用户名: 密码: 验证码:
Ti/C_(0.36)N_(0.64)为原料合成Ti(C,N)及相关化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用三聚氰胺热解物固态(C_(0.36)N_(0.64))粉末为碳和氮源,通过燃烧合成法和机械合金化法及放电等离子烧结技术,制备了Ti(C,N)化合物及相关材料,并系统地研究了其形成机制和基本理化特性。
     借助于三聚氰胺热解法制备了一种具有乱层石墨结构的固态碳氮(C_(0.36)N_(0.64))粉末,其成分为36.0at%C、63.5at%N和0.5at%H,不含O等杂质元素;热分析表明该碳氮粉末分解温度为600~800℃。该碳氮粉末是制备Ti(C,N)的理想固态氮源和碳源。
     采用Ti和(C_(0.36)N_(0.64))粉末为原料,探索了热爆反应合成Ti(C,N)化合物的可行性,结果表明产物中Ti(C,N)含量较低。分析认为是由于热爆反应速率较低,且反应体系处于开放空间,使(C_(0.36)N_(0.64))粉末挥发严重,导致合成产物中Ti(C,N)较少。利用化学炉法引发的二次热爆过程可促进Ti(C,N)的形成,获得的合成产物主相为Ti(C,N)和TiN。
     利用自蔓延高温反应法(SHS),以Ti/C_(0.36)N_(0.64)为原料成功制备了纯相的Ti(C_(0.30)N_(0.70))化合物粉末,粉体的平均粒径为3μm。采用淬熄技术系统研究了Ti(C,N)化合物的SHS法形成机理,结果表明:随温度升高C_(0.36)N_(0.64)粉末分解形成N2和C2N2等气体,进而Ti与N2反应生成TiN和Ti_2N,过程中放出大量的热,促使大量的Ti与C2N2反应生成Ti(C,N),以及前期生成的Ti_2N和TiN或Ti与C_(0.36)N_(0.64)粉末直接反应,生成Ti(C,N)。各种反应交织进行,最后获得单相的Ti(C,N)。分别采用SHS和热爆两种方法,研究了Al/C_(0.36)N_(0.64)、V/C_(0.36)N_(0.64)和Ti/Al/C_(0.36)N_(0.64)
     体系的反应过程。SHS研究表明:Al/C_(0.36)N_(0.64)和V/C_(0.36)N_(0.64)体系可以分别获得三元铝碳氮和V(C,N)。Ti/Al/C_(0.36)N_(0.64)体系产物为Ti_2Al(C,N)-Ti_(19)Al_(16),Ti3Al(C,N)2-Ti(C,N)和AlN-Ti(C,N)等复合化合物;利用热爆法对Al/C_(0.36)N_(0.64)和Ti/Al/C_(0.36)N_(0.64)体系处理,其产物分别以AlN和Ti_2Al(C,N)-TiAl为主相。采用放电等离子热压烧结(SPS)法制备了Ti(C,N),研究结果表明:SPS合成
     Ti(C,N)的反应路径为:Ti+C_(0.36)N_(0.64)→Ti过饱和固溶体→TiC+TiN→Ti(C,N)以及Ti+C_(0.36)N_(0.64)→Ti过饱和固溶体→Ti(C,N)。通过机械球磨法(MA),以Ti/C_(0.36)N_(0.64)为原料成功制备出纳米Ti(C,N),利用获得
     的纳米Ti(C,N)进行SPS烧结,在1600℃得到致密度98%的细晶Ti(C,N)块体材料,其硬度和抗折强度分别为17GPa和700MPa。
     利用C0.36N0.64粉末、Ti和Al粉作为结合剂,以热爆烧结法成功制备出包含20%金刚石或c-BN的,以TiAl-Ti_2Al(C,N)为基的致密复合块体材料,微观形貌观察表明金刚石或c-BN晶粒与TiAl-Ti_2Al(C,N)基体结合紧密,为进一步开发新型超硬材料工具提供了参考。
In this paper, we discussed the preparation of the Ti (C, N) compound and the relevant materials by combustion synthesis, mechanical alloying and spark plasma sintering, adopting the solid carbon and nitrogen precursor (C0.36N0.64) powder as the carbon and nitrogen source. We also studied the formation mechanism of the material and its basic physical and chemical properties in a systematic way.
