用户名: 密码: 验证码:
地铁杂散电流分布规律及腐蚀智能监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的城市轨道交通目前正处于大规模建设的高峰时期,研究地铁杂散电流分布规律并实现地铁杂散电流腐蚀监测是城市轨道交通建设和运营中的关键课题,对城市轨道交通健康发展具有重要的理论意义和实际应用价值。
     论文研究的主要内容包括:单机车不同运行工况和多机车同时运行两种复杂工况下杂散电流分布建模,回流系统参数对杂散电流分布的耦合约束界定;研究杂散电流的腐蚀机制及检测方法,采用时频联合分析算法实现腐蚀信号的特征提取及处理;基于径向基函数神经网络的杂散电流腐蚀状态预测;基于WEB的杂散电流腐蚀智能监测系统的工程实践。
     在传统地铁单机车杂散电流分布静态模型的基础上,建立单机车不同运行工况的杂散电流动态解析模型。在完备的边界条件下,以机车运行位置为分界点,将两牵引变电所组成的供电区间在分界点上分成互连的不同分析域;确定机车取流值与不同变电所回流值之间的映射机制,进行地铁机车牵引计算;模拟单机车运行的不同工况,并基于解析模型进行杂散电流分布规律仿真研究。结果表明动态解析模型能够有效反应地铁现场实测结果。
     建立多机车同时运行的杂散电流分布有限单元模型。基于分布模型中导纳矩阵的对称性和正定性,提出采用不完全乔列斯共轭梯度算法进行解算,改善了导纳矩阵求解的收敛速度;对地铁机车等效电导进行恒功率迭代,在满足机车运行功率与牵引变电所输出功率匹配下,研究双机车同时处于牵引状态及同时处于制动状态、单机车处于牵引状态及单机车处于制动状态、牵引变电所外存在机车取流等不同工况下的杂散电流分布。
     研究地铁杂散电流腐蚀机制及检测方法,并对杂散电流腐蚀信号进行平稳性检验;基于短时傅立叶变换、连续小波变换及S变换,提取不含噪声的杂散电流腐蚀信号的时间及频率成分,对非平稳性杂散电流腐蚀信号进行时频联合分析。结果表明,S变换的时间分辨率及频率分辨率优于其他两种方法;将S变换用于含噪声的杂散电流腐蚀信号分析,同样能够在噪声中准确的分辨出异常信号的时间及频率成分。
     以埋地金属结构的极化电位偏移值作为杂散电流腐蚀表征参数,实验研究埋地金属结构与钢轨之间的水平净距、深度、周围土壤电阻率、电源正负极间距及电源电压和极化电位偏移值的关系,提出基于径向基函数神经网络的杂散电流腐蚀预测模型。采用杂散电流腐蚀模拟实验数据作为预测模型的输入输出样本集,基于次胜者受罚的竞争学习算法对输入输出样本集聚类,聚类数目作为预测模型隐层节点的数目,针对传统径向基函数神经网络结构参数学习训练存在的不足,利用改进粒子群算法和自适应遗传算法实现预测网络结构参数的优化,建立腐蚀预测模型性能评价体系。预测结果表明,与自适应遗传算法优化过的径向基函数神经网络和传统径向基函数神经网络相比较,经改进粒子群算法优化过的径向基函数神经网络在收敛精度和预测性能上更优,能够有效的实现杂散电流腐蚀状态的预测。
     论文构建基于WEB的杂散电流腐蚀智能监测系统,介绍了该系统在地铁现场的应用实践。
     本论文有图74幅,表28个,参考文献201篇。
Nowadays Urban rail transit is in large-scale construction in our country. As metrostray current distribution and stray current corrosion monitoring is a key subject in theconstruction and operation of urban rail transit, this dissertation researches on metrostray current distribution and stray current corrosion monitoring which is importanttheoretically and practically for healthy development of urban rail transit.
     The content of this dissertation is presented as following. Stray current distributionmodeling in two conditions:1) different operation of single metro locomotive,2)simultaneous running of multi-metro locomotives; the coupling constraint definition tothe stray current of reflux systems parameters; the corrosion principle and the detectingmethods of stray current studying, as well as corrosion abnormal signal of stray currentbased on time-frequency joint analyzing, meanwhile, stray current corrosion degree byRadial Basis Function(RBF) predicting, and intelligent monitoring system of straycurrent corrosion based on WEB application.
     Based on stray current distribution static model of single metro locomotive,firstlythis dissertation built stray current distribution dynamic analytical model in differentoperation conditions of single metro locomotive, taking the locomotive running positionas the cut-off point, we divided the supply sector into different analysis domaininterlocking at the cut-off point under complete boundary condition, and computed themetro locomotive traction after determined relationship between locomotive takingcurrent and the backflow values. Then based on analytical model we simulated straycurrent distribution under single metro locomotive. Research results shows that thedynamic analytical model is consistent with actual measured value..
     Secondly this dissertation established finite element model of stray currentdistribution in simultaneous running of multi-metro locomotives. Based on symmetryand positive definiteness of admittance matrix, incomplete Joe Arguelles conjugategradient algorithm was put forward, which improves convergence rate of the model.Conducting constant power iteration of the locomotive equivalent conductance to satisfymatching requirements between the locomotive running power and traction substationoutput, stray current distribution was studied in different operatingconditions:1)simultaneous traction state and braking state of double metrolocomotive,2)the traction and braking state of single locomotive,3)presence oflocomotive taking current outside traction substation.
