用户名: 密码: 验证码:
外源氮输入对东北不同类型冻土区沼泽湿地土壤碳蓄积的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是大气圈中含量最丰富的元素,同时也是陆地生态系统植物进行光合作用不可或缺的元素之一。全球变暖已经成为一个不争的事实,而北方高纬度地区对气候变化的响应最为敏感。气候变暖将使北方多年冻土区冻土融化,活性层加深,将改变土壤氮可利用性及碳蓄积。因此本论文在我国东北不同类型冻土区选择典型性样地,运用空间代替时间的方法研究不同冻土区土壤氮可利用性变化特征,枯落物分解及元素释放特征,以及不同氮可利用性变化对有机碳矿化、枯落物分解和N_2O释放的影响,为预测全球变化背景下我国北方沼泽湿地土壤氮可利用性变化特征及其对土壤和枯落物碳氮活性的影响提供基础资料。主要得到以下研究结论:
     不同冻土区湿地土壤全氮含量从连续多年冻土区至季节性冻土区湿地呈明显的降低趋势,土壤氨氮含量、硝氮含量、土壤微生物量氮(MBN)含量都有明显的季节变化;不同冻土区湿地土壤剖面铵态氮,硝态氮,溶解性有机氮含量都有随剖面深度加深而降低,但是不同冻土区和不同形态氮变化趋势有所差异。连续多年冻土区湿地土壤各氮组分含量平均值均高于岛状多年冻土区湿地和季节性冻土区湿地。不同冻土区湿地土壤净矿化、净硝化速率均呈现明显的季节变化特征,净矿化速率都在生长季初期和中期出现正值,而在生长季末期出现负值,随着纬度的升高,净矿化速率出现负值的时间有所提前。总之,土壤氮可利用性在多年冻土区湿地较高,但是由于寒冷干燥的气候条件,使土壤氮的利用效率较低。在未来气候变暖的趋势下,温度升高对连续多年冻土区湿地作用更加剧烈。
     不同冻土区湿地土壤有机碳含量差异显著,连续多年冻土区泥炭沼泽高于岛状多年冻土区沼泽湿地和季节性冻土区冻土区沼泽湿地。土壤微生物量碳(MBC)含量的空间时间变异性比较大,与温度和湿地类型都有一定的相关性;各不同冻土区土壤微生物量碳含量都随剖面深度增加而逐渐降低。连续多年冻土区土壤剖面可溶性有机碳(DOC)含量高于岛状多年冻土区湿地和季节性冻土区小叶章湿地,随深度的增加差异逐渐减小。
     通过对不同冻土区湿地土壤氮输入研究表明,土壤有机碳矿化速率和累积矿化量与初始的土壤有机碳,全氮含量和微生物量碳含量呈显著相关关系,表明有机碳矿化受初始理化性质和微生物群落组成的影响;氮输入对不同冻土区土壤有机碳矿化产生抑制作用,随氮输入量的增大,对不同土壤抑制作用有所差异。培养结束后有机碳累积矿化量与MBN及MBC/MBN有明显的相关关系,表明氮输入可能通过改变土壤微生物群落的结构或组成对有机碳矿化产生影响。
     基于连续多年冻土区氮输入对不同深度土壤有机碳矿化实验,结果表明土壤有机碳矿化随土层深度增加而降低,原因可能与不同层次土壤质量有关。土壤含水量,pH值和全磷含量与土壤有机碳矿化有明显的相关性,但是土壤有机碳含量和全氮含量与土壤有机碳矿化的相关性不明显。研究结果表明,在北方泥炭地,土壤全碳或者全氮含量可能不是影响土壤有机碳矿化的主要原因,磷或许是影响有机碳矿化的关键因素。氮输入对表层(0-30cm)土壤无影响或有促进作用,对深层(30-100cm)土壤有抑制作用,随氮输入量增大作用增强。结果表明氮输入对有机碳矿化的促进和抑制作用可能同时存在,具体表现出促进或者抑制作用可能与碳基质质量有关。
     运用分解袋法研究不同冻土区枯落物分解,结果表明季节性冻土区地表残余物分解速率明显高于岛状多年冻土区和连续多年冻土区湿地地表残余物。培养结束后,季节性冻土区小叶章枯落物碳残留率明显低于其它几种枯落物,季节性冻土区毛苔草地表残余物和连续多年冻土区地表残余物净碳残留率差异不明显,但都低于岛状多年冻土区臌囊苔草湿地地表残余物;几种枯落物净氮残留率随分解时间变异很大,但总体几种枯落物之间差异不明显;枯落物磷残留率四种枯落物差异明显,试验结束后净磷残留率从低到高顺序为季节性冻土区毛苔草湿地,季节性冻土区小叶章湿地,连续多年冻土区湿地,岛状多年冻土区湿地。表明积水条件有利于湿地碳蓄积,但是加速磷释放;温度升高则会增加枯落物碳释放。在未来全球变暖背景下,冻土退化而导致的湿地变干将不利于碳蓄积。
     羊胡子草枯落物在不同冻土区分解实验表明,羊胡子草枯落物在不同冻土区分解速率差异达到极显著水平(p<0.001),表明环境条件对枯落物分解意义重大。羊胡子草枯落物净碳残留率和枯落物分解质量残留率的变化趋势基本一致,连续多年冻土区枯落物净碳残留率高于岛状多年冻土区和季节性冻土区;净氮残留率与枯落物分解在三个实验点呈现相反的趋势,季节性冻土区明显高于岛状多年冻土区和连续多年冻土区;羊胡子草枯落物磷残留率变化趋势基本一致,连续多年冻土区湿地,岛状多年冻土区湿地和季节性冻土区湿地羊胡子草枯落物磷残留率分别为89.8%,108.9%和124.2%。
     氮输入对不同冻土区残余物分解实验发现,氮输入对不同冻土区残余物分解都有一定程度的抑制作用,且随氮输入量的增加抑制作用有所增强,但是对不同冻土区地表残余物的抑制作用有所不同。培养结束后氮输入增加枯落物氮含量,且氮输入与不同残余物氮含量有很好的线性相关关系。磷含量对氮输入的响应不同的地表残余物有所不同,但是高氮处理都使地表残余物磷含量有降低的趋势。
