与隧道.2000(01):13—16.
    [164]鞠丽燕,王量,张雄.地铁隧道复合纤维混凝土管片新技术[J].混凝土.2004(8):69-71.
    [165]廖少明,闫治国,宋博,朱合华,刘丰军.钢纤维管片接头局部应力的数值模拟试验[J].岩土工程学报.2006,28(05):653-659.
    [166]闫治国,朱合华,廖少明,刘丰军.地铁隧道钢纤维混凝土管片力学性能研究[J].岩石力学与工程学报.2006,25(S1):2888-2893.
    [167]刘丰军,朱合华,廖少明,于宁.纤维混凝土在盾构隧道衬砌管片中的应用研究[J].地下空间与工程学报.2007,3(1):83-91.
    [168]陈梁,李志业.钢筋钢纤维混凝土管片的应用和系统性分析[C].2006年中国交通土建工程学论文集,2006:590—594.
    [169]荣建林,闻毓民,吴强.钢纤维混凝土盾构管片可行性分析[J].四川建筑,2006(06):158—159.
    [170]莫海鸿,陈俊生,梁松,杨医博,苏轶.钢纤维掺入对混凝土管片局部力学性能的改善[J].华南理工大学学报(自然科学版).2007,35(07):116—121.
    [171]Maidl B. Stahlfaserbeton[M]. Berlin:Ernst & Sohn Verlag fur Architektur und technische Wissen schaften,1991.
    [172]Feyerabend B. Zum Einfluss verschiedener Stahlfasern auf das Verformungs und Rissverhalten von Stahlfaserbeton unter den Belastungsbdingungen einer Tunnelschale[R]:RUHR Universitaet Bochum Institut Fuer Konstruktiven Ingenieurbau, 1995.
    [173]Hemmy 0. Zum Gebrauchs-und Tragverhalten von Tunnelschalen aus Stahlfaserbenton und stahfaserverstaerktem Stahlbeton[D]:(PHD-thesis), Braunschweig:Technischen Universitaet Braunschweig,2003.
    [174]中华人民共和国国家标准.GB/T 22082—2008预制混凝土衬砌管片[S].北京:中国标准出版社,2008.
    [175]中国工程建设标准化协会.纤维混凝土结构技术规程CECS 13:89[S].北京:中国计划出版社,1989.
    [176]Naaman A E. High Performance Fiber Reinforced Cement Composites[C]. High Performance Fiber Reinforced Cement Composites (HPFRCC-4),2003:91-153.
    [177]Robins P, Austin S, Chandler J, Jones P. Flexural strain and crack width measurement of steel-fibre-reinforced concrete by optical grid and electrical gauge methods [J]. Cement and concrete research.2001,31 (5):719-729.
    [178]Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension [J]. ACI Journal Proceeding.1985,82:310-323.
    [179]高淑玲,徐世瑯.电测法确定混凝土裂缝的临界长度[J].清华大学学报(自然科学版)2007,47(9):1432-1434.
    [180]张宏战.钢纤维高强混凝土构件受剪性能试验研究[D]:(工学博士论文),大连:大连理工大学,2005.
    [181]Ahmad S H, Xie Y, Yu T. Shear Ductility of Reinforced Lightweight Concrete Beams of Normal Strength and High Strength Concrete [J]. Cement and Concrete Composites.1995, 17:147-159.
    [182]中华人民共和国国家标准.GB 50157-2003地铁设计规范[S].北京:中国标准出版社,2003.
    [183]Mphonde A G, Frantz G C. Shear tests of high and low strength concrete beams without stirrups[J]. ACI Journal.1984,81 (4):350-357.
    [184]Ahmad S H, Khaloo A, Poveda A. Shear capacity of reinforced high-strength concrete beams[J].1986,83 (2):297-305.
    [185]Elzanaty A H, Nilson A H, Slate F 0. Shear capacity of reinforced concrete beams using high-strength concrete[J]. ACI Journal Proceedings.1986,83 (2):292-296.
    [186]Mansur M, Ong K, Pararaasivam P. Shear strength of fibrous concrete beams without stirrups[J]. Journal of Structural Engineering.1986,112 (9):2066-2079.
    [187]Li V C, Ward R, Hmaza A M. Steel and synthetic fibers as shear reinforcement[J]. ACI materials Journal.1992,89 (5):499-508.
    [188]Sarsam K F, Al-Musawi J M S. Shear design of high-and normal strength concrete beams with web reinforcement[J]. ACI Structural Journal.1992,89 (6):658-664.
    [189]Swamy R N, Jones R, Chiam ATP. Influence of steel fibers on the shear resistance of lightweight concrete I-beams[J]. ACI Structural Journal.1993,90 (1):103-114.
    [190]Kim J K, Park Y D. Shear strength of reinforced high strength concrete beams without web reinforcement[J]. Magazine of Concrete Research.1994,46 (166):7-16.
    [191]Kong P Y L, Rangan B V. Shear strength of high-performance concrete beams[J]. ACI Structural Journal.1998,95 (6):677-688.
    [192]Kwak Y K, Eberhard M 0, Kim W S, Kim J. Shear strength of steel fiber-reinforced concrete beams without stirrups[J]. ACI Structural Journal.2002,99 (4):530-538.
    [193]Juarez C, Valdez P, Duran A, Sobolev K. The diagonal tension behavior of fiber reinforced concrete beams[J]. Cement and Concrete Composites.2007,29 (5):402-408.
    [194]Hassan A A A, Hossain K M A, Lachemi M. Behavior of full-scale self-consolidating concrete beams in shear[J]. Cement and Concrete Composites.2008,30:588-596.
    [195]Haddadin M J, Hong S-T, Mattock A H. Stirrup Effectiveness in Reinforced Concrete Beams with Axial Force [J]. Journal of the Structural Division.1971,97 (9):2277-2297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700