     Thirdly this dissertation researched metro stray current corrosion principle anddetecting methods, and proposed stationary test of stray current corrosion signal; Basedon short-time Fourier transformation, continuous wavelet transformation and Stransformation, time and frequency components of the stray current corrosion signalwithout noise was extracted, simultaneously time-frequency joint analysis of straycurrent corrosion abnormal signal was completed. Research results show that frequencyand time resolution of S transformation are superior to other two methods, timeresolution of S transformation accurately distinguishes the time and frequencycomponents of abnormal signal from noise using S transformation.
     Next this dissertation proposed a stray current corrosion model to predictpolarization potential offset value of buried metal based on RBF neural network, as theexperimental results show polarization potential offset value of buried metal is effectedby the following parameters: horizontal distance from buried metal to the rail, depth, thesurrounding soil resistivity, positive and negative pole spacing of power supply andsupply voltage. Taking simulation experiment data of the stray current corrosion as theinput/output samples in the prediction model, we gathered input/output samples based onrival penalized competitive learning method, taking the number of clustering asconcealed layer node number in the predictive model, combining deficiency existed inthe traditional RBF neural network structure parameter study, and then putt forwardimproved particle swarm optimization and adaptive genetic algorithm to implementoptimization of predictive network structure parameters, finally performance evaluationsystem of corrosion prediction model is established. The prediction results show thatRBF neural network optimized by improved particle swarm optimization in convergenceaccuracy and predictive performance is superior to the adaptive genetic algorithm andtraditional RBF neural network, which is effective in the prediction of the stray currentcorrosion.
     From above, this dissertation constructed the intelligent monitoring system of straycurrent corrosion based on WEB and introduced application of the system in metro.
     There are74figures,28tables,201references in the dissertation.
引文
[1]王逸松.国外城市轨道交通建设及其对我国发展轨道交通的启示[J].铁道通信信号,2000,36(1):32-33.
    [2]东吴证券.城市轨道交通建设行业深度研究报告.2010.
    [3]孟祥定.绿色交通视角下城市轨道交通网络规划决策方法及应用[D].长沙:湖南大学,2007.
    [4]新华社.中共中央关于制定国民经济和社会发展第十二个五年规划的建议.2010.
    [5]国海证券.轨道交通行业研究报告:关注轨道交通信号系统国产化带来的惊喜.2010.
    [6]东兴证券.轨道交通产业链:高投入的高成长机会.2010.
    [7]牟龙华,史万周,张明锐.排流网情况下地铁迷流分布规律的研究[J].铁道学报,2007,29(3):45-49.
    [8] Ian Cotton, Charalambos Charalambous,Pete Aylott.etc. Stray Current Control in DC MassTransit Systems. IEEE Trans. on Vehicular Technology.2005,54(2):722~730.
    [9]赵宇辉,周晓军.地铁杂散电流分布的数值分析[J].城市轨道交通,2009,12:42-47.
    [10]刘燕,王京梅,赵丽等.地铁杂散电流分布的数学模型[J].工程数学学报,2009,26(4):573-576.
    [11]高敬宇,易友祥.地铁杂散电流的分析[J].天津理工学院学报,1996,12(3):52-55.
    [12] Baechmann, W.V.著,胡士信等译.阴极保护工程手册[M].北京:化学工业出版社,2005.
    [13]徐光强.直流牵引供电系统中杂散电流防护方案研究与设计[D].成都:西南交通大学,2003.
    [14]周晓军,高波.地铁迷流对钢筋混凝土中钢筋腐蚀的试验研究[J].铁道学报,1999,21(5):99-105.
    [15]林江,唐华,于海学.地铁迷流腐蚀及其防护技术[J].建筑材料学报,2002,5(1):72-76.
    [16]庞原冰.城市轨道交通杂散电流研究[D].成都:西南交通大学,2008.
    [17] Luca Bertolinin,Maddalena Carsana,Pietro Pedeferri. Corrosion Behaviour of Steel in Concretein the Presence of Stray Current[J]. Corrosion Science.2007,49:1056~1068.
    [18]武兴华,于向东.煤矿井下电机车牵引网络中杂散电流研究[J].煤炭科学技术,2001,29(3):38-40.
    [19]张英梅.煤矿井下杂散电流分布规律的研究[J].煤炭学报,2005,30(1):129-132.
    [20]王猛.直流牵引供电系统钢轨电位与杂散电流分析[J].城市轨道交通研究,2005,3:24-26.
    [21] Kinh D.Pham,Ralph S.Thomas, Walt E.Stinger. Analysis of Stray Current,Track-to-EarthPotentials&Substation Negative Grounding in DC Traction Electrification System[C].2001IEEE/ASME Joint Rail Conference.2001.
    [22] Ardizzon L,Pinato P,Zaninelli D. Electric Traction and Electrolytic Corrosion:a Software Toolfor Stray Currents Calculation[C].Transmission and Distribution Conference and Exposition.2003(2):550~555.
    [23] J.G.Yu,A.M.M.Khan,K.Loring. Computer Simulation of Transit Power Systems[C].International Conference on Simulation.2004:93~98.
    [24] Yu J.G.,Goodman C.J. Modelling of Rail Potential Rise and Leakage Current in DC RailTransit Systems[C]. Stray Current Effects of DC Railways and Tramways. IEE Colloquiumon.2000:2.