     Using melamine pyrolysis method, a solid state carbon and nitrogen (C0.36N0.64) powders with a turbostratic graphite structure were obtained, which had a composition of36.0at%C,63.5at%N and0.5at%H. Thermal analysis indicated that the decomposition temperature of this carbon and nitrogen powders were between600-800℃. Therefore, these carbon-nitrogen powders are the ideal nitrogen and carbon sources for the preparation of Ti (C, N).
     Applying Ti and (C0.36N0.64) powders as raw materials, we explored the feasibility of synthesizing Ti (C, N) compound by thermal explosion reaction. The result showed that the content of Ti (C, N) was low in the resulting product. Analysis considered that the thermal explosion reaction rate was low, and the reaction system was in the open space, leading to a serious volatilization of the (C0.36N0.64) powder, resulting in the less Ti (C, N) in the composition. Utilizing the secondary thermal explosion process that formed during the chemical furnace method, it may promote the formation of Ti (C, N). The main phases of the obtained synthetic products were Ti (C, N) and TiN.
     The powder of the pure phase Ti (C0.30N0.70) compound was successfully prepared, utilizing the self-propagating high-temperature reaction (SHS), with Ti/Co.36No.64as the raw material. The average particle size of the powder was3μm. The synthetic mechanism of the Ti (C, N) compound was studied systematically by quenching technique. The results showed that before the decomposition of Co.36No.64powder occurred, it had already reacted with Ti in a solid-solid reaction, and formed a small amount of TiN and TiC. As the temperature increasing, Co.36No.64powder decomposed to gases such as N2and C2N2, and then Ti reacted with N2and formed TiN and Ti2N. During this process, a considerable amount of heat were released, prompting a large amount of Ti reacted with C2N2, formed Ti (C, N). Along with the formed TiN and Ti2N, a direct reaction with Co.36No.64powder took place. Eventually the pure phase of Ti (C0.30N0.70) formed.
     The two methods SHS and thermal explosion were used respectively to research the reaction processes of the Al/Co.36No.64, V/Co.36No.64and Ti/Al/Co.36No.64systems. SHS studies indicated that the Al/Co.36No.64and V/C0.36N0.64systems could obtain the ternary aluminum, carbon and nitrogen and V(C, N), respectively. The Ti/Al/C0.36N0.64system products were Ti2Al(C, N)-Ti3Al, Ti3Al(C, N)2-TiC and AlN-Ti(C, N), and other complex compounds. To treat the Al/Co.36No.64and Ti/Al/Co.36No.64system by thermal explosion reaction, a main phase of A1N and Ti2Al(C, N)-TiAl in the formed products were achieved, respectively.
     The Ti (C, N) were prepared by spark plasma sintering (SPS). The results indicated that the synthetic route of Ti (C, N) with SPS was Ti+C0.36N0.64→Ti supersaturated solid solution→TiC+TiN→Ti (C, N).
     The nano-Ti (C, N) were achieved successfully by mechanical milling method (MA), with Ti/Co.36No.64as raw materials. Using the obtained nano-Ti (C, N) to conduct the SPS sintering, a density of98%fine-grained Ti (C, N) bulk material was obtained at1600℃The mechanical analysis showed the hardness and flexural strength of the material were17GPa and700MPa, respectively.
     Using C0.36N0.64powder, titanium and aluminum as a binder, a dense composite bulk material, containing20%of the diamond or cubic boron nitride of TiAl-Ti2Al(C,N) were prepared successfully by thermal explosion sintering. The observed micro-morphology indicated that the diamond or cubic boron nitride grains bound with the TiAl-Ti2Al(C,N) base together tightly, which will establish the theoretical foundation for the further development of the new tools of super-hard materials.
引文
[1]Zhang S Y. Titanium Carbide-Based Cermets Process and Properties[J]. Materials Science and Engineering A.1993,163(4):141-148.
