用户名: 密码: 验证码:
青藏高原东北缘高寒草甸土壤酶活性及土壤养分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原因海拔高和气候寒冷,被认为是气候变化的敏感区和脆弱区。全球气候变化和放牧干扰使土壤酶活性和土壤养分含量受到强烈的影响,这些影响可能使土壤的质量发生改变,进而对高寒草甸植被生产力产生一定的影响。土壤酶是土壤生态系统中具有催化功能的一类蛋白质,由植物根系分泌物、微生物和动植物残体释放到土壤中,参与了土壤中所有的生物化学过程,其活性的大小可以灵敏地反映土壤中生化反应的方向和强度。酶促反应作为一个由多种因素控制的复杂过程,酶活性具有很大的时间和空间的异质性。为了阐明土壤酶活性时空变化的机理以及与主要影响因子的关系,进一步揭示高寒草甸土壤酶活性的动态变化,及其对全球气候变化的响应,我们从2007至2008年在青藏高原东北缘,针对高寒草甸研究了放牧强度对土壤养分和土壤酶活性的影响,以及两者在不同海拔水平的分布状态,同时对土壤养分和酶活性的关系进行了深入探讨。主要结果如下:
     1.4种不同放牧强度(围栏封育、轻牧、中牧和重牧)样地土壤酶活性、土壤养分和根生物量有较大差异。土壤酸性磷酸酶和淀粉酶活性与根生物量变化—致,随放牧强度的增加而降低,然而脲酶活性的变化趋势正好与之相反,表现为随放牧强度的增加而增加。土壤酶活性有较明显的季节变化规律,建议脲酶和酸性磷酸酶于5月取样,淀粉酶和纤维素酶的最佳取样时间为7月。
     2.土壤养分含量对放牧的反应不敏感;而轻度放牧明显增加了酸性磷酸酶和淀粉酶活性。同时土壤有机质、全氮和速效氮含量作为土壤质量的检测指标,也是在轻度放牧区处于较高水平。这证明在该研究地区,对草地的轻度放牧能促进土壤有机质和氮素的积累。
     3.3个海拔梯度(3000m、3500m和4000m)样地土壤有机质、全氮、全磷、速效氮含量以及含水量均表现出随海拔升高而增加的趋势,且海拔变化对土壤有机质、全氮、速效氮和含水量有显著的影响(P<0.05),说明高海拔地区土壤质量较好。
     4.土壤酸性磷酸酶活性随海拔的升高而降低,而脲酶活性与之相反,说明高海拔弱酸性(Ph为5.51)和高含水量(73.62%)的土壤环境对酸性磷酸酶活性有促进作用,对脲酶活性有抑制作用。淀粉酶和纤维素酶活性在海拔3500m处最高,说明中海拔的土壤酸碱度(pH为5.53)和土壤含水量(47.10%)对两者较适宜。
     5.用通径分析研究了土壤酶活性和养分的关系,结果显示土壤脲酶、酸性磷酸酶和淀粉酶活性与土壤养分有着很好的相关性,土壤养分在很大程度上对三者有着直接或间接的影响,这3种酶活性可以作为土壤肥力的指标。
Qinghai-Tibet Plateau is considered as a sensitive and vulnerable area of climate change due to the high altitude and cold climate. Global climate change and grazing disturbance have strong impact on activities of soil enzyme and content of soil nutrients, which may lead to many changes in soil quality, and thus have some impacts in vegetation productivity of the alpine meadow.