    [25] Yu J.G. The Effects of Earthing Strategies on Rail Potential and Stray Currents in DC TransitRailways[C]. Developments in Mass Transit Systems.International Conferenceon(Conf.Publ.No.453),2002:303~309.
    [26] Cotton,I.,Charalambous C.,Aylott P. Stray Current Control in DC Mass TransitSystems[J].IEEE Transactions on Vehicular Technology.2005,54(2):722-730.
    [27] Lee,C.H.,Wang, H.M.. Effects of grounding schemes on rail potential and stray currents in Taipeirail transit systems[J]. IEE Proceedings-Electric Power Applications.2001:148(2):148-154.
    [28] Lee,C.H., Lu,C.J.. Evaluation of the maximum potential rise in Taipei Rail Transit Systems[C].Ieee Transactions on Power Delivery.2005:20(2):1379-1384.
    [29]李威.地铁杂散电流腐蚀监测及防护技术[M].徐州:中国矿业大学出版社,2004.10.
    [30]张英梅.煤矿井下直流牵引网络中杂散电流分布[J].太原理工大学学报,1998,29(3):237-243.
    [31] Goodman, C.J., Irving M.R..Numericl Solution of Multibranched DC Rail Traction PowerSystems[J]. Electric Power Application. IEE. Proceedings.2005:142(5):323-328.
    [32] Pires C.L.,Nabeta S.I.,Cardoso J.R. ICCG Method Applied to Solve DC Traction Load FlowIncluding Earthing Earthing Models[J].Electric Power Applications,IET,2007,1(2):193-198.
    [33] Cai Y.,Irving M.R. Case S.H. Modelling and Numerical Solution of Multibranched DC RailTraction Power Systems[J]. Electric Power Application. IEE. Proceedings.1995:142(5):323-328.
    [34] Cai Y. Iterative Techniques for the Solution of Complex DC-Rail-Traction Systems IncludingRegenerative Braking[J]. IEE Pro-Gener.Transm.1995:142(5).
    [35]张孝雨,王崇林,张栋梁等.地铁杂散电流排流网钢筋截面计算[J].城市轨道交通研究,2005,2:43-49.
    [36]王崇林,马草原,王智等.地铁直流牵引供电系统杂散电流分析[J].城市轨道交通研究,2007,3:51-56.
    [37]李国欣,王崇林,范建国等.矿井直流杂散电流分布规律的仿真研究[J].工况自动化,2006,3:8-11.
    [38]万庆祝,吴命利,陈建业.基于牵引计算的牵引变电所馈线电流仿真计算[J].电工技术学报,2007(6):112-117.
    [39]庞原冰,李群湛.地铁杂散电流模型讨论[J].重庆工学院学报,2007,21(11):110-113.
    [40]庞原冰,李群湛,刘炜等人.基于电场的地铁杂散电流模型研究[J].城市轨道交通,2008(2):29-31.
    [41]曹阿林.埋地金属管线的杂散电流腐蚀防护研究[D].重庆:重庆大学,2010.
    [42] Bruno, Luciano.Stray load loss calculation of induction motors using electromagnetic fieldanalysis[J].2008,128(1):56-63.
    [43] Shi-Lin Chen,Shih-Che Hsu,Chin-Tien Tseng,etc. Analysis of Rail Potential and Stray Currentfor Taipei Metro[J]. IEEE Trans.On Vehicular Technology.2006(1):67~75.
    [44] Jiann-Fuh Chen,Ray-Lee Lin,Yow-Chyi Liu. Optimization of an MRT Train ScheduleReducing Maximun Traction Power by Using Genetic Algorithms[J]. IEEE Trans.On PowerSystems.2005(3):1366~1372.
    [45] Liu, Y.C.. A Class of High Resolution Explicit and Implicit Shock-Capturing Methods. NASATM-101088.1989.
    [46]王禹桥.地铁杂散电流腐蚀监测方法与系统的研究[D].徐州:中国矿业大学,2005.
    [47]王璐.钢板桩码头靠泊船杂散电流腐蚀研究[D].大连:大连理工大学,2008.
    [48] Bruno Bazzoni,Luciano Lazzari. The Lateral Gradient Technique for Potential Measurements inPresence of Stray Current[J]. Corrosion.199(202):1-11.
    [49] Tzeng, Y.S., Lee, C. H.. Assessment of grounding, bonding, and insulation on rail potential andstray currents in a direct current transit system[J]. Proceedings of the Institution of MechanicalEngineers Part F-Journal of Rail and Rapid Transit.2009(3):229~240.
    [50] S.Qian,D.Cusson. Electrochemical Evaluation of the Performance of Corrosion-InhibitingSystems in Concrete Bridges[J]. Composites.2004,26:217-233.
    [51] D.W.Law,J.Cairns,S.G.Millard.etc. Measurement of Loss of Steel from Reinforcing Bars inConcrete Using Linear Polarisation Resistance Measurements[J]. Corrosion.2004,37(5):381-388.
    [52] D.W.Law,S.G.Millard,J.H.Bungey. Linear Polarisation Resistance Measurements Using aPotentiostatically Controlled Guard Ring[J]. System.2000,35(2):15-21.
    [53] Y.Liu,R.E.Weyers. Comparison of Guarded and Unguarded Linear Polarization Ccd Deviceswith Weight Loss Measurements[J]. Cement and Concrete Research.2003,33(7):1093-1101.