    [2]Tracey V A. Nickel in Hardmetals[J]. International Journal of Refractory Metals and Hard Materials,1992,11(2):137-149.
    [3]Moskowitz D, Humenik H. Cemented Titanium Carbide Cutting[J]. Modern Developments in Powder Metallurgy.1966,3(2):84-94.
    [4]刘开琪.金属陶瓷的制备与应用[M].北京:冶金工业出版社,2008:1-10.
    [5]Kieffer R, Ettmayer P, Freudhofmeier M. New Sintered Nitride and Carbonitride Hard Metals[J]. Metallury.1971,25(2):1335-1341.
    [6]Wally P, Ettmayer P, Lengauer W. Ti-Mo-C-N System:Stability of the (Ti, Mo)(C, N)1-x Phase[J]. Journal of Alloys and Compounds.1995,228(1):96-101.
    [7]Paster H. Present Status and Development of Tool Materials:Part1Cutting Tools[J]. International Journal of Refractory Metals and Hard Materials,1987,6(4):196-209.
    [8]Ettmayer P, Lengauer W. The History of Cermets[J]. Powder Metallurgy Int.1989,21(2):37-38.
    [9]侯东芳,刘文俊,汪业.基于Digital Micrograph的Ti(C,N)基金属陶瓷材料定量金相分析[J].三峡大学学报(自然科学版),2010,32(2):72-74.
    [10]张一欣,郑勇,郑建智,等.冷却方式对Ti(C,N)基金属陶瓷显微组织和力学性能的影响[J].硬质合金,2009,26(1):20-24.
    [11]李平平,叶金文,刘颖,等.低压烧结温度对Ti(C,N)基金属陶瓷显微结构和力学性能的影响[J].功能材料,2010,4(10):1724-1726.1730.
    [12]瞿峻,熊惟皓,柯阳林,等.纳米SiC晶须增强Ti(C,N)基金属陶瓷的显微组织与力学性能[J].机械工程材料,2009,33(12):62-65.
    [13]王赛玉.Mo对Ti(C,N)基金属陶瓷组织性能的影响[J].黄石理工学院学报,2009,25(2):1-5,11.
    [14]陈文琳,刘宁,晁盛.添加碳化钛对超细Ti(C,N)-Ni金属陶瓷显微结构和力学性能的影响[J].硅酸盐学报,2007,35(9):1210-1216.
    [15]章晓波,刘宁.纳米改性Ti(C,N)基金属陶瓷的渗硼处理[J].硬质合金,2008,25(4):199-202.
    [16]李燕,刘宁.细晶粒TiCN-Co金属陶瓷的显微结构与力学性能[J].材料热处理学报,2008,29(1):1-4.
    [17]于超,刘宁,章晓波Ni-Ti合金对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2007,24(4):193-197.
    [18]严永林,郑勇,承新,等.Mo含量对Ti(C,N)基金属陶瓷组织和性能的影响[J].粉末冶金工业,2008,18(1):28-31.
    [19]刘文俊,熊惟皓,郑勇,等.氮化处理温度对Ti(C,N)金属陶瓷组织和性能的影响[J].金属热处理,2007,32(8):5-8.
    [20]张晓明,丰平,贺跃辉.等.碳添加量对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金,2009,26(1):49-53.
    [21]徐立强,侯志刚,黄传真,等.原料粒度对Ti(C,N)基金属陶瓷刀具材料的影响[J].烟台大学学报(自然科学与工程版),2007,20(4):292-295.
    [22]庞旭明,郑勇,卜海建,等.亚微米级Ti(C,N)基金属陶瓷的显微组织和力学性能[J].粉末冶金材料科学与工程,2008,13(4):218-222.
    [23]宗城.性能优异的切削刀具材料-金属陶瓷[J].工具技术,2001,35(2):15-19.
    [24]胡文斌,张龙,王建江,等Ti(C,N)材料的研究进展[J].材料导报,2010,24(12):29-34.
    [25]肖诗纲.刀具材料的新发展[J].机械工艺师,1994,(3):38-40.
