用户名: 密码: 验证码:
基于流动控制的无导叶对转涡轮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对转涡轮技术是燃气涡轮发动机的一项关键技术,它在提高发动机推重比以及飞机性能方面具有较大的发展潜力。在1+1/2对转涡轮中,由于其高压动叶具有缩放型流道,使得1+1/2对转涡轮的流场、流量调节规律与具有渐缩型流道的常规涡轮有所不同。因此,深入研究1+1/2对转涡轮的流动特性,并采取有效的流动控制措施降低高压动叶流道内的激波损失以及控制对转涡轮流量,对增加流动稳定性和提高发动机性能具有重要意义。
     本文针对1+1/2对转涡轮的流动特征,分别采用在高压动叶吸力面沿展向加凸台、可调高压导叶和高压动叶叶表喷射冷气的流动控制措施,通过数值模拟和叶栅实验对流动控制措施的有效性及控制机理进行了研究,主要研究内容如下:
     1.在1+1/2对转涡轮高压动叶吸力面因内伸波导致的分离区设置凸台,通过调整凸台的轴向位置和高度,改变流道通流形状和面积,从而达到抑制分离的目的。采用数值模拟方法,对不同凸台位置和高度的工况进行对比分析,得到了能够有效抑制分离的凸台最优位置和高度,当凸台位于吸力面84%-86%轴向弦长位置,最大高度为1mm,并且与叶表光滑连接时,其对吸力面分离区的抑制效果最佳。
     2.由于1+1/2对转涡轮的喉部位于高压动叶中,且高压动叶出口流动沿展向均超音,涡轮流量不随背压的变化而变化,因此采用可调高压导叶的流动控制措施对其流量进行调节。本文运用数值模拟方法对采用可调高压导叶后的1+1/2对转涡轮性能及流场进行了分析,研究了可调导叶开度和涡轮流量、效率、功量、损失等之间的关系,结果表明,采用可调高压导叶能够有效控制1+1/2对转涡轮流量、保持合理的高低压级出功比和较高的涡轮效率。
     3.保护高温部件的冷却气体排入叶栅流道对涡轮叶栅的气动性能会产生影响,本文以1+1/2对转涡轮中具有缩放型流道的高压动叶50%叶高截面叶型构成的叶栅为研究对象,采用数值模拟方法针对六个不同轴向位置处喷射冷气对缩放型流道涡轮叶栅性能的影响进行了详细的研究,着重分析了冷气喷射位置、冷气与主流质量流量比等影响因素,结果表明,在吸力面内伸波反射点附近喷射冷气可以减弱内伸波强度,这主要是由于射流冷气滞止了冷气孔前的气流,造成较大的逆压梯度,孔前压力升高,使得内伸波前后压差减小。证明了内伸波反射点附近射流减小内伸波强度的流动控制方法的有效性。
     4.利用跨声速平面叶栅实验台针对非设计工况时缩放型流道涡轮叶栅流动特性和冷气喷射对其性能的影响进行了实验研究,并对缩放型流道涡轮叶栅中波系结构随膨胀比的变化做了纹影实验,对不同攻角、不同膨胀比及不同冷气流量时的叶栅进出口参数、叶表静压、端壁静压等进行了测量,实验结果与数值模拟结果符合较好,并且在内伸波作用位置处,实验与数值模拟均捕捉到了内伸波引起的流场变化。实验测得的叶表静压分布和纹影图均表明缩放型流道涡轮叶栅中波系结构随膨胀比的变化与理论分析和数值模拟中的变化过程一致,这些进一步说明了本课题组发展的具有缩放型流道的1+1/2对转涡轮的设计、分析与实验系统的正确性。
Counter-rotating turbine is one of the key technologies of gas turbine engine and it has great potential in elevating thrust-to-weight ratio of aero-engine and improving performance of aircraft. Because the convergent-divergent passage of high-pressure rotor in1+1/2counter-rotating turbine is different from the conventional turbine with convergent passage, the flowfield and the flow control discipline both are different. Meanwhile, the effective flow control methods may be able to further optimize the turbine performance. So the reasonable flow control methods in1+1/2counter-rotating turbine can reduce the shock wave strength and regulate the flow rate, which is significative to strengthen flow stability and improve the aero-engine performance.