    [54] J.R.Scully. Polarization Resistance Method for Determination of Instantaneous CorrosionRates[J]. Corrosion.2000,56(2):199-218.
    [55] H.W.Song,V.Saraswathy,S.Muralidharan.etc. Corrosion Performance of Steel in CompositeConcrete System Admixed with Chloride and Various Alkaline Nitrites[J]. CorrosionEngineering Science and Technology.2009,44(6):408-415.
    [56] M.Bojko,P.Nova. Limitations of the Linear Polarization Method to Determine Stainless SteelCorrosion Rate in Concrete Environment[J]. Cement&Concrete Composites.2006,28(3):220-225.
    [57] M.Raupach. Chloride-Induced Macroscell Corrosion of Steel in Concrete-TheoreticalBackground and Practical Consequences[J]. Building.1996,10(5):329-338.
    [58] M.Raupach, P.Schieβl. Macrocell Sensor Systems for Monitoring of the Corrosion Risk of theReinforcement in Concrete Structures[J]. Ndt&E International.2001,34(6):435-442.
    [59] B.Elsener. Macrocell Corrosion of Steel in Concrete-Implications for Corrosion Monitoring[J].Cement&Concrete Composites.2002,24(1):65-72.
    [60]赵永韬,郭兴蓬,董泽华.基于恒电位的腐蚀测试系统研究[J].仪器仪表学报,2003,2:108-110.
    [61] C.M.Hansson,A.Poursaee,A.Laurent. Macrocell and Microcell Corrosion of Steel in OrdinaryPortland Cement and High Performance Concretes[J]. Cement and ConcreteResearch.2006,36(11):2098-2102.
    [62]胡曙光,耿健,丁庆军.杂散电流干扰下掺矿物掺和料水泥石固化氯离子的特点[J].华中科技大学学报,2008,36(3):32-34.
    [63]丁庆军,吴雄,耿健.抑制杂散电流对水泥固化氯离子能力的影响[J].建筑材料学报,2008,11(1):80-83.
    [64]耿健,丁庆军,孙家瑛等.杂散电流影响下氯离子向混凝土内部的传输特征[J].建筑材料学报,2010,13(1):121-124.
    [65]赵玉珍,刘悦臣,杨川等人.地铁迷流对埋地管线腐蚀及抗蚀方法[J].交通工程运输学报,2003,3(3):46-49.
    [66]高敬宇,易凡.地铁及轻轨杂散电流腐蚀的防护措施[J].天津理工学院学报,1996,12(1):32-36.
    [67] Luca Bertolini,Maddalena Carsana,Pietro Pedeferri. Corrosion Behaviour of Steel in Concretein the Presence of Stray Current[J]. Corrosion Science.2007(49):1056-1068.
    [68] Emad S.Ibrahim. Corrosion Control in Electric Power Systems[J]. Electric Power SystemsResearch.1999(52):9-16.
    [69] S.C.Kranc,A.A.Sag. Detailed Modeling of Corrosion Macrocells on Steel Reinforcing inConcrete[J]. Corrosion Science.2001,43(7):1355-1372.
    [70] S.Y.Qian,J.Y.Zhang,D.Y.Qu. Theoretical and Experimental Study of Microcell and MacrocellCorrosion in Patch Repairs of Concrete Structures[J]. Cement&ConcreteComposites.2006,28(8):685-695.
    [71] Shuang Lu,Zheng Wang. Macro-Cell Current Measured by Tower-Type Sensor in Chloride-Contaminated Mortar[J]. IEEE Sensors Journal.2011,11(8):1711-1712.
    [72] J.A.Roden,C.r.Paul,W.T.Smith.etc. Finite Difference Time Domain Analysis of LossyTransmission Lines[J]. IEEE Trans on Electromagnetic Compatibility.1996(1):15~24.
    [73] Clayton R.P. Analysis of Multiconductor Transmission Lines[M]. New York:Wiley-InterScience.2007.
    [74] G.Beylkin. On the Representation of Operators in Bases of Compactly Supported Wavelets[J].SIAM Journal on Numerical Analysis.1992,29(6):1716~1740
    [75] S.Grivet-Talocia. Adaptive Transient Solution of Nonuniform Multiconductor TransmissionLines Using Wavelets[J]. IEEE Trans.On Antennas and Propagation.2000,48(10):1563~1573.
    [76] J.A.Gonzalez,A.Molina,M.L.Escudero.etc. Errors in the Electrochemical Evalutation of VerySmall Corrosion Rates.1. Polarization Resistance Method Applied to Corrosion of Steel inConcrete[J].Corrosion Science.1985,25(10):917-930.
    [77] K.I.Kanno,M.Suzuki,Y.Sato.etc.Application of Coulostatic Method for Rapid Evaluation ofMetal Corrosion Rate in Solution[J]. Journal of the Electrochemical Society.1978,125(9):1389-1393.
    [78] S,Mabbutt,N.Simms,J.Oakey.High Temperature Corrosion Monitoring by ElectrochemicalNoise Techniques[J]. Corrosion Engineering Science and Technology.2009,44(3):186-195..
    [79] F.Mansfeld,Z.Sun,C.H.Hsu. Electrochemical Noise Analysis(Ena) for Active and PassiveSystems in Chloride Media[J]. Electrochimica Acta.2001,46(24-25):3651-3664.