    [26]陈森凤Ti(C0.12N0.88)粉末的高温合成[J].中国陶瓷,2000,36(5):4-5.
    [27]汪晓Ti(C(1-x)Nx)粉末制备工艺研究[J].硬质合金,2010,27(3):139-144.
    [28]Whife G V, MacKenzieXID, Bmwn I W M, et al. Carbothermal Synthesis of Titanium Nitride-Part Ⅱ:The Reaction Sequence[J]. J Mater Sci.1992,27(16):4294-4299.
    [29]Shen G Z, Tang K B, An C H, et al. A Simple Mute to Prepare Nanocrystalline Titanium Carbonitride[J]. Materials Research Bunetin.2002,37(6):1207-1211.
    [30]Li X K, Xiu Z M, Sun X D, et al. Synthesis of Titanium Carbonitride Nanopowders[J]. Journal of Northeastern University.2003,24(3):272-275.
    [31]Lichtenberger O. Formation of Nanocrystalline Titanium Carbonitride by Pyrolysis of Poly(titanylcarbodiimide)[J]. Materials Chemistry and Physics.2003,81(1):195-201.
    [32]汤爱涛,张龙柱,李奎,等.钛铁矿直接制备Ti(C,N)复合粉的组织与特性[J].金属热处理,2010,35(1):29-33.
    [33]李慈颖,高运明,李亚伟,等.碳热还原氮化攀钢高钛高炉渣制取Ti(C,N)的研究[J].耐火材料,2007,2:113-117.
    [34]Berger L M, Ettmayer P, Schultrich B. Influencing Factors on The Carbothermal Reduction of Titanium Dioxide Without and With Simultaneous Nitridation[J]. International Journal of Refractory Metals and Hard Materials,1993,12(4):161-172.
    [35]Yang J H, Xie Z P, Huang Y. Synthesis of Ti(C, N) Ultrafine Powders by Carbothermal Reduction of TiO2Derived from Sol-gel Process[J]. Journal of European Ceramic Society.2000,20(7):934-938.
    [36]李远兵,陈希来,李亚伟.在熔盐浴中用碳热还原法合成制备Ti(C,N)粉末的研究[J].武汉科技大学学报,2001,31(3):254-258.
    [37]Komeyal. Synthesis of Titanium Carbontride by Carbothermal-Reduction Nitridation of TiO2withCaF2[J]. Ceramic Bulletin.1993,15:558-562.
    [38]Wang A A, Chen K X, Zhou H P. Combustion Synthesis of Ti(C,N)[J]. Key Engineering Materials,2005,280:1421-1424.
    [39]Eslamloo M, Grami Z, Munir A. The Mechanism of Combustion Synthesis of Titanium Carbonitride[J]. Journal of Materials Research.1993,9(2):431-436.
    [40]Carole D, Fre'ty N, Paris S, et al. Microstructural Study of Titanium Carbonitride Produced by Combustion Synthesis [J]. Ceramics International.2007,33:1525-1534.
    [41]Yeh C L, Chen Y D. Direct Formation of Titanium Carbonitrides by SHS in Nitrogen[J]. Ceramics International.2005,31:719-729.
    [42]康志君Ti(CxN1-x)粉末SHS工艺研究[J].硬质合金,1996,13(2):82-85.
    [43]Zhan L, Shen P, Jin S B, et al. Combustion Synthesis of Ti(C, N)-TiB2from a Ti-C-BN System[J]. Journal of alloy and compound.2009,480:315-320.
    [44]武宏让TiC-TiN陶瓷体系的机械合金化[J].粉末冶金技术,1998,16(1):41-47.
    [45]于海军.纳米Ti(C, N)的机械合金化合成及其在金属陶瓷中的应用[D].南京:南京航空航天大学硕士学位论文.2007:8-18.
    [46]Cordoba J M, Sanchez-Lopez J C, Aviles M A, et al. Properties of Ti(C,N) cermets Synthesized by Mechanically Induced Self-Sustaining Reaction[J]. Journal of the European Ceramic Society.2009,29:1174-1182.