     As an important part of soil ecosystem, soil enzyme participates in all of biochemical reactions in soil. Enzymatic reaction is a complex process controlled by many factors. Soil enzyme activities change strongly with time and space. In order to reveal the temporal and spatial variation of soil enzyme activities, the relation between soil enzyme activities and main regulating factors, and the response of soil enzyme activities to global warming, we measured soil enzyme activities. To better understand the dynamics of the soil enzyme acitvities and soil mutrients on the Qinghai-Tibet plateau, we investgated the effect of fencing and grazing on the soil enzyme acitvities, soil mutrients and root biomass at four sites with different grazing intensity in2007and2008. At the same time, we analyzed the distribution of soil enzyme acitvities and soil nutrients at three different altitudes (3000m,3500m,4000m). Also, we discused the relationship between soil enzyme acitvities and soil nutrients. The main results as follows:
     1. Soil enzyme activities, soil nutrients and root biomass differed significantly among four sites with different grazing intensity. The activities of acid phosphatase and amylase reduced with the increase of grazing intensity, as well as root biomass. However, the urease activity was just opposite to them. Soil enzyme activities had obvious seasonal variation. We suggest that May is the optimum sampling time for urease and acid phosphatase, as for amylase and cellulase it is in July.
     2. The effect of grazing on soil nutrients was not statistically significant, while light grazing markdely increased the activities of soil acid phosphatase and amylase. As measures of soil quality, the content of soil organic matter, total nitrogen and avaiable nitrogen were higher in the light grazing site, which demonstrated that light grazing promoted enrichment of the soil organic matter and N pool in the study area.
     3. The content of soil organic matter, total nitrogen, total phosphorus, avaiable nitrogen and soil water increased with increasing altitude, and altitude had significant impact on soil organic matter, total nitrogen, avaiable nitrogen and soil water content (P<0.05), which indicated soil quailty of higher altitude was much better.
     4. The activity of acid phosphatase reduced with increaseing altitude, however, the change trend of urease activity was just opposite to it, which indicated lower soil pH (5.51) and higher soil water content (73.62%) of high altitude ptomoted activity of acid phosphatase and inhibited activity of urease. The activities of amylase and cellulase were highest at altitude of3500m, which indicated soil pH (5.53) and soil water content (47.10%) at3500m were more appropriate for both.
     5. We analyzed the relationship between soil enzyme activities and soil nutrients by Path Analysis. The result showed that there were strong correlation between activities of urease(acid phosphatase or amylase) and soil mutrients. Therefore, the activities of urease, acid phosphatase and amylase could be used to predict the soil quality.
引文
Ambroz Z. Soil Enzymes (Burns, R.G.RD) Llewis Publishers, chelsea, USA.1972.128.
    Alexander, M. Agriculture responsibility in establishing soil quality criteria. Environmental Improvement—Agricultural Challenge in the Seventies[M]. National Academy of Sciences. Washington. DC.1971,66~71.
    Aon MA, COLANERI AC. Ⅱ Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil [J]. Applied Soil Ecology,2001.18(3):25-270.
    Badiane N N Y, C hot te J L, Pat e E, et al. Use of soil enzyme activit ies t o monitor soil quality in natural and improved fallow s in semi□arid tropical regions[J]. Applied Soil Ecology, 2001.18(3):229-238.
    Benitiez E, Melgar R, Melgar H, et al. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with olive cake mulches[J]. Soil Biology & Biochemistry,2000.32: 1829-1835.
    Campbell BD, Grime JP. A comparative study of plant responsiveness to the duration of episodes of mineral nutrient enrichment[J]. New Phy tolog y,1989.112:261-267.
    Cao GM, Tang YH, Mo WH, et al. Grazing intensity alters soil respiration in a alpine meadow on the Tibetan plateau[J]. Soil Biology & Biochemistry,2004.35(12):237-243.
    Cihacek LJ, Swan JB. Effects of erosion on soil chenical properties in the nerth central region of the Unital States[J]. Journal of Soil and Water Conservation,1994.40 (3):259-265.
    Cross A.F, Schlesinger WH. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems[J]. Geoderma. 1995,64:197-214.
    Doran JW, Parkin TB. Defining soil Quality for SustainableEnvironment[J]. Soil Seienee Soeiety of America Special Publication. Madison, Wisconsin.1992,35:3-324.