    [80] A.Nagiub,F.Mansfeld. Evaluation of Corrosion Inhibition of Brass in Choloride Media UsingEis and Ena[J]. Corrosion Science.2001,43(11):2147-2171.
    [81] J.J.Perdomo,P.M.Singh. Electrochemical Noise(Ecn) Measurements as a Corrosion MonitoringTool:A Review[J]. Corrosion Reviews.2002,20(4-5):359-378.
    [82] A.P.Shashikala,J.Ramasubramanian,G.Janakiraman. Investigations into the StatisticalProperties of Ecn from Corroding Marine Systems[J]. Journal of Offshore Mechanics andArctic Engineering-Transactions of the Asme.2008,130(3):131-133.
    [83] N.Zaveri,R.T.Sun,N.Zufelt.etc. Evaluation of Microbially Influenced Corrosion WithElectrochemical Noise Analysis and Signal Processing[J].ElectrochimicaActa.2007,52(19):5795-5807.
    [84] D.S.Law,S.G.Millard,J.H.Bungey. Galvano-static Pulse Measurements of Passive and ActiveReinforcing Steel in Concrete[J].Corrosion,2000,56:48-56.
    [85] F.C.Robles Hernandez,G.Plascencia,Kevin Koch. Rail Base Corrosion Problem for NorthAmerican Transit Systems[J]. Engineering Failure Analysis.2009(16):281-294.
    [86] W.M Sim,C.F Chan. Stray Current Monitoring and Control on Singapore MRT System[C].2004International Conference on Power System Technology. Powercon2004,Singapore.
    [87] S.Lay,S.Liebl,H.Hilbig and P.Schiessl. New Method to Measure the Rapid Chloride MigrationCoefficient of Chloride-Contaminated Concrete[J]. Cement and Concrete Research.2004,34(3):421-427.
    [88] J.P.Broomfield,D.B.Kevin,K.Hladky. The Use of Permanent Corrosion Monitoring in New andExisting Reinforced Concrete Structures[J]. Cement&Concerte Composites.2002,24(1):27-34.
    [89] Y.Chen,R.T.Sun,A.H.Zhou,etc. Fractional Order Signal Processing of ElectrochemicalNoises[J]. Journal of Vibration and Control.2008,14(9-10):1443-1456.
    [90] S.Feliu,J.A.Gonzalez,J.M.Miranda,etc. Possibilities and Problems of in Situ Techniques forMeasuring Steel Corrosion Rates in Large Reinforced Concrete Structures[J]. CorrosionScience.2005,47(1):217-238.
    [91]卢爽.基于内置多元传感器监测钢筋混凝土结构腐蚀状态研究[D].哈尔滨:哈尔滨工业大学,2010.
    [92]刘超英,孙伯永.水工混凝土中钢筋锈蚀检测技术与应用[J].浙江水利科技,2003,2:33-37.
    [93]吴建华,赵永韬.钢筋混凝土的腐蚀监测/检测[J].腐蚀与防护,2003,10:421-427.
    [94] B.Elsener. Half-Cell Potential Mapping to Assess Repair Word on Rc Structures[J].Construction and Building Materials.2001,15(2-3):133-139.
    [95] B.Elsener,J.Gulikers,R.Polder,etc. Half-Cell Potential Measurements-Potential Mapping onReinforced Concrete Structures[J]. Materials and Structures.2003,36(9):461-471.
    [96] M.A.Ismail,H.Soleymani,M.Ohtsu. Early Detection of Corrosion Activity in ReinforcedConcrete Slab by Ae Technique[J]. Program.2006,(9):5-6.
    [97] V.Leelalerkiet,J.-W.Kyung,M.Ohtsu,etc. Analysis of Half-Cell Potential Measurement forCorrosion of Reinforced Concrete[J]. Construction and Building Materials.2004,18(3):155-162.
    [98] Force Technology. Corrowatch Multiprobe-installation Instructions[M].2011.
    [99] D.G.John,P.C.Searson,J.L.Dawson. Use of Ac Impedance Technique in Studies on Steel inConcrete in Immersed Conditions[J]. British Corrosion Journal.1981,16(2):102-106.
    [100] V.Barranco,S.Feliu. Eis Study of the Corrosion Behaviour of Zinc-Based Coatings on Steel inQuiescent3%Nacl Solution.Part2:Coatings Covered with an Inhibitor-ContainingLacquer[J].Corrosion Science.2004,46(9):2221-2240.
    [101] D.D.Macdonald,M.C.H.Mckubre,M.Urquidimacdonald. Theoretical Assessment of ACImpedance Spectroscopy for Detecting Corrosion of Rebar in Reinforced-Concrete[J].Corrosion.1988,44(1):2-7.
    [102]胡融刚,杜荣归,林昌健.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究[J].电化学,2003,02:189-195.
    [103]李威.地铁轨地过渡电阻及钢轨阻抗在线测量[J].中国矿业大学学报,2001,30(4):416-419.
    [104]李威.应用于地铁杂散电流腐蚀测量的硫酸铜电极实验研究[J].中国矿业大学学报,2005,34(1):61-66.
    [105] Keith Griffiths. Stray Current Control-An Application of Ohm’s Law[J]. EMC in Railways,2006:83~94.
    [106] K. Darowicki, K. Zakowski. A New Time-Frequency Detection Method of Stray Current FieldInterference on Metal Structures[J]. Corrosion Science,2004,46:1061~1070.