    [47]Kerra A, Welhamab N J, Willis P E. Low Temperature Mechanochemiacl Formation of Titanium Carbonitride[J]. Nanostructured Materials.1999,11(2):234-239.
    [48]黄向东.氨解法制备的Ti(C.N)粉末及其性能[J].耐火材料.1998,32(2):64-65.
    [49]Xiang J H. Synthesis of Ti(C,N) Ultrafine Powders by Carbothermal Reductiong of TiO2Derived from Sol-gel Process[J]. Journal of the European Ceramic Society.2000,20(7):934-938.
    [50]王全兆,刘越,关德慧,等.TiN含量对Ti(C, N)/NiCr金属陶瓷微观结构和力学性能的影响[J].金属学报.2005,4(11):1121-1126.
    [51]FuKuhara M, Nowotny H. On the Sintering of Ti(C,N)-30Ni wt.%and TiNxTiCy-30Niwt.%Mixed Powder Compacts[J]. Journal of Japnese Society Powder Metallury,1980,27(4):125-129.
    [52]于海军,郑勇,卜海建,等.热等静压处理对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金.2006,23(2):134-138.
    [53]余立新Ti(C,N)基金属陶瓷在烧结-热等静压条件下的组织、性能研究[J].硬质合金,2001,18(2):69-73.
    [54]李少峰,刘维良,彭牛生Ti(C,N)基金属陶瓷的显微结构与力学性能研究[J].陶瓷学报,2009,30(4):495-499.
    [55]何林,黄传真,刘玉先Ti(C,N)基金属陶瓷的力学性能与显微结构的研究[J].硅酸盐学报,2003,31(3):324-328.
    [56]Frederic M, Valentina M, Alida B. Microstructure of Hot-pressed Ti(C,N)-based Cermets[J]. Journal of the European Ceramic Society.2002,22:2587-2593.
    [57]殷声.燃烧合成[M].北京:冶金工业出版社,1999:1-7.
    [58]Sanchez J M, Alvarez M, Rodriguez N, et al. Effect of Ni powder characteristics on the consolidation of ultrafine TiMoCN cermets by means of SPS and HIP technologies[J]. Materials Science and Engineering,2009,500(1,2):225-232.
    [59]Ostap Z L, Mathias H, Andrey R. Spark plasma sintering of TiCN nanopowders in non-linear heating and loading regimes[J]. Journal of the European Ceramic Society,2011,31(5):809-813.
    [60]Zheng Y, Wang S X, Yan Y L, et al. Microstructure evolution and phase transformation during spark plasma sintering of Ti(C,N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials,2008,26(4):306-311.
    [61]梁在国,熊惟皓,雷燕,等.放电等离子烧结纳米复合Ti(C, N)基金属陶瓷[J].机械工程材料,2006,30(3):64-71.
    [62]夏阳华,丰平,胡耀波,等.放电等离子烧结制备Ti(C, N)基金属陶瓷[J].机械工程材料,2004,28(5):29-35.
    [63]唐思文,张厚安,颜建辉,等.真空微波烧结制备TiCN基金属陶瓷[J].粉末冶金技术,2010,28(3):220-224.
    [64]Strite S, Morkoc H. GaN, AlN, and InN:A Review[J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures.1992,10(4):1237-1266.
    [65]邹清,马鸿雁.氮化铝的研究进展[J].化学研究与应用.2004,16(1):11-14.
    [66]Sheppard L M. Aluminum Nitride-a Versatile but Challenging Material[J]. American Ceramic Bullletin,1990,69(11):180-181.
    [67]卡恩.《材料科学与技术丛书》(第7卷)《陶瓷》[D].北京:科学出版社,1998:223-286.
    [68]周和平,刘耀诚,吴章.氮化铝陶瓷的研究与应用[J].硅酸盐学报.1998,26(4):517~522.
    [69]王岱峰,李文兰,庄汉锐,等.高导热A1N陶瓷研究进展[J].材料导报.1998,12(1):29~31.