    Ericksen P J, Ardon M. Similarities and differences between farmer and scientist views on soil quality issues in central Honduras[J]. Geoderma,2003.111:233-248.
    Filip Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture Ecosystems & Environment,2002.88(2):169-174.
    Gao YZ, Han XG, Wang SP. The effects of grazing on grassland soils[J]. Acta Ecologica Sinica,2004.24 (4):790-797.
    Garg S, Bahl GS. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils[J]. Bioresource Technology,2008. 99:5773-5777.
    Gong, ZT. Chinese Soil Taxonomy:Theories, Methods and Applications. Science Press, Beijing,1999.
    Herrick J. Soil quality:an indicator of sustainable land management[J]. Applied Soil Ecology, 2000.15(1):75-83.
    Ilyina A V, Tatarinova N Y, Varlamov V P. The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces lipoferum[J]. Proc Biochem.1999,34:875-878.
    Ineson P, Taylory T, Harrison AF, et al. Effects of climate change on nitrogen dynamics in upland soils.1. A transplant approach[J]. Global Change Biology,1998.4(2):143-152.
    Kiss I. The invertase activity of earthworm easts and soils from anthills[J]. Agrokem Talajtan, 1957.(6):65-85.
    Larson WE, Pierce FJ. Conservation and enhancement of soil quality [C]. In Proc. of the Int. Workshop on Evaluation for Sustainable Land Management in the Developing World.1991, Vol. 2..IBSRAM Proe.12(2). Int. Board for Soil Res. And Management. Rangkok Thailand.1991.
    Li ZZ, Han X-Z, LI W-L, et al. Conservation of species diversity and strategies of ecological restoration in alpine wetland plant community[J]. Acta Botanica Boreali-Occidentalia Sinica,2004. 24 (3):363-69.
    Maria BV, Nilda MA, Norman P. Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina.Soil Science[J],2001.166(7):441-452.
    Mersi W, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride[J]. Biology and Fertility of Soils,1991.11: 216-220.
    Nambiar KKM, Gupta AP, Fu QL, et al. Biophysical, chemical and socio-economic indicators for assessing agricutural sustainability in the Chinese coastal zone[J]. Agriculture, Ecosystems and Environment,2001.87:209-214.
    Ohtsuka T, Hirota M, Zhang XZ, Shimono A, SengaY Du MG, Yonemura S, Kawashima S, Tang YH. Soil organic carbon Pools in alpine to nival zones along an altitudinal gradient (4400-5300m) on the Tibetan Plateau. Polar science,2008.2:277-285.
    Pankhurst CE, Doube BM, Gupta VVSR. Biological Indicators of Soil Health[J]. New York: CAB International,1997:1-28.
    Pulido J S, Bocco G. The traditional farming system of a Mexican indigenous community: the case of Nuevo San Juan Parangaricutiro, Michoacan, Mexico [J]. Geoderma,2003. 111:249-265.
    Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, Cycles,2005.11: 1024-1041.
    Sardans J, Penuelas J. Drought decreases soil enzyme activity in a Medit erranean Quercus ilex L. forest [J]. Soi 1 Biology & Biochemistry,2005.37(3):455-461.
    Sakorn PP. Urease activity and fertility status of lowland rice soils in the central plain[J].Thai J. of Agric. Sci.,1987,20:173-186.
    Schoenholtz SH, Miegroet HV, Burger J A. A review of chemical and physical properties as indicators of forest soil quality:challenges and opportunities[J]. Forest Ecology and Management, 2000.138:335-356.
    Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants:from soil to cell[J]. Plant Physiology,1998.116:447-453.
    Siegel BZ. Plant peroxidases-an organismic perspective[J]. Plant Grow Regul,1993,12:303-312.
    Silver WL. The potential effects of elevated CO2 and climate change on tropical forest soils and biogeochemical cycling[J]. Climate Change,1998.39:337-361.