    [107] Francois Auger, Patrick Flandrin. Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method[J]. IEEE Trans on Singal Processing,1995,43(5):1068~1089.
    [108]杨哂哂,李明,顾学康.四种时频分析方法的频率分辨率研究[J].现代电子技术,2008,11:37-39.
    [109]葛晗,秦力,颜大运等.基于短时傅立叶变化的空蚀噪声分析[J].清华大学学报,2010,50(7):1029-1036.
    [110]刘小峰,柏林,秦树人.基于瞬时转速的变窗STFT变换[J].振动与冲击,2010,29(4):27-29.
    [111]唐一科,梁锋.时频分析法在高压水泵启动过程分析中的应用[J].西南交通大学学报,2003,38(5):525-527.
    [112] T-P.Le,P.Argoul. Continuous Wavelet Transform for Model Identification Using Free DecayResponse[J]. Journal of Sound and Vibration,2004(277):73~100.
    [113] Francois Auger, Patrick Flandrin. Improving the Readability of Time-Frequency and Time-Scale Representations by the Reassignment Method[J]. IEEE Trans on Singal Processing,1995,43(5):1068~1089.
    [114] Kwok K,Jones L. Improved Instantaneous Frequency Estimation Using an Adaptive Short-Time Fourier Transform[J]. IEEE Trans on Singal Processing,2000,48(10):2964~2972.
    [115] Stockwell R G, Mansinha L,Lowe R P. Localization of the complex spectrum:the Stransform[J]. IEEE Trans. on Singal Processing,1996,44(4):998~1001.
    [116]郭灿新,勇明,徐敏骅等人.S变换在电力电缆局部放电信号时频分析中的应用[J].电工技术学报,2010,25(11):9-14.
    [117]郑旭,郝志勇,金阳等人.自适应广义S变换在内燃机气缸盖振动特性研究中的应用[J].振动与冲击,2011,30(1):167-170.
    [118]尉宇,孙德宝,郑继刚.基于FRFT优化窗的STFT及非线性调频信号瞬时频率估计[J].宇航学报,2005,26(2):217-222.
    [119] Hasiewicz Z,Pawlak M,Sliwinski P. Nonparametric Identification of Nonlinearities in Block-oriented Systems by Orthogonal Wavelets With Compact Support[J]. IEEE Trans on Circuitsand Systems I:Fundamental Theory and Application,2005,52(2):427~442.
    [120] Poggio T., Girosi F. Networks for approximation and learning[J]. IEEE Proc,1990,4(9):1481~1497.
    [121] Park J., Sandberg I W. Universal Approximation Using Radial Basis Function Networks[J].Neural Computation.1991,3(2):246~257.
    [122] Park J., Sandberg I W., Approximation and Radial Basis Function Networks[J]. NeuralComputation.1993,5(2):305~316.
    [123]柴杰,江青茵,曹志凯.RBF神经网络的函数逼近能力及其算法[J].模式识别与人工智能,2002,15(3):310-315.
    [124] Bianchini M., Frasconi P., Cori M., et al. Learning without minima in radial basis functionnetwork[J]. IEEE Trans. On Neural Network,1995,6(3):749~756.
    [125] Trevelyan.J.,Hack.H.P. Analysis of Stray Current Corrosion Problems Using the BoundaryElement Method[C]. International Conference on Boundary Element Technology.2001:347~356.
    [126] Nelson D J, Smith D C. A linear model for the distribution of signals in time and frequencywith a historical perspective of conventional time-frequency distributions[J]. Digital SignalProcessing.2008,18(2):81-102.
    [127] Khilko A. Generalized STFT for simple and efficient time-frequency analysis[C]. Las Vegas,NV, USA: CSREA Press,2008.
    [128] Charalambous C, Cotton I. Influence of soil structures on corrosion performance of floating-DC transit systems[J].2007,1(1):9-16.
    [129] Costantini G, Todisco M, Saggio G. A New Method for Musical Onset Detection inPolyphonic Piano Music[C]. Athens, Greece: WSEAS Press,2010.
    [130] Lai W L, Kind T, Wiggenhauser H. A Study of Concrete Hydration and Dielectric RelaxationMechanism Using Ground Penetrating Radar and Short-Time Fourier Transform[J]. EURASIPJournal on Advances in Signal Processing.2010:1-14.
    [131] Myung-Hwan M, Hosung J, Young P, et al. An Analysis on Rise of Rail Potential And AStudy on Control Method for It in DC Feeding System[J].2011,60(3):680-685.
    [132] Millioz F, Martin N. Circularity of the STFT and Spectral Kurtosis for Time-frequencySegmentation in Gaussian Environment[J]. IEEE Transactions on Signal Processing.2011,59(2):515-524.
    [133] Martinez-Vargas J D, Avendano-Valencia L D, Giraldo E, et al. Comparative analysis of timefrequency representations for discrimination of epileptic activity in EEG signals[C].Piscataway, NJ, USA: IEEE,2011.
    [134] Tishik I Y. Extracting and localizing of the short longevity radio impulse signals with the useof short-waved wavelet transform[J]. Bulletin of the National University Lvivska Polytechnika.Computer Sciences and Information Technologies.2009(658):128-132.
    [135] Chikkerur S, Cartwright A N, Govindaraju V. Fingerprint enhancement using STFTanalysis[J]. Pattern Recognition.2007,40(1):198-211.