     连续多年冻土区湿地土壤N_2O排放随土层深度增加而降低,至深层表现为N_2O的净吸收。氮输入对不同层次土壤都有明显的促进作用,尤其是在开始阶段,氮输入对N_2O排放产生激发效应,随氮输入量增大激发效应增强。在培养20天之后氮输入对不同层次土壤N_2O排放影响不显著。培养结束后,不同深度土壤N_2O累积排放量随氮输入量的增大而增加,底层土壤高氮处理高于表层土壤,表明底层土壤对氮输入的响应更敏感。
     室内培养实验结果表明,各枯落物在培养期内,氮输入都明显促进了枯落物N_2O排放,但是对不同枯落物有所差异。随氮输入量的增大,氮输入对枯落物影响持续的时间增加,低氮输入只在培养开始1-6d阶段比较明显,中氮在培养约一个月左右促进作用显著,高氮处理在整个培养期都存在明显的促进作用。培养结束后,不同枯落物低氮处理与对照处理的差异没有达到显著水平,中氮和高氮处理水平除季节性冻土区毛苔草枯落物外都明显促进了N_2O累积排放量。连续多年冻土区地表残余物中氮输入时N_2O累积排放量最大,表明连续多年冻土区地表残余物对N_2O排放的影响并不是随氮输入量的增大而增大。
Nitrogen (N), as the richest element in atmosphere, is one of limiting elementsfor plant photosynthesis and primary productivity in terrestrial ecosystem, especiallyin high latitudes area in Northern Hemisphere. Global warming is an irrefragable factand north high latitudes are sensitive to this change. With global warming, the northpermafrost will thaw, active layer will deepen, which would change soil nitrogenavailability and carbon (C) storage. So in the present study, we selected typicalwetlands in different frozen areas in Northeast China, used the method of spatial scalereplace temporal scale to research soil nitrogen availability, litter decomposition andN_2O emission. This thesis would offer some basic information for us to predict soilnitrogen availability and the effects of nitrogen availability on carbon storage inwetland ecosystems in Northeast China under global warming conditions. The resultsare as follows:
     The total N contents were significantly different in various wetland types; soilmicrobial biomass carbon (MBC) contents had an obvious tendency of seasonalchange. The soil NH_4~+-N, NO_3--N, dissolved organic nitrogen (DON) contents indepths were decreased as the depth increasing, but the decreased tendency wasvarious in different frozen areas. The average content of all N components fromhighest to lowest was continuous permafrost, island permafrost and seasonally frozenground. The net soil mineralization and nitrification in different wetland ecosystemhad evidently seasonal change, net mineralization rates were positive in the beginningof growing season, and negative in the end of growing season. In a word, Navailability was higher in continuous permafrost, but the N efficiency was low due tolow temperature. In the tendency of global warming, temperature increasing will hadmore intensive effect in continuous permafrost.