    [70]Liu A Y, Cohen M L. Prediction of New Low Compressibility Solids[J]. Science.1989,245:841-842.
    [71]Yu D L, Xiao F R, Wang T S, et al. Synthesis of Graphite-C3N4Crystal by Ion Beam Sputtering[J]. Journal of Material Science Letter.2000,19:554-556.
    [72]Kundoo S, Banerjee A N, Saha P, et al. Synthesis of Crystalline Carbon Nitride Thin Films by Electrolysis of Methanol-urea solution[J]. Materials Letter.2003,57(15):2194-2197.
    [73]Tian Y J, Yu D L, He J L. Experimental Observation of Local Heteroepitaxy Between Cubic—C3N4and Ti2N in CNx/TiN Bilayers Prepared by Ionbeam Sputtering[J]. J Crystal Growth.2001,225(1):67-72.
    [74]Wixom M R. Chemical Preparation and Shock Wave Compression of Carbon Nitfide Precursors[J]. Journal of American Ceramic Society,1990,73(7):1974-1978.
    [75]He D W, Zhang F X, Zhang XY. Synthesis of C3N4Crystals under High Hressure and High Temperature[J]. Science in China Series A.1998,41(4):405-410.
    [76]Andreyev A, Akaishi M, Golberg, et al. Synthesis of Nanocrystalline Nitrogen-Rich Carbon Nitride Powders at High Pressure[J]. Diamond and Related Materials,2007,16:1885-1889.
    [77]Andreyev A,Akaishi M, Golberg, et al. Sodium Flux Assisted Low Temperature High Pressure Synthesis of Carbon Nitride with High nitrogen content[J]. Chem Phys Lett,2006,372:635-639.
    [78]Montigaud H, Tamguy B, Demazeau G, et al. Solvothermal Synthesis of The Graphitic of C3N4as Macroscopic Sample[J]. Diamond and Related Materials,1999,8:1707-1710.
    [79]Bai Y J, Lu B. Solvothermal Preparation of Graphite like C3N4Nanocrystals[J]. Journal of Crystal Growth.2003,247:505-508.
    [80]Cao B C, He Q L, Zhu S, et al. Carbon Nitride Prepared by Solvothermal Methord[J]. Diamond and Related Materials.2003,12:1070-1074.
    [81]He Q L, Cao B C, Zhang T J, et al. The Composition and Structures of Covalent Carbon Nitride Solids Synthesized by Solvothermal method[J]. Chemistry Physics Letters.2003,372(4-4):469-475.
    [82]Fahmy Y, Shen T D, Tucker D A, et al. Possible Evidence for The Stabilization of Beta Carbon Nitride by High-Energy Ball Milling[J]. Joural of Material Research.1999,14(6):2488-2499.
    [83]Yin L W, Li M S, Luo G, et al. Nanosized Beta Carbon Nitride Crystal Through Mechanochemical Reaction[J]. Chemistry Physics Letters.2003,369:484-485.
    [84]Stackelberg M V, Schnorrenberg E, Paulus R,et al. Investigation on Aluminum Carbide Al4C3and Aluminum Carbonitride Al5C3N (in Ger.)[J]. Z Physical Chemistry.1935,175(1):127-139.
    [85]Stackelberg M V, Spiess K F. Structure of Aluminum Carbonitride AlsC3N[J]. Z Physical Chemistry.1935,175(1):140-153.
    [86]Jeffrey G A, Wu V Y. The Structures of the Aluminum Carbonitrides. Ⅰ [J].Acta Crystallogr.1963,16:559-566.
    [87]Jeffrey G A, Wu V Y. The Structures of the Aluminum Carbonitrides.Ⅱ[J]. Acta Crystallogr,1966,20:538-547.
    [88]Qiu C, Metselaar R. Phase Relations in the Aluminum Carbide-Aluminum Nitride-Aluminum Oxide System[J]. Journal of American Ceramic Society.1997,80:2014-2020.
    [89]孙涛,刘建雄,谢杰,等.氮化钒制备技术的发展及应用[J].粉末冶金技术,2009,27(1):58-61.