    [136] Chen S, Billings S A,Grant P M. Recursive Hybrid Algorithm for Nonlinear SystemIdentification Using Radial Basis Function Networks[J]. International Journal of Control.1992,55(5):1051~1070.
    [137] Wen C, Chenggen Q, Cho J T. Profiling of an object using a time-frequency analysis methodin digital holographic interferometry[C]. USA: SPIE-The International Society for OpticalEngineering,2008.
    [138]俞阿龙.基于遗传算法的RBF神经网络在热敏电阻温度传感器非线性补偿中的应用[J].电工技术学报.2005,20(8):99-102.
    [139] Nawab S. H., Dorken E. Efficient STFT approximation using a quantization and differencingmethod[C]. Minneapolis, MN, USA: Publ by IEEE,1993.
    [140]闫庆友,贾仲孝.关于特殊辛Householder变换和特殊辛Givens变换算法[J].大连理工大学学报.2001,41(4):399-404.
    [141] Sinha S., Routh P., Anno P. Instantaneous spectral attributes using scales in continuous-wavelet transform[J]. Geophysics.2009,74(2):137-142.
    [142]甘敏,彭辉.不同基函数对RBF-ARX模型的影响[J].中南大学学报:自然科学版.2010,41(6):2231-2235.
    [143] Ilhem B, Amar B, Abdesselam L, et al. Modeling and detection of eccentricity fault inSwitched Reluctance Motor[C]. Piscataway NJ USA: IEEE,2011.
    [144]陈得宝,赵春霞.基于改进GA的WRBF神经网络设计与应用[J].南京理工大学学报:自然科学版.2007,31(3):370-374.
    [145]魏立新,李兴强,李莹等.基于改进自适应遗传算法的冷连轧轧制规程优化设计[J].机械工程学报.2010(16):136-141.
    [146] Moody J., Darken C. Fast Learning in Networks of Locally-Tuned Processing Units[J]. NeuralComputation.1989,1:281~294.
    [147] Orr M.J.L. Regularization in the Selection of Radial Basis Function Centers[J]. NeuralComputation.1995,7(3):606~620.
    [148] Lei Xu. Rival Penalized Competitive Learning for Clustering Analysis.RBF Net and CurveDetection[J]. IEEE Trans. on Neural Network.1993,4(4):639~649.
    [149] Chen S, Grant P.M.,Cowan C.F.N. Orthogonal Least Squares Algorithm for TrainingMultioutput Radial Basis Function Networks[J]. IEEE Proceedings F.1992,139(6):378~384.
    [150] Walczak B, Massart D.L. The Radial Basis Functions-Partial Least Squares Approach as aFlexible Non-Linear Regression Techniques[J]. Analytics Chim.Acta.1996,331:177~185.
    [151] Walczak B, Massart D.L. Application of Radial Basis Functions Partial Least Squares to Non-Linear Pattern Recognition Problems:Diagnosis of Process Faults[J]. Analytics Chim Acta.1996,331:187~193.
    [152] Chen S, Billings S.A,Grant P.M. Recursive Hybrid Algorithm for Nonlinear SystemIdentification Using Radial Basis Function Networks[J]. International Journal of Control.1992,55(5):1051~1070.
    [153] Vesin J.M,,Gruter R. Model Selection Using a Simplex Reproduction Genetic Algorithm[J].IEEE Trans. on Signal Processing.1999,78(3):321~327.
    [154] Gen M, Cheng R,Oren S.S. Network Design Techniques Using Adapted GeneticAlgorithms[J]. Advances in Engineering Software.2001,32(9):731~744.
    [155]周结华,彭侠夫,仲训昱.基于灰色RBF-NN的陀螺随机漂移误差建模[J].华中科技大学学报,2011,39(2):39-42.
    [156]朱乘治,郭创新,秦杰等人.基于DEPSO-RBFNN的变压器表面温度预测模型[J].电工技术学报,2008,23(6):37-42.
    [157]汤健,郑秀萍,赵立杰等人.基于频域特征提取与信息融合的磨机负荷软测量[J].仪器仪表学报,2010,31(10):2161-2167.
    [158]李军,刘君华.一种新型广义RBF神经网络在混沌时间序列预测中的研究[J].物理学报,2005,54(10):4569-4577.
    [159]张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测[J].物理学报,2007,56(2):713-719.
    [160]李威,蔡文娟,王禹桥等.基于光纤传感的地铁杂散电流监测方法[J].中国矿业大学学报.2008,37(6):848-853.
    [161]李威,赵煜.地铁列车通过绝缘结消弧方法的研究[J].中国矿业大学学报.2004,33(1):86-89.
    [162]万衡,陈江岸,江彩玉.计算机仿真技术在城市轨道交通设计中的应用[J].华东理工大学学报(自然科学版).2007(2):238-241.
    [163]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法[J].交通运输工程学报.2004(3):30-33.
    [164]吴志红,毛明平,陶生桂,等.天津轻轨交通线牵引仿真[J].同济大学学报(自然科学版).2003(6):687-691.
    [165]游忠庆和孙雨施.1CCG算法及其在有限元法中的应用[J].微特电机,1986,(1):10~14.
    [166]张永杰和孙秦.大型稀疏线性方程组新的ICCG方法[J].数值计算与计算机应用,2007,(2):133~137.
    [167]张秀敏,苑津莎和徐永生.电磁场分析中大型稀疏方程组迭代解法的改进[J].华北电力大学学报,2003,(3):34~38.