     The difference of total organic C was significant in three wetland ecosystems, continuous permafrost soil> island permafrost soil>seasonally frozen ground soil.MBC content had various temporal and spatial changes and had obvious correlationwith temperature and wetland types. The MBC content at depth was decreased. Thesoil dissolved organic carbon (DOC) content was decreased with decreased latitudes,continuous permafrost soil> island permafrost soil>seasonally frozen ground soil,and the difference was gradually reduced as soil depth increasing.
     The soil was collected in three frozen areas and investigated effects of exogenousnitrogen availability on carbon mineralization. The results showed that the cumulativeC mineralization of three types of soil under control treatment existed positivecorrelation with initial amount of soil organic C, total N and MBC in the end ofincubation, which indicated that C mineralization was effected by initial characteristicproperty and microbial communities. N input suppressed C mineralization and thesuppression increased as the amount of N increasing, but the suppression under Ninput was different in three soils. After incubation, cumulative mineralizationpositively related with MBN and negatively related with MBC/MBN, which indicatedthat N availability may affect the carbon mineralization by changing microbialstructure and composition.
     Through laboratory experiment to investigate the effects of N availability oncontinuous permafrost soil organic mineralization (SOC) in different depths, resultsindicated the SOC mineralization in boreal peatlands soil decreased with depth, whichmay be caused by soil initial characteristics in different soil layers. Water content, pHand total P content had evident correlation with SOC mineralization, while total SOCand total N had no or slight effect on SOC mineralization. Our results indicated that inboreal peatlands, SOC mineralization may not be limited by C or N energy, pavailability may be the mainly factor affecting SOC mineralization.
     A litter decomposition experiment was set in different wetland ecosystems. Theresults showed that the surface residues biomass from biggest to smallest wasseasonally frozen ground (SJ), island permafrost (YH) and continuous permafrost(TQ). The decomposition rates of SJM and SJX were evidently higher than YHM andTH, the difference between YHM and TH was not significant. Net C remaining of SJX residues was significant lower than other residues, net C remaining between SJMand TH was similar, but all lower than YHM residues. Net N remaining of all residueswas various in different experimental stages, but the difference among residues wassmall. In the end of experiment, the N remaining from highest to lowest was TH, SJM,SJX and YHM. The residues P remaining was evidently different after one yearexperiment, from highest to lowest was SJM, SJX, TH and YHM. These resultsindicated that inundated condition was favorable for carbon storage, but accelerated Prelease; increased temperature would improve C release.
     Eriophorum vaginatum litter decomposition was investigated in various wetlandecosystems. The results showed that decomposition rates were significant different indifferent wetland ecosystems (p<0.001), indicated environmental condition plays animportant role in litter decomposition. The tendency of C remaining was similar withlitter decomposition, in the end of one year decomposition, litter C remaining fromhighest to lowest was TQ, YH, SJ, however, the amount of N remaining was oppositewith litter decomposition, from highest to lowest was SJ, YH, TQ; P remaining in TQ,YH and SJ was similar, the amount of P remaining was89.8%,108.9%and124.2%,respectively.
     N addition suppressed residue decomposition, the inhibition enhanced as theamount of N addition increasing, but the response of different residue to four levels ofN addition was various. In the end of incubation, N addition increased residue Ncontent; a significant linear correlation existed between the amount of nitrogenaddition and N content of SJX, SJM and TH residue. P content of residues haddifferent effects on N addition, but high N addition decreased the P content of allresidues in different wetland ecosystems.
     Soil N_2O emission rates decreased at depths, and became a sink of N_2O in deepsoil. N addition evidently improved N_2O emission rates under different soil depth,especially in the initial stage of N addition. N addition had a priming effect on N_2Oemission, and the effect increased as N amount increasing. N addition had small effecton soil N_2O emission after20d incubation. In the end of incubation, cumulative N_2Oemission at depths was increased as N amount increasing, which of soil in deep depth was higher than in surface soil under high N treatment. These results indicated thatdeep soil was more sensitive to N addition than surface soil on N addition.