     Based on the flow characteristic of1+1/2counter-rotating turbine, the flow control methods of the suction surface bump in high-pressure rotor, the variable high-pressure guide vane and the coolant injection in high-pressure rotor are adopted respectively, and the validity of flow control is verified by numerical simulations and experiments. The main contents in this paper are listed as follows:
     1. The bump is fixed on the separation region of high-pressure rotor suction surface, the shape and the area of flow passage has been change with the adjust of the bump position and height. The separation region is suppressed effectively because of the bump. The different conditions of bump position and height are analyzed by numerical simulation and the optimum bump is found finally. When the suction surface bump is fixed in84%~86%axial chord length and the maximum height of the bump is1mm, the bump can inhibit the boundary layer separation effectively.
     2. Because the throat of the1+1/2counter-rotating turbine locates in the high-pressure rotor and the flow at the outlet of the high-pressure rotor is supersonic, the flow rate of the1+1/2counter-rotating turbine is uniform with the different outlet pressure. So the variable high-pressure guide vane is applied to adjust the turbine flow rate. A detailed numerical simulation has been carried out to investigate the1+1/2counter-rotating turbine performance and flowfield with different openings of high-pressure guide vane, the relationship between the opening and flow rate, efficiency, power and losses is investigated. The results indicate that the variable high-pressure guide vane can effectively control the flow rate of1+1/2counter-rotating turbine, keep the reasonable specific work ratio of high-pressure turbine to that of low-pressure turbine and achieve the good efficiency.
     3. The coolant protected the high temperature units flows into the cascade passage, which brings some influence on the aerodynamic performance, the high-pressure rotor with convergent-divergent flow passage in the1+1/2counter-rotating turbine is the object of study. A detailed numerical simulation has been carried out to study the influence of the coolant injection on the performance of the convergent-divergent turbine cascade. The cooling-hole position and the massflow ratio between coolant and mainstream are the main influence factors. The numerical results show that the coolant injected from the suction surface where the inner-extending shock impinges can change the shock strength. The main reason is that a large adverse pressure gradient caused by the coolant injection results in the rising pressure before cooling holes and the decreasing the difference of pressure on both side of the shock.
     4. Some cascade experimental investigations are performed to study the influence of the coolant injection on the cascade performance at off-design conditions in a transonic cascade test facility, meanwhile the schlieren graphs of the shock wave system in the convergent-divergent turbine cascade has been obtained at different expansion pressure ratio. The cascade inlet and outlet parameters, the blade surface static pressure and the endwall static pressure is measured at conditions of different attack angles, different expansion pressure ratios and different coolant flowrate. The results of experiment and numerical simulation are accordant and the flowfield change caused by the inner-extending shock is captured, which indicates that the design, analysis and the experimental system of1+1/2counter-rotating turbine developed by our group is credible.
引文
[1]范洁川.空气动力学发展中值得关注的一些问题[J].气动研究与实验,2003,20(1):1-16.
    [2]Wintucky W T, L. S W. Analysis of two-stage conter rotating turbine efficiencies in terms of work and speed requirements[J]. NACA RM E57L05, 1958.
    [3]Louis J F. Axial flow counter-rotating turbines[C]. ASME Paper 85-GT-218, 1985.
    [4]Sotsenko Y V. Thermogasdynamic effects of the engine turbines with the countra-rotating rotors[C]. ASME Paper 90-GT-195,1990.
    [5]Ponomariov B A, Sotsenko Y V. Using contra-rotating rotors for decreasing sizes and component number in small GTE[C]. ASME Paper 92-GT-414, 1992.
    [6]Huber F W, Branstrom B R, Finke a K, et al. Design and test of a small two stage counter-rotating turbine for rocket engine application[J]. AIAA Paper 93-2136,1993.
    [7]Weaver M M, Man waring S R, Abhari R S, et al. Forcing function measurements and prediction of a transonic vanless counter rotating turbine[C]. ASME Paper 2000-GT-0375,2000.