    [168]吴小平,徐果明和李时灿.利用不完全Cholesky共轭梯度法求解点源三维地电场[J].地球物理学报,1998,(6):848~855.
    [169]章林柯,江涌和何琳.乔列斯基分解应用于偏相干问题的可行性研究[J].船舶力学,2011,(5):556~562.
    [170]吴小平,徐果明和李时灿.解大型稀疏方程组的ICCG方法及其计算机实现[J].煤田地质与勘探,1999,(6):54~56.
    [171]地铁杂散电流腐蚀防护技术规程(CJJ49-92).北京:中国计划出版社,1993.
    [172] Srinvas M, Patnaik L.M, Adaptive Probabilities of Crossover and Mutation in GeneticAlgorithms[J]. IEEE Transactions on Systems,Man and Cybernetics.1994,24(4):656-666.
    [173]丁宏锴,萧蕴诗和李斌宇,等.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,(8):1826~1829.
    [174]张顶学,关治洪和刘新芝.基于PSO的RBF神经网络学习算法及其应用[J].计算机工程与应用,2006,(20):13~15.
    [175]陈伟,冯斌和孙俊.基于QPSO算法的RBF神经网络参数优化仿真研究[J].计算机应用,2006,(8):1928~1931.
    [176]岳恒,张海军和柴天佑.基于混合粒子群算法的RBF神经网络参数优化[J].控制工程,2006,(6):525~529.
    [177]段其昌,赵敏和王大兴.一种改进PSO优化RBF神经网络的新方法[J].计算机仿真,2009,(12):126~129.
    [178]石红瑞,李光泉.基于混合递阶遗传算法的径向基神经网络学习算法及其应用[J].控制理论与应用.2002,19(4):627-630.
    [179]夏长亮,祁温雅,杨荣等.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报.2004,19(9):18-22.
    [180] Kacicnik A, Warnke D.H, Parker G. Stray current mapping enhances direct assessment of anurban pipeline[J].2004,43(6):26-32.
    [181]全惠敏,戴瑜兴.基于S变换模矩阵的电能质量扰动信号检测与定位[J].电工技术学报.2007,22(8):119-125.
    [182]全惠敏,戴瑜兴,王鹏人.基于广义S变换的声发射信号分析及定位[J].电子学报.2010(2):371-375.
    [183] Wu, Xiao-Juan, Zhu,等. Nonlinear modelling of a SOFC stack by improved neuralnetworks identification[J].浙江大学学报:A卷英文版.2007,8(9):1505-1509.
    [184]陶吉利,王宁. Splicing System Based Genetic Algorithms for Developing RBF NetworksModels[J].中国化学工程学报:英文版.2007,15(2):240-246.
    [185]靳海水,朱士明.基于遗传算法的径向基网络学习及其应用[J].同济大学学报:自然科学版.2003,31(5):610-613.
    [186]韩敏,郭伟,王金城.径向基函数神经网络的全监督算法[J].仪器仪表学报.2004(z3):454-457.
    [187]文援兰,郗晓宁.抗差估计的Givens—Gentleman正交变换算法[J].测绘学报.2000,29(3):198-203.
    [188]陆宁,周建中,何耀耀.粒子群优化的神经网络模型在短期负荷预测中的应用[J].电力系统保护与控制.2010(12):65-68.
    [189]赵温波,黄德双.全结构遗传优化径向基概率神经网络[J].红外与毫米波学报.2004,23(2):113-118.
    [190]梁睿,王崇林,刘建华等.一种新算法在监视线保护中的应用[J].高电压技术.2008,34(3):504-507.
    [191]赵温波,王立明,黄德双.最大绝对误差结合微遗传算法优化径向基概率神经网络[J].计算机研究与发展.2005,42(2):179-187.
    [192]陈德旺,唐涛,郜春海等.城轨列车在车站停车误差估计模型与在线学习算法的研究[J].中国铁道科学.2010,31(6):122-127.
    [193]杨俭,李发扬,宋瑞刚等.城市轨道交通车辆制动能量回收技术现状及研究进展[J].铁道学报.2011,33(2):26-33.
    [194]王进,喻珍.城市轨道交通次生环境影响可拓综合评价[J].中南大学学报:自然科学版.2007,38(5):1007-1011.
    [195]刘炜,李群湛,陈民武.城市轨道交通交直流统一的牵引供电计算[J].电力系统保护与控制.2010(8):128-133.
    [196]徐瑞华,江志彬,邵伟中等.城市轨道交通列车运行延误及其传播特点的仿真研究[J].铁道学报.2006,28(2):7-10.
    [197]徐杰,贾利民,秦勇等.城市轨道交通综合监控平台系统集成的研究[J].铁道学报.2007,29(3):107-112.
    [198]赵学智,叶邦彦.单向收缩QR算法在奇异值分解中的收敛特性[J].电子科技大学学报.2010,39(5):762-767.
    [199]林江,唐华.地铁工程用高阻抗混凝土的研制[J].建筑材料学报.2001,4(4):373-377.
    [200]李永刚,李锦萍,袁慧梅.地铁杂散电流模拟实时监测系统[J].中国铁道科学.2005,26(5):119-122.
    [201]张铭,杜世敏.基于递阶偏好的轨道交通网络化运营换乘协调优化[J].铁道学报.2009,31(6):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700