     Through laboratory experiment during134d, N addition enhanced N_2O emission,but the response of different residues to four levels of N addition was various. Theeffect of N addition on residues decomposition lasted longer period as the amount ofexogenous N increasing. The low N treatment impacted on N_2O emission only at first6-10days; the medium N treatment affected the N_2O emission at about the first month;while the high N treatment affected the N_2O emission in all incubated period. In theend of incubation, Low N treatment did not affect cumulated N_2O emissionsignificantly, while medium N and high N treatment evidently enhanced N_2Oemission (p<0.05), except the SJM residue under medium N treatment. CumulativeN_2O emission of TH residues was biggest under medium N addition treatment; thisresult indicated that the effect of N addition on TH residues was not linear.
引文
陈涛,郝晓晖,杜丽君等.2008.长期施肥对水稻土土壤有机碳矿化的影响.应用生态学报,19(7):1494-1500.
    李娜,王根绪,高永恒等,2010.模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究.土壤学报,47(6):1214-1224.
    李英臣.2009.外源氮输入对三江平原沼泽湿地氮可利用性的影响.中国科学院东北地理与农业生态研究所硕士学位论文.
    李英臣,宋长春,侯翠翠等.2011.氮可利用性对东北不同类型湿地土壤有机碳矿化的影响.地理科学,31(12):1480-1486.
    刘德燕,宋长春,王丽等.2008.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响.环境科学,29(12):3525-3530.
    刘德燕,宋长春.2008.外源氮输入对土壤有机碳矿化和凋落物分解的影响.土壤通报,38(3):675-680.
    刘兴土.东北湿地.2005.北京:科学出版社.
    鲁如坤.土壤农业化学分析方法.2000北京:中国农业科技出版社,156-157,159-162.
    秦大河,陈宜瑜,李学勇.2005.中国气候与环境演变(下卷):气候与环境变化的影响与适应,减缓对策.北京:科学出版社.
    商丽娜,吴正方,杨青等.2004.火烧对三江平原湿地土壤养分状况的影响.湿地科学,2004,2(1):54-60.
    沈善敏.中国土壤肥力.1998.北京:中国农业出版社.
    宋长春,张丽华,王毅勇等.2005.季节性冻融期湿地CO2、CH4和N2O排放动态.环境科学,26(4):7-12.
    宋长春,张丽华,王毅勇等.2006.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应.环境科学,27(12):2369-2375.
    苏波,韩兴国,渠春梅.2002.森林土壤氮可利用性的影响因素研究综述.生态学杂志,21(2):40-46.
    孙志高,刘景双.2007.湿地生态系统土壤氮矿化过程研究动态.土壤通报,38(1):155-161.
    王常慧,邢雪荣,韩兴国.2004.草地生态系统中土壤氮素矿化影响因素的研究进展.应用生态学报,15(11):2184-2188.
    王文颖,刘俊英.2009.植物吸收利用有机氮营养研究进展.应用生态学报,20(5):1223-1228.
    徐华,邢光熹,蔡祖聪等.2000.土壤水分状况和指导对稻田N2O排放的影响.土壤学报,37(4):499-505.
    张丽华,宋长春,王德宣.2005.沼泽湿地CO2、CH4、N2O排放对氮输入的响应.2005.环境科学学报,25(8):1112-1118.
    张璐,黄建辉,白永飞等.2009.氮素添加对内蒙古羊草草原净氮矿化的影响.植物生态学报,33(3):563-569.
    郑循华,王明星,王跃思等.1996.稻麦轮作系统中土壤湿度对N2O产生与排放的影响.应用生态学报,7(3):273-279.gren G, Bosatta E, Magill AH.2001. Combining theory and experiment to understand effects ofinorganic nitrogen on litter decomposition. Oecologia,128:94-98.
    Adams MA, Attiwill PM.1984. Patterns of nitrogen mineralization in23-year old pine forestfollowing nitrogen fertilizing. Forest Ecology and Management,7(4):241-248.
    Adams M, Attiwill P.1986b. Nutrient cycling and nitrogen mineralization in eucalypt forests ofsouth-eastern Australia.Ⅰ. Nutrient cycling and nitrogen turnover. Plant and Soil,92:319-339.
    Adams M, Attiwill P.1986b. Nutrient cycling and nitrogen mineralization in eucalypt forests ofsouth-eastern Australia. Ⅱ. Indices of nitrogen mineralization. Plant and Soil,92:341-362.
    Adhikari C, Bronson KF, Panuallah GM.1999. On-farm soil N supply and N nutrition in therice-wheat system of Nepal and Bangladesh. Field Crops Research,64:273-286.