    [90]Carlson O N, Smith J F, NafZiger R H. The Vanadium-Citrogen System:A review[J]. Metallurgical Transactions A.1986,17(10):1647-1656.
    [91]Gajbhiye N S, Ningthoujam R S. Low Temperature Synthesis Crystal Structure and Tilermal Stability Studies of Nanocrystalline VN Particles [J]. Materials Research Bulletin.2006,41(9):1612-1621.
    [92]Oyama S T. The Chemistry of Transition Metal Carbides and Nitrides [M]. New York:Blackie academic and Professional,1996:50-60.
    [93]King D A. Sebba F. The Catalytic Synthesis of Ammonia Over Vanadium Nitride Containing oxygen:Ⅱ.Order-Disorder Transition Revealed by Catalytic Behavior. Journal of Catalysis.1965,4(4):430-439.
    [94]Kapoor R, Oyama S T. Synthesi of High Surface Area Vanadium Nitride [J]. Journal of Solid State Chemistry.1992,99(2):303-312.
    [95]Kapoor R. Synthesis, Reactivity, and Thermochemistry of Vanadium Carbide and Nitride[M]. New York:Clarkson University,1994:72-90.
    [96]方民宪,陈厚生.碳热还原法制VC, VN和V(C,N)的热力学原理研究[J].矿冶,2007,16(3):46-51.
    [97]刘秋生,黄绍明,易伟湘,等.V205烧成钒氮合金工艺设备研究[J].工业加热,2008,37(2):19-20.
    [98]孙涛,刘建雄,谢杰,等.氮化钒制备技术的发展及应用[J].粉末冶金技术,2009,27(1):58-61.
    [99]赵志伟,宋伟强,关春龙,等.前驱体碳化/氮化法制备纳米氮化钒粉末[J].中国陶瓷,2009,45(11):59-61.
    [100]Yeh C L, Chen Y D. Combustion Synthesis of Vanadium Carbonitride from V-C Powder Compacts Under Nitrogen Pressure[J]. Ceramics International.2007,33:365-371.
    [101]Nikolay V, Tzenov, Barsoum M W. Synthesis and Characterization of Ti3AlC2[J]. Journal of American Ceramic Society,2006,83(4),825-832.
    [102]陈秀娟,李建伟Ti3AlC2陶瓷材料研究进展[J].粉末冶金工业,2008,18(4):40-43.
    [103]Barsoum M W. Ali M, El-Raghy T. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall Materials Transaction. A,2000,31:1857-1865.
    [104]刘波波,王芬,朱建锋,等Ti2AlC三元可加工陶瓷原位反应合成的研究[J].特种铸造及有色合金,2009,29(7):643-646.
    [105]Khoptiar Y, Gotman I. T12AIC Ternary Carbide Synthesized by Thermal Explosion[J]. Materials Letter,2006,57:72-76.
    [106]Liu G, Chen K, Zhou H, Guo J, et al. Layered Growth of TiiAlC and T13AIC2in Combustion Synthesis[J]. Materials Letter,2007,61:779-784.
    [107]Wu E, Kisi E H. Synthesis of T13AIC2From Ti/Al4C3/C Studied by in Situ Neutron Diffraction[J]. Journal of American Ceramic Society.2006,89:710-713.
    [108]Zou Y, Sun Z, Tada S, et al. Synthesis Reactions for Ti3AlC2Through Pulse Discharge Sintering Ti/A14C3/TiC Powder Mixture[J]. Scripta Material.2006,55:767-770.
    [109]王明智,梁宝岩,韩欣.机械诱发自蔓延反应合成Ti3AlC2的机理研究[J].燕山大学学报,2009,33(1):10-13.
    [110]Wang X, Zhou Y. Solid-Liquid Reaction Synthesis of Layered Machinable Ti3AlC2Ceramic [J]. Journal of Materials Chemistry.2002,12:455-460.
    [111]Thomas M. Critical Observations in the Carbon Nitride[J]. Materials Science and Engineering A.2001,302:311-324.