    Smith JL, Halvorson JJ, Harvey Bolton Jr. Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment J]. Soil Biology & Biochemistry,2002.34: 1749-1757.
    Su Yong-zhong, Li Yu-lin, Cui Jian-yuan, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China[J]. Catena,2005.59(3):267-278.
    Sun G, Luo P, Wu N, et al. Stellera chamaejasmeL. Increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China[J]. Soil Biology & Biochemistry,2009.41:86-91.
    Taylor JP, Wilson B, Mills MS, et al. Comparison of microbial numbers and enzymaties activities in surface and subsoils using various techniques[J]. Soil Biol Biochem,2002. 34:387-401.
    Tilman D, Reich PB, Knops J, et al. Diversity and productivity in a longterm grassland experiment[J]. Science,2001.294:843-845.
    Tisdale SL, Nelson WL, Beaton JD. Soil Fertility and Fertilizers (fourth ed.).1985. pp.754. Winding A, Hund-Rinke K, Rutgers M. The use of microorganisms in ecological soil classification and assessment concepts[J]. Ecotox Environ Safe,2005.6(2):230-248.
    Tisdale SL, Nelson WL, Beaton JD. Soil Fertility and Fertilizers (fourth ed.).1985. pp.754.
    Wang KH, McSorley R, Bohlen P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures[J]. Soil Biology & Biochemistry,2006. (38): 1956-1965.
    Wang HK, McSorley R, Bohlen P, et al. Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures[J]. Soil Biology & Biochemistry,2006.38: 1956-1965.
    Wang HQ, Cormell JD, Hall CAS, et al. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico[J]. Eeologieal Modelling,2002.147:105-122.
    Walbridge MR. Phosphorus availability in acid organic soils of the lower North Carolina Coastal plain[J]. Ecology,1991.72:2083-2100.
    Zalidis G, Stamatiatis S, Takavakoglou V, et al. Impacts of agricultural practices on soil and water quality in the Mediterr arear region and proposed assessment methodology [J]. Agriculture Ecosystems & Environment,2002.88(2):137-146.
    Zhao QG, Xu MJ. Sustainable agriculture evaluation for red soil hill region of southeast China[J]. Pedosphere.2004,14 (3):313-321.
    曹有成,陈家模,邵建飞,等.科尔沁沙地四种固沙植物群落土壤微生物生物量及酶活性的季节动态[J].生态学杂志,2011.30(2):227-233.
    陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000.125—156.
    陈双林,郭子武,杨清平.毛竹林土壤酶活性变化的海拔效应[J].生态学杂志,2010.29(3):529-533.
    陈懂懂.青藏高原东北缘高寒草甸土壤养分、微生物量碳氮及氮矿化潜力的研究[D].兰州:兰州大学,2010.
    陈灵芝,陈伟烈.中国退化生态系统研究[M].北京:科学技术出版社,1995.12-15.
    董全民,赵新全,马玉寿,等.江河源区披碱草和星星草混播草地土壤物理性状对牦牛放牧强度的响应[J].草业科学,2005.22(6):65-70.
    杜国祯,覃光莲,李自珍,等.高寒草甸植物群落中物种丰富度与生产力的关系研究[J].植物生态学报.2003,27(1):125-132.
    范燕敏,孙宗玖,武红旗,等.封育对山地草地植被及土壤特性的影响[J].草业科学, 2009.26(3):79-82.
    付晶莹,朱晓芳.庐山不同海拔高度土壤养分含量分析[J].安徽农学通报,2008.14(15):73-74.
    高雪峰,张功,卢萍.短花针茅草原土壤的酶活性及其生态因子的季节动态变化研究[J].内蒙古师范大学学报(自然科学汉文版),2006.35(2):226-237.
    高雪峰,武春燕,韩国栋,等.草原土壤微生物受放牧的影响及其季节变化[J].微生物学通报,2010.37(8):1117-1122.