    Aelion CM and Shaw JN.2000. Denitrification in South Carolina (USA) coastal sediments.Journal of Environmental Quality,29:1696–1703.
    Aerts R.1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems.Oikos,79:439-449.
    Aerts R, Logtestijn RV, Staalduinen MV et al.1995. Nitrogen supply effects on productivity andpotential leaf litter decay of Carex species from peatlands differing in nutrient limitation.Oecologia,104:447-453.
    Aerts R, Van Logtestijn RSP, Karlsson PS.2006. Nitrogen supply differentially affects litterdecomposition rates. Oecologia,146:652-658.
    Agren GI, Bosatta E, Magill AH.2001. Combining theory and experiment to understand effects ofinorganic nitrogen on litter decomposition. Oecologia,128:94–98.
    Allison SD, Czimczik CL, Treseder KK.2008. Microbial activity and soil respiration undernitrogen addition in Alaskan boreal forest. Global Change Biology,14:1156-1168.
    Allison SD, LeBauer DS, Ofrecie MR et al.2009. Low levels of nitrogen addition stimulatedecomposition by boreal forest fungi. Soil Biology and Biochemistry,41:293-302.
    Alongi DM, Pfitzner J, Trott LA et al.2005. Rapid sediment accumulation and microbialmineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China.Estuarine. Coastal and Shelf Science,63(4):605-618.
    Amador JA, Jones RD.1993. Nutrient limitations on microbial respiration in peat soils withdifferent total phosphorus-content. Soil Biology and Biochemistry,25:793-801.
    Anastasiadis P and Xefteris A.2001. Control of nitrogen fertilizer pollution in groundwater.Fresenius Environmental Bulletin,10(5):501-505.
    Arft AM, Walker MD, Gurevitch J et al.1999. Responses of tundra plants to experimentalwarming: meta-analysis of the International Tundra Experiment. Ecological Monographs,69:491-511.
    Arnebrant K, B th E, S derstr m B.1990. Changes in microbial community structure afterfertilization of Scots pine forest soil with ammonium nitrate or urea. Soil Biology andBiochemistry,22:309–312.
    Arnebrant K, B th E, S derstr m B et al.1996. Soil microbial activity in eleven Swedishconiferous forests in relation to site fertility and nitrogen fertilization. Scandinavian Journal ofForest Research,11:1–6.
    Aziz S AA, Nedwell DB.1986. The nitrogen cycle of an East Coast, U.K, saltmarsh:ⅠNitrogenassimilation during primary production: Detrital mineralization. Estuarine, Coastal and ShelfScience,22(5):559-575.
    B th E, Arnebrant K.1993. Microfungi in coniferous forest soils treated with lime or wood ash.Biology and Fertility of Soils,15:91–95.
    Berg B.1986. Nutrient release from litter and humus in coniferous forest soils-a mini review [J].Journal of Forest Research,1:359-370.
    Berg B, Matzner E.1997. Effect of N deposition on decomposition of plant litter and soil organicmatter in forest ecosystems. Environmental Reviews,5:1–25.
    Binkley D, Hart SC.1989. The components of nitrogen availability assessments in forests soils.Advances in soil sciences,10:57-112.
    Blagodatskaya EV, Anderson TH.1999. Adaptive responses of soil microbial communities underexperimental acid stress in controlled laboratory studies. Applied Soil Ecology,11:207–216.
    Bouwman AF.1990. Exchange of greenhouse gases between terrestrial ecosystems and theatmosphere. Bouwman AF. Soil and the Greenhouse Effect. Chichester: John Wiley and Sons,61-127.
    Bowden RD, Davidson E, Savage K et al.2004. Chronic nitrogen additions reduce total soilrespiration and microbial respiration in temperate forest soils at the Harvard Forest. ForestEcology and Management,196:43–56.
    Bradford MD, Fierer N, Reynolds JF.2008. Soil carbon stocks in experimental mesocosms aredependent on the rate of labile carbon, nitrogen and phosphorous inputs to soils. FunctionalEcology,22,964-974.
    Bradley K, Drijber RA, Knops J.2006. Increased N availability in grassland soils modifies theirmicrobial communities and decreases the abundance of arbuscular mycorrhizal fungi. SoilBiology and Biogeochemistry,38:1583-1595.