    [112]Lenon M, David R, Hagaman W. Carbon-nitrogen Pyrolyzates:Attempted Preparation of Carbon Nitride[J]. Journal of American Ceramic Society.1991,74(7):1686-1688.
    [113]Ma H A, Jia X P, Chen L X, et al. High-pressure Pyrolysis Study of C3N6H6:a Route to Preparing Bulk C3N4[J]. Journal of Physics:Condensed Matter.2002,14:11269-11273.
    [114]Li C, Cao C B, Zhu H S, et al. Electrodeposition Route to Prepare Graphite-like Carbon Nitride[J]. Materials Science and Engineering:B.2004,106(3):308-312.
    [115]Komatsu T, Nakamura T. Polycondensation/pyrolysis of Tri-s-triazine Derivatives Leading to Graphite-like Carbon Nitride[J]. Journal of Materials Chemistry.2001,11:474-478.
    [116]Komatsu T. Attempted Chemical Synthesis of Graphite-like Carbon Nitride[J]. Journal of Materials Chemistry.2001,11:799-801.
    [117]Yoshiyuki M, Marvin L, Cohen, et al. Theoretical Investigation of Graphitic Carbon Nitride and Possible Tubule Forms[J]. Solid State Communication.1997,102(8):605-608.
    [118]Marchewka M K. Infrared and Raman Spectra of Melaminium Chloride Hemihydrate[J]. Materials Science and Engineering B.2002,95:214-221.
    [119]Marchewka M K. Infrared and Raman Spectra of the New Melaminium Salt:2,4,6-Triamino-1,3,5-Triazin-l-ium Hydrogenphthalate[J]. Materials Letters.2004,58:844-848.
    [120]肖国庆,范群成,顾美转TiC-Al'金属陶瓷自蔓延高温合成中的显微组织演变[J].中国有色金属学报,2004,14(12):2096-2101.
    [121]李建伟.自蔓延高温合成机理研究方法的分析[J].洛阳工业高等专科学校学报.2007,17(6):1-4.
    [122]Merzhanov A G. Self-Propagating High-Temperature Synthesis:Twenty Years of Search and Findings[C]//Proceedings of International Symposium. San Francisco,1988:1-53.
    [123]Shin J, Ahn D H. Self-propagating High Temperature Synthesis of Aluminum Nitride Under Lower Nitrogen Pressures[J]. Journal of the American Ceramic Society.2000,83:1021-1028.
    [124]Juang R C, Lee C J, Chen C C. Combustion synthesis of hexagonal aluminum nitride powders under low nitrogen pressure[J]. Materials Science Engineering A.2003,357:219-227.
    [125]Wang H B, Han J C, Li Z Q. Effect of Additives on Self-Propagating High-Temperature Synthesis of AlN[J]. Journal of the European Ceramic Society.2001,21:2194-2198.
    [126]Holt J B, Munir Z A. Combustion Synthesis of Titanium Carbide:Theory and Experiment[J]. Journal of Materials Science,1986,21:251-259.
    [127]Tonej A, Tonej A M, Duzevic D. Estimation of peak temperature reached by particles trapped among colliding balls in the ball-milling process using excessive oxidation of antimony[J]. Scripta Metall Mater,1991,25:1111-1113.
    [128]Yao B, Liu S E, Liu L, Si L,et al. Mechanism of mechanical crystallization of amorphous Fe-Mo-Si-B alloy [J]. Journal of Apply Physical,2001,90(3):1650-1654.
    [129]Calka A. Formation of Titanium and Zirconium Nitrides by Mechanical Alloying[J]. Apply Physical Letter.1991,59(13):1568-1569.
    [130]Angerer P, Yu L G, Khor K A, et al. Spark-Plasma-Sintering (SPS) of Nanostructured Titanium Carbonitride Powders [J]. Journal of the European Ceramic Society.2007,26:1919-1927.
    [131]Ma H A, Jia X P, Chen L X, et al. High-pressure Pyrolysis Study of C3N6H6:a Route to Preparing Bulk C3N4[J]. Journal of Physics Condensed Matter,2002,14(11):1269-1273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700