    高云超,朱文珊,陈文新.土壤微生物生物量周转的估算[J].生态学杂志,1993.06.
    关松荫.土壤酶及其研究法[M].北京:农业出版社.1986.
    郭继勋,姜世成,林海俊,金晓明.不同草原植被盐化草甸土的酶活性[J].应用生态学报,1997.8(4):412-416.
    黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,2001.9(1):1-7.
    胡海波,康立新,梁珍海.泥质海岸防护林土壤酶活性与理化性质关系的研究[J].东北林业大学学报,1995.23(5):37-45.
    胡春胜.土壤质量诊断与评价理化指征及其应用[J].生态农业研究,1999.7(3):16-18.
    和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997.34(4):392-397
    贾树海,王春枝.放牧强度和时期对内蒙古草原土壤雅士效应的研究[J].草地学报,1999.7(3):217-222.
    李以康,韩发,冉飞,等.三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究[J].中国草地学报,2008.30(4):51-58.
    李凯辉,胡玉坤,王鑫,等.不同海拔梯度高寒草地地上生物量与环境因子的关系[J].应用生态学报,2007.18(9):2019-2024.
    李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报,1998.6(2):90-98.
    李鹏,李占斌,薛萐,等.不同海拔对干热河谷地区土壤酶活性的影响[J].应用基础与工程科学学报,2011.19:139-149.
    李永宏,汪诗平.放牧对草原植物的影响[J].中国草地,1999.(3):11-19.
    柳丽萍,廖仰南.羊草草原和大针茅草原不同牧压下的土壤微生物生物特性及其多样性[C].草原生态系统研究,第5集.北京:科学出版社,1997.70-79.
    刘子健.退耕还林不同模式对土壤微生物和酶活性影响研究[D].四川:四川农业大学,2005.
    刘占锋,傅伯杰,刘国华,朱永官.土壤质量与土壤质量指标及其评价[J].生态学报,2006.26(3):901-913.
    刘广深,徐冬梅,许中坚,等.用通径分析法研究土壤水解酶活性与土壤性质的关系[J].土壤学报,2003.40(5):756-762.
    刘善江,夏雪,陈桂梅等.土壤酶的研究进展[J].中国农学通报,2011.27(21):1-7.
    娄翼来,关连珠,王玲莉,等.不同植烟年限土壤pH和酶活性的变化[J].植物营养与肥料学报,2007.13(3):531-534.
    鲁如坤.土壤农业化学分析方法.北京:农业科技出版社.1999,228-233.
    裴世芳.放牧和围封对阿拉善荒漠草地土壤和植被的影响[D].兰州:兰州大学,2007.
    裴海昆.不同放牧强度对土壤养分及质地的影响[J].青海大学学报(自然科学板),2004. 22(4):29-31.
    潘根兴.土壤退化与土壤质量[M].In:黄昌勇(主编),土壤学.北京:中国农业出版社,2000.
    任继周.草业科学研究方法[M].北京:中国农业出版社,1998.42-48,207-211.
    宋俊峰,韩国栋,张功,等.放牧强度对草甸草原土壤微生物数量和微生物生物量的影响[J].内蒙古师范大学学报(自然科学汉文版),2008.37(2):237-240.
    孙翠玲,郭玉文,伶超然.杨树混交林地土壤微生物与酶活性的变异研究[J].林业科学,1997.33(6):488-496.
    孙波,赵其国,张桃林,俞慎.土壤质量与持续环境—Ⅲ.土壤质量评价的生物学指标[J].土壤,1997.29(5)2:25-234.
    万忠梅,宋长春.三江平原小叶章湿地土壤酶活性的季节动态[J].生态环境学报,2010.19(5):1215-1220.
    王淑平,周广胜,吕育财,等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报,2002.26(5):513-517.