    [8]Haldeman C W, Dunn M G, Abhari R S. Experimental and computational investigation of the time-average and time-resolved pressure loading on a vaneless counter-rotating turbines[C]. ASME Paper 2000-GT-0445,2000.
    [9]Pascal P, R. L. Counter-rotating turbine designed for turbopump rocket engine[J]. AIAA Paper 2003-4768,2003.
    [10]Cai R X, Wu W, G. F. Basic analysis of counter-rotating turbines[C]. ASME Paper 90-GT-108,1990.
    [11]蔡睿贤.对转涡轮基本分析[J].航空学报,1992,13(01):57-63.
    [12]蔡睿贤.有关对转涡轮基本设计与应用的进一步思考[J].航空动力学报,2001,16(3):193-198.
    [13]刘思永,王屏,方祥军,晏山平.无导叶对转涡轮新技术气动设计探讨[J].燃气涡轮试验与研究,2002,15(1):20-23,27.
    [14]方祥军,刘思永,王屏.轴流超跨音高载荷对转涡轮气动特性分析[J].北京航空航天大学学报,2003,29(6):475-479.
    [15]方祥军,刘思永,王屏,等.一种低压无导叶对转涡轮特性分析与设计[J].推进技术,2005,(03):234-238.
    [16]方祥军,刘思永,王屏,张维军.大扩张通道超声高载荷对转涡轮动叶三维设计方法研究[J].航空学报,2007,28(1):26-31.
    [17]季路成,钟文涛,徐建中.关于1+1/2对转涡轮的基本分析和初步设计[J].工程热物理学报,2001,22(02):167-170.
    [18]季路成,黄海波,陈江,等.涡轮中的激波/叶排相互作用[J].工程热物理学报,2002,(02):163-166.
    [19]季路成,黄海波,徐建中,等.1+1/2对转涡轮应用中的关键技术问题[J].工程热物理学报,2003,24(01):35-38.
    [20]季路成,肖翔,陈江.1+1/2对转涡轮设计及控制方法探索[J].工程热物理学报,2004,25(03):405-407.
    [21]赵庆军.无导叶对转涡轮流动特性分析及其进口热斑迁移机理研究[D].北京:中国科学院研究生院(工程热物理研究所),2007.
    [22]张惠.1+1/2对转涡轮流动特性分析及其气膜冷却流动机理研究[D].北京:中国科学院研究生院(工程热物理研究所),2008.
    [23]Volino R J. Passive flow control on low-pressure turbine airfoils, Atlanta, Georgia, Jun 16-19,2003 [C]. p.754-764.
    [24]Zhang X F, Vera M, Hodson H, et al. Separation and transition control on an aft-loaded ultra-high-lift LP turbine blade at low Reynolds numbers:low-speed investigation[J]. Journal of Turbomachinery,2006,128(3): 517-527.
    [25]Vera M, Zhang X F, Hodson H, et al. Separation and transition control on an aft-loaded ultra-high-lift LP turbine blade at low Reynolds numbers: high-speed validation [J]. Journal of Turbomachinery,2007,129(2):340-347.
    [26]Byerley a R, Stormer O, Baughn J W, et al. Using gurney flaps to control laminar separation on linear cascade blades[J]. Journal of Turbomachinery, 2003,125(1):114-120.
    [27]Bohl D G, Volino R J. Experiments with three-dimensional passive flow control devices on low-pressure turbine airfoils[J]. Journal of Turbomachinery, 2006,128(2):251-260.
    [28]Hergt A, Meyer R, Muller M W, et al. Loss reduction in compressor cascades by means of passive flow control, Jun 09-13,2008 [C]. p.269-280.
    [29]乔渭阳,王占学,伊进宝.低雷诺数涡轮叶栅损失的实验与数值模拟[J].推进技术,2004,25(05):723-726.
    [30]乔渭阳,王占学,伊进宝.低雷诺数涡轮流动损失控制技术[J].推进技术,2005,26(01):42-45.
    [31]刘波,管继伟,陈云永,等.用端壁造型减小涡轮叶栅二次流损失的数值研究[J].推进技术,2008,29(03):355-359.