    Bragazza L, Freeman C, Jones T et al.2006. Atmpspheric nitrogen deposition promotes carbonloss from peat bogs. Proceedings of the National Academy of Sciences of the United States ofAmerica,103:19368-19389.
    Bremner JM.1997. Sources of nitrous oxide in soils. Nutrient cycling in Agroecosystems,49:7-16.
    Craine JM, Morrow C and Fierer N.2007. Response of degrafative enzymes to N fertilizationduring litter decomposition in a subtropical forest through a microcosm experiment. Ecology,88(8):2105-2113.
    Carreiro MM, Sinsabaugh RL, Rwpert DA et al.2000. Microbial enzyme shifts explain litterdecay responses to simulated nitrogen deposition. Ecology,81:2359–2365.
    Chapin FS, Shaver GR.1985. Individualistic growth response of tundra plant species toenvironmental manipuiations in the field. Ecology,66:564-576.
    Chapin FS, Van Cleve K, Vitousek P et al.1986. The nature of nutrient limitation in plantcommunities. The American Naturalist,127(1):148-158.
    Chapin FS, Moilanen L, Kielland K.1993. Preferential usage of organic nitrogen for growth by anon-mycorrhizal sedge. Nature,361:150-152.
    Chapin FS, Shaver GR, Giblin AE et al.1995. Responses of Arctic tundra to experimental andobserved changes in climate. Ecology,76:694-711.
    Chen DX, Hunt HW, Morgan JA.1996. Responses of a C3and C4perennial grass to CO2enrichment and climate change: Comparison between model predictions and experimental data.Ecological Modelling,87(1-3):11-27.
    Chen RH, Twilley RR.1999. Patterns of mangrove forest structure and soil nutrient dynamicsalong the Shark river estuary. Florida Estuaries,22(4):955-970.
    Compton JE,Watruda LS,Porteousa LA et al.2004. Response of soil microbial biomass andcommunity composition to chronic nitrogen additions at Harvard forest. Forest Ecology andManagement,196:143–158.
    Cotrufo MF, Ineson P, Roberts D.1995. Decomposition of birch leaf litters with varying C-to-Nratios. Soil Biology and Biochemistry,27:1219–1221.
    Craine JM, Morrow C, Fierer N.2007. Microbial nitrogen limitation increases decomposition.Ecology,88(8):2105-2113.
    Currey PM, Johnson D, Sheppard LJ et al.2010. Turnover of labile and recalcitrant soil carbondiffer in response to nitrate and ammonium deposition in an ombrotrophic peatland. GlobalChange Biology,16:2307-2321.
    Cusack DF, Torn MS, McDowell WH et al.2010. The response of heterotrophic activity andcarbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology,16:2555-2572.
    Davidson EA, Hart SC, Firestone MK.1992. Internal cycling of nitrate in soils of a matureconiferous forest. Ecology,73:1148-1156.
    Davidson EA, Janssens IA.2006. Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change. Nature,440:165-173.
    Debusk WF, Reddy KR.1998. Turnover of detrital organic carbon in a nutrient-impactedEverglades marsh. Soil Science Society of America Journal,62:1460-1468.
    Debusk WF, Reddy KR.2005. Litter decomposition and nutrient dynamics in a phosphorusenriched everglades marsh. Biogeochemistry,75:217-240.
    Deforest JL,Zaka DR Pregitzerc KS et al.2004. Atmospheric nitrate deposition and the microbialdegradation of cellobiose and vanillinin a northem hardwood forest. Soil Biology andBiochemistry,36:965-97l.
    Dijkstra FA, Hobbie SE, Knops JMH et al.2004. Nitrogen decomposition and plant speciesinteract to influence soil carbon stabilization. Ecology Letters,7:1192-1198.
    Di Stefano J and Gholz H.1986. A proposed use of ion exchange resin to measure nitrogenmineralization and nitrification in intact soil cores. Communications in Soil Science and PlantAnalysis,17:989-998.
    Dorrepaal E, Toet S, Van Logtestijn RSP et al.2009. Carbon respiration from subsurface peataccelerated by climate warming in the subarctic. Nature,460:616-619.
    Eno C.1960. Nitrate production in the field by incubating the soil in polyethylene bags. SoilScience Society of America Proceedings,24:277-279.
    Fahey TJ, Battles JJ, Wilson GF.1998. Responses of early successional northern hardwood foreststo changes in nutrient availability. Ecological Monographs,68:183-212.