    王海英,宫渊波,龚伟.不同林分土壤微生物、酶活性与土壤肥力的关系研究综述[J].四川林勘设计,2005.(3):9-14.
    王菊兰,何文寿,何进智.宁夏引黄灌区温室土壤脲酶、过氧化氢酶活性与土壤肥力因素的关系[J].宁夏大学学报(自然科学版),2007.28(2):162-165.
    王仁忠.放牧干扰对松嫩平原羊草草地的影响[J].东北师大学报自然科学版,1996.(4):77-82.
    王小利,干友民,张力,等.围栏内禁牧与放牧对高寒草原群落的影响[J].甘肃农业大学学报,2005.40(3):368-375.
    王长庭,王启基,沈振西,等.模拟降水对高寒矮嵩草草甸群落影响的初步研究[J].草业学报,2003.12(4):25-29.
    王长庭,龙瑞军,王启基,等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005.14(4):15-20.
    王瑞永,刘莎莎,王成章,等.不同海拔高度高寒草地土壤理化指标分析[J].草地学报,2009.17(5):621-628.
    王启兰,曹广民,王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报,2007.13(5):856-864.
    王玉辉,何兴元.放牧强度对羊草草原的影响[J].草地学报,2002.10(1):45-49.
    文都日乐,张静妮,李刚,等.放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响[J].草地学报,2010.18(4):517-522.
    熊东红,贺秀斌,周红艺.土壤质量评价研究进展[J].世界科技研究与发展,2005.27(1):71-75.
    肖志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].世界科技研究与发展,2001.23(3):28-32.
    徐雁,向成华,李贤伟.土壤酶的研究概况[J].四川林业科技,2010.31(2):14-20.
    薛志宏.放牧强度对羊草草原土壤物理性质及植物群落特征的影响[D].内蒙古:内蒙古农业大学,2007.
    姚爱兴,王培.不同放牧强度下奶牛对多年生黑麦草/白三叶草地土壤特性的影响[J]草地学报,1995.3(3):95-102.
    闫瑞瑞,闫玉春,辛晓平,等.不同放牧梯度下草甸草原土壤微生物和酶活性研究[J].生态环境学报,2011.20(2):259-265.
    曾宪军,刘登魁,朱世民.不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响[J].湖南农业科学,2005.(6):33-35.
    张世虎.青藏高原东部高寒草甸土壤氮的矿化和硝化及地上地下关系的研究[D].兰州:兰州大学,2011.
    赵吉,廖仰南,张桂枝,邵玉琴.草原生态系统的土壤微生物生态[J].中国草地,1999.3:57-67.
    赵吉.不同放牧率对冷蒿小禾草草原土壤微生物数量和生物量的影响[J].草地学报,1999.7(3):223-227.
    赵吉,刘萍,邵玉琴.人为因素对草原土壤微生物和生物活性的影响[J].内蒙古农业大学学报(自然科学版),1996.27(4):568-572.
    赵益新,陈巨东.通径分析模型及其在生态因子决定程度研究中的应用[J].四川师范大学学报,2007.30(1):120-123.
    周炎,徐宪根,王丰,等.武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB,qCO2)[J]生态学杂志,2009.25(2):265-269.
    周瑞莲,张善金,徐长林,等.高寒山区火烧土壤对其养分含量和酶活性的影响及灰色关联分析[J].土壤学报,1997.34(1):89-96.
    周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用[J].土壤学报,1983.20(4):413-417.
    周礼恺,张志明,陈恩凤.黑土的酶活性[J].土壤学报,1981.18(2):158-165.
    周礼恺.土壤酶学[M].北京:科学出版社,1987.118-159.
    周丽霞.土壤微生物特性对土壤健康的指示作用[J].生物多样性,2007.15(2):162-171.
    朱丽,郭继勋,鲁萍,等.松嫩羊草草甸羊草、碱茅群落土壤酶活性比较研究[J].草业学报,2002.11(4):28-34.
    中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.20-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700