    [32]闻洁,赵桂林.非光滑叶片对叶栅出口损失分布影响的实验研究[J].航空动力学报,2000,15(01):44-46.
    [33]Lee J, Sloan M L, Paynter G C. Lag model for turbulent boundary-layers over rough bleed surfaces[J]. Journal of Propulsion and Power,1994,10(4): 562-568.
    [34]Sturm W, Scheugenpflug H, Fottner L. Performance improvements of compressor cascades by controlling the profile and sidewall boundary-layers [J]. Journal of Turbomachinery-Transactions of the Asme, 1992,114(3):477-486.
    [35]Johnston J P, Nishi M. Vortex generator jets-means for flow separation control[J]. AIAA Journal,1990,28(6):989-994.
    [36]Volino R J. Separation control on low-pressure turbine airfoils using synthetic vortex generator jets [J]. Journal of Turbomachinery,2003,125(4):765-777.
    [37]Perez-Blanco H, Byerley A, Van Dyken R, et al. Turbine cascade flow control using a "wake filling" pulsed plasma actuator, Reno-Tahoe, NV, United states, 2005 [C]. American Society of Mechanical Engineers, p.415-428.
    [38]Huang J H, Corke T C, Thomas F O. Plasma actuators for separation control of low-pressure turbine blades, Reno, Nv, Jan 06-09,2003 [C]. p.51-57.
    [39]Huang J H, Corke T C, Thomas F O. Unsteady plasma actuators for separation control of low-pressure turbine blades[J]. AIAA Journal,2006,44(7): 1477-1487.
    [40]Bons J P, Sondergaard R, Rivir R B. Turbine separation control using pulsed vortex generator jets[J]. Journal of Turbomachinery,2001,123(2):198-206.
    [41]Bons J P, Sondergaard R, Rivir R B. The fluid dynamics of LPT blade separation control using pulsed jets[J]. Journal of Turbomachinery,2002, 124(1):77-85.
    [42]季路成,林峰,Marco P S绕凸包主动流动控制的初步数值研究[J].工程热物理学报,2006,27(01):45-47.
    [43]季路成,林峰,Marco P S定常吹/吸气控制凸包分离的数值研究[J].航空动力学报,2006,21(01):25-30.
    [44]刘火星,杨肠,邹正平.一种涡轮叶栅内部流动控制方法[J].工程热物理学报,2008,29(07):1125-1128.
    [45]罗华玲,乔渭阳,许开富.射流襟翼-低压涡轮叶栅主动流动控制数值研究[J].航空动力学报,2008,23(02):347-354.
    [46]王凯,王松涛,王仲奇.冷气喷射法控制激波强度的数值研究[J].航空动力学报,2010,25(06):1375-1380.
    [47]伊进宝,乔渭阳,王占学.低雷诺数涡轮叶栅损失的实验与数值模拟研究[J].西北工业大学学报,2004,22(05):154-157.
    [48]张鹏武,刘火星.低雷诺数下高负荷涡轮分离射流控制的数值研究[J].江苏航空,2010,(增刊):115-120.
    [49]刘波,南向谊,陈云永.附面层抽吸对转子激波结构和分离流动的影响[J]航空学报,2008,29(02):315-320.
    [50]刘波,项效镕,南向谊,等.附面层抽吸对叶栅表面分离流动控制的实验研究[J].推进技术,2009,30(06):703-708.
    [51]王掩刚,程荣辉,兰发祥,等.吸附式叶栅抽吸流与激波相干性研究[J].燃气涡轮试验与研究,2008,21(2):15-18,47.
    [52]Latimer R J. Variable flow turbine,1977.
    [53]Razinsky E H, J. K R. Aerothermodynamic performance of a variable nozzle power turbine stage for an automotive gas turbine [J]. ASME Journal of Engineering for Power,1977,99:587-592.
    [54]方昌德.变循环发动机[J]燃气涡轮试验与研究,2004,17(03):1-5.
    [55]郑枫,臧述升,郁炜.单级轴流式变几何涡轮的计算模型及结果分析[J].燃气轮机技术,2003,16(01):39-42,48.