    Falkengren-Grerup U, Brunet G, Diekmann M.1998. Nitrogen mineralisation in deciduous forestsoils in south Sweden in gradients of soil acidity and deposition. Environmental Pollution,102(Suppl.1):415–420.
    Ferris H, Venette RC, Meulen HR et al.1998. Nitrogen mineralization by bacterial-feedingnematodes: verification and measurement. Plant and Soil,203(2):159-171.
    Fierer N, Allen A, Schimel J et al.2003. Controls on microbial CO2production: a comparison ofsurface and subsurface soil horizons. Global Change Biology,9:1322-1332.
    Fisk MC, Fahey TJ.2001. Microbial biomass and nitrogen cycling responses to fertilization andlitter removal in young northern hardwood forests. Biogeochemistry,53:201-223.
    Fog K,1988. The effect of added nitrogen on the rate of decomposition of organic matter.Biological Reviews of the Cambridge Philosophical Society,63:433-462.
    Fontaine S, Barot S, Barré P et al.2007. Stability of organic carbon in deep soil layers controlledby fresh carbon supply. Nature,450,277-280.
    Frank H, Dieter S, Rolf S.2003. Increased N deposition retards mineralization of old soil organicmatter. Soil Biology and Biochemistry,35:1683-1692.
    Frey SD,Knoor M,Parrent JL et al.2004. Chronic nitrogen enrichment affects the structure andfunction of the soil microbial community in temperate hardwood and pine forests. ForestEcology and Management,196:159-171.
    Frey SD, Knorr M, Parrent JL et al.2005. Chronic nitrogen enrichment affects the structure andfunction of the soil microbial community in temperate hardwood and pine forests. ForestEcology and Management,196:159-171.
    Gabriel B, Valérie M, Julien D et al.2004. Chemical characterization of porewaters in anintertidal mudflat of the Seine estuary: relationship to erosion-depositon cycles. MarinePollution Bulletin,49:163-173.
    Gorham E.1991. Northern peatlands: role in the carbon cycle and probable responses to climatewarming. Ecological Applications,1:182-195.
    Grant IF, Richard S.1985. Tubificid role in soil mineralization and recovery of algal nitrogen bylowland rice. Soil Biology and Biochemistry,17(4):559-563.
    Groffman PM, Hanson GC, Erick K et al.1996. Variation in microbial biomass and activity infour different wetland types. Soil Science Society of American Journal,60:622-629.
    Hadas A, Feigin A, Feigenbaum S et al.1989. Nitrogen mineralization in the field at variousdepths. Journal of Soil Science,40(1):131-137.
    Haraguchi A, Kojima H, Hasegawa C et al.2002. Decomposition of organic matter in peat soil ina minerotrophic mire. European Journal of Soil Biology,38(1):89-94.
    Hart SC, Nason GE, Myrold DD et al.1994. Dynamics of gross nitrogen transformations in anold-growth forest: the carbon connection. Ecology,75:880-891.
    Hart SC, Binkley D, Perry DA.1997. Influence of red alder on soil nitrogen transformations intwo conifer forests of contrasting productivity. Soil Biology and Biochemistry,29:1111-1123.
    Hartley IP, Hopkins DW, Sommerkorn M et al.2010. The response of organic mattermineralization to nutrient and substrate additions in sub-arctic soils. Soil Biology andBiochemistry,42:92-100.
    Haynes RJ.1999. Labile organic matter fractions and aggregate stability under short-term,grass-based leys. Soil Biology and Biochemistry,31:1821-1830.
    Henry GHR, Molau U.1997. Tundra plants and climate change: the International TundraExperiment (ITEX). Global Change Biology,3:1-9.
    Hobbie SE, Vitousek PM.2000. Nutrient limitation of decomposition in Hawaiian forests.Ecology,81:1867-1877.
    Hobbie SE.2005. Interactions between litter lignin and soil N availability during leaf litterdecomposition in a Hawaiian montane forest. Ecosystems,3:484-494.
    Hobbie SE.2008. Nitrogen effects on decomposition: a five-year experiment in eight temperaturesites. Ecology,89(9):2633-2644.
    Hongbo MA, Marjorie AC.2005. Ammonium production during microbial nitrate removal in soilmicrocosms from a developing marsh estuary. Soil Biology and Biochemistry,37(10):1869-1878.
    Hopkins DW, Sparrow AD, Elberling B et al.2006. Carbon, nitrogen and temperature controls onmicrobial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry,38:3130-3140.