    [56]刘顺隆,冯永明,刘敏,等.船用燃气轮机动力涡轮可调导叶级的流场结 构[J].热能动力工程,2005,20(02):120-124.
    [57]邱超,宋华芬.变儿何涡轮的损失研究[J].燃气轮机技术,2007.20(01):39-42.
    [58]惠宇,宋华芬.可转导叶级对多级轴流涡轮特性的影响[J].燃气轮机技术,2008,(03).
    [59]程代京,谢永慧.燃气轮机传热和冷却技术[M].西安:西安交通大学出版社,2005.
    [60]Whiney W J, Szanca E M, Behning F P. Cold-air investigation of a turbine with stator-blade trailing-edge coolant ejection,1969.
    [61]Herman W. An analytical study of the effect of coolant flow variable on the kinetic energy output of a cooled turbine blade row[J]. AIAA Journal,1972.
    [62]Ito S, Eckert E R G, Goldstein R J. Aerodynamic loss in a gas-turbine stage with film cooling[J]. Journal of Engineering for Gas Turbines and Power, 1980,102(4):964-970.
    [63]Haller B R, Camus J J. Aerodynamic loss penalty produced by film cooling transonic turbine-blades [J]. Journal of Engineering for Gas Turbines and Power,1984,106(1):198-205.
    [64]Jackson D J, Lee K L, Ligrani P M, et al. Transonic aerodynamic losses due to turbine airfoil, suction surface film cooling[J]. Journal of Turbomachinery-Transactions of the Asme,2000,122(2):317-326.
    [65]Walters D K, Leylek J H. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery,2000,122(3):537-545.
    [66]陈浮.气冷涡轮叶栅内三维流场的实验研究与数值模拟[D].哈尔滨:哈尔滨工业大学,1997.
    [67]赵晓路,李维,罗建桥.冷气掺混对高压涡轮流场结构影响的数值分析[J].工程热物理学报,2002,23(05):557-560.
    [68]袁锋.带前缘气冷的旋转涡轮流场实验与数值研究[D].上海:上海交通大学,2007.
    [69]袁锋,竺晓程,杜朝辉.气冷涡轮环形叶栅三维流场的实验与数值研究[J].工程热物理学报,2007,28(05):775-777.
    [70]袁锋,竺晓程,杜朝辉.旋转气冷涡轮三维流场的实验与数值研究[J].中国电机工程学报,2008,28(02):822-87.
    [71]Haas W, Rodi W, Schonung B. The influence of density difference between hot and coolant gas on film cooling by a row of holes:predictions and experiments[J]. Journal of Turbomachinery,1992,114(4):747-755.
    [72]Hartsel J E. Prediction of effects of mass transfer cooling on the blade-row efficiency of turbine airfoils[J]. AIAA Paper 72-11,1972.
    [73]Kellen O, Koschel W. Effect of film cooling on the aerodynamic performance of a turbine cascade[J]. Heat Transfer and Cooling in Gas Turbines,1985.
    [74]朱惠人,刘松龄,程信华.带气膜冷却的涡轮叶栅气动损失的计算[J].燃气涡轮试验与研究,1999,12(01):34-39.
    [75]乔渭阳,王占学,蔡元虎.考虑冷气喷射的涡轮叶栅尾缘损失理论分析[J].航空学报,2003,24(03):199-202.
    [76]Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes [J]. AIAA Paper 1981-1239,1981.
    [77]Jameson A. Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings[J]. AIAA Paper 1991-1596,1991.
    [78]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [79]张兆顺.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [80]Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows[J]. AIAA Paper 1978-257,1978.
    [81]Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[J]. AIAA Paper 1992-0439,1992.
    [82]Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[J]. Recherche Aerospatiale,1994,1:5-21.
    [83]Wilcox D C. Reassessment of the scale determining equation for advanced turbulence models[J]. AIAA Journal,1988,26(11):1299-1310.
    [84]Robinson D F, Hassan H A. A two-equation turbulence closure model for wall bounded and free shear layers[J]. AIAA Paper 1996-2057,1996.
    [85]Zeierman S, Wolfshtein M. Turbulent time scale for turbulent flow calculations[J]. AIAA Journal,1986,24(10):1606-1610.