    Intergovernmental Panel on Climate Change.2001. Climate Change2001: The Scientific Basis.Contribution of Working GroupⅠto the Third Assessment Report of the Intergovernmentalpanel on Climate Change, Cambridge: Cambridge University Press.
    Intergovernmental Panel on Climate Change.2007. Climate Change2007: The Physical ScienceBasis. Contribution of Working Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. New York: Cambridge University Press.
    Jin HJ, Yu QH, Lü LZ et al.2007. Degradation of permafrost in the Xing’anling Mountains,Northeastern China. Permafrost and Periglacial Processes,18:245-258.
    K hk nen MA, Hakulinen R.2011. Hydrolytic enzyme activities, carbon dioxide production andthe growth of litter degrading fungi in different soil layers in a coniferous forest in NorthernFinland. European Journal of Soil Biology,47:108-113.
    Ka tovská E, antr ková H, Picek T et al.2010. Edwards, Direct effect of fertilization onmicrobial carbon transformation in grassland soils in dependence on the substrate quality.European Journal of Soil Science and Plant Nutrition,173:706-714.
    Kaye JP, Hart SC.1997. Competition for nitrogen between plants and soil microorganisms. Trendsin Ecology and Evotion,12:139-143.
    Kelley KR, Stevenson FJ. Organic forms of N in soil. In: Piccolo, A.,(Ed.), Humic Substances inTerrestrial Ecosystems, Elsevier, Amsterdam,1996,407-427.
    Khalil MI, Rahman MS, Schmidhalter U et al.2007. Nitrogen fertilizer-induced minetalization ofsoil orgnic C and N in six contrasting soil of Bangladesh. Journal of Plant Nutrition and SoilScience,170:210-218.
    Klemmedson JO, Rehfuess KE, Makeschin F et al.1989. Nitrogen mineralization in limed andgypsum-amended substrates from ameliorated acid forest soils. Soil Science,147(1):55-63.
    Knorr M, Frey SD and Curtis PS.2005. Nitrogen additions and litter decomposition: ameta-analysis. Ecology,86(12):3252-3257.
    Kuperman RG.1996. Relationships between soil properties and community structure of soilmacroinvertebrates in oak-hickory forests along an acidic deposition gradient. Applied SoilEcology,4:125–137.
    Lee AA. Bukaveckas PA.2002. Surface water nutrient concentrations and litter decompositionrates in wetlands impacted by agriculture and mining activities Aquatic Botany,74(4):273-285.
    LekkerkerkL, Lundkvist H, gren G et al.1990. Decomposition of heterogeneous substrates anexperimental investigation of a hypothesis on substrate and microbial properties. Soil Biologyand Biochemistry,22:161–167.
    Liu Y, Muller RN.1993. Above-ground net primary productivity and nitrogen mineralization in amixed mesophtic forest of eastern Kentucky. Forest ecological management,59(1):53-62.
    Liu P, Huang JH, Han XG et al.2006. Differential responses of litter decomposition to increasedsoil nutrients and water between two contrasting grassland plant species of Inner Mongolia,China. Applied Soil Ecology,34:266-275.
    Liu P, Huang JH, Sun OJ et al.2010. Litter decomposition and nutrient release as affected by soilnitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia,162:771-780.
    Lorenz K, Preston CM, Raspe S et al.2000. Litter decomposition and humus characteristics inCanadian and German spruce ecosystems: information from tannin analysis and13C CPMASNMR. Soil Biology and Biochemistry,32:779-792.
    Mack MC, Schuur EAG Bret-Harte MS et al.2004. Ecosystem carbon storage in arctic tundrareduced by long-term nutrient fertilization. Nature,431:440-443.
    Magill AH, Aber JD.1998. Long-term effects of experimental nitrogen additions on foliar litterdecay and humus formation in forest ecosystems. Plant and Soil,203:301-311.
    Mahendrappa MK, Foster NW, Weetman GF et al.1986. Nutrient cycling and availability inforest soils. Canadian Journal of Soil Science,66:547-572.
    Manning P, Saunders M, Bardgett R et al.2008. Direct and indirect effects of nitrogen depositionon litter decomposition. Soil Biology and Biochemistry,40:688-698.
    Mansson KF, Falkengren-Grerup U.2003. The effect of nitrogen deposition on nitrification,carbon and nitrogen mineralisation and litter C:N ratios in oak (Quercus robur L.) forests.Forest Ecology and Management,179:455-467.
    Marife DC, Ronald RS, William LS.2