    [86]Schwab R G, Stabe R G, Whitney W J. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile[J]. AIAA Paper 1983-1175,1983.
    [87]Stabe R G, Whitney W J, Moffitt Tp. Performance of a high-work low-aspect ratio turbine tested with a realistic inlet radial temperature profile[J]. AIAA Paper 1984-1161,1984.
    [88]Thulin R D, Howe D C, Singer I D. Energy efficient engine high-pressure turbine detailed design report; 1982. Report No.:NASA-CR-165608.
    [89]Gardner W B. Energy efficient engine:high pressure turbine uncooled rig technology report; 1979. Report No.:NASA-CR-165149.
    [90]Kopper F C, Milano R, Davis R L, et al. Energy efficient engine high-pressure turbine supersonic cascade technology report; 1981. Report No.: NASA-CR-165567.
    [91]Gardner W B. Energy efficient high-pressure turbine leakage technology report; 1980. Report No.:NASA-CR-165202.
    [92]Bryce J D. The design performance and analysis of a high work capacity transonic turbine[J]. ASME Paper 1985-GT-15,1985.
    [93]Bryce J D, Litchfield M R, Leversuch N P. The design, performance and analysis of a high work capacity transonic turbine[J]. Journal of Engineering for Gas Turbines and Power,1985,107(4):931-937.
    [94]季路成,陈江,项林,等.1+1/2对转涡轮模型试验件气动设计[J].工程热物理学报,2003,24(06):943-946.
    [95]张磊.超高负荷跨声速涡轮气动设计理论及其非定常流动特性研究[D].北京:中国科学院研究生院(工程热物理研究所),2011.
    [96]恽起麟.实验空气动力学[M].北京:国防工业出版社,1991.
    [97]钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究[D].哈尔滨:哈尔滨工业大学,1996.
    [98]李金海.误差理论与环境不确定度评定[M].北京:中国计量出版社,2007.
    [99]陆华伟.轴向间隙对直、弯静叶轴流压气机时序效应影响的研究[D].哈尔滨:哈尔滨工业大学;,2008.
    [101]季路成,黄海波,陈江,等.1+1/2对转涡轮用出口超音叶栅设计与试 验[J].工程热物理学报,2004,25(01):45-48.
    [102]赵庆军,王会社,赵晓路,等.无导叶对转涡轮三维流场的非定常数值模拟[J].工程热物理学报,2006,27(01):35-38.
    [103]王会社,赵庆军,赵晓路,等.1+1/2对转涡轮中激波结构的数值研究[J].工程热物理学报,2005,26(02):225-227.
    [104]王会社,赵庆军,张惠,等.1+1/2对转涡轮低压动叶激波结构的研究[J].工程热物理学报,2006,27(06):941-943.
    [105]张磊,雒伟伟,王会社,等.流道缩扩比对1+1/2对转涡轮高压动叶性能影响的研究[J].工程热物理学报,2011,32(02):205-209.
    [106]Yue G Q, Yin S Q, Zheng Q, et al. Numerical simulation of flow fields of variable geometry turbine with spherical endwalls or nonuniform clearance[M]. New York:Amer Soc Mechanical Engineers,2009.
    [107]胡松岩.变几何涡轮及其设计特点[J].航空发动机,1996,(03):21-26.
    [108]Qiu C, Song H F, Wang Y H, et al. Performance estimation of variable geometry turbines[J]. Journal of Power and Energy,2009,223(A4):441-449.
    [109]Celis C, Pinto P D M R, Barbosa R S, et al. Modeling of variable inlet guide vanes affects on a one shaft industrial gas turbine used in a combined cycle application[J]. ASME Paper 2008-GT-50076,2008.
    [110]Denton J D. Loss mechanisms in turbomachines[J]. Journal Name:Journal of Turbomachinery; (United States); Journal Volume:115:4,1993:Medium: X; Size:Pages:621-656.
    [111]Jackson D J, Lee K L, Ligrani P M, et al. Transonic aerodynamic losses due to turbine airfoil, suction surface film cooling[J]. Journal of Turbomachinery,2000,122(2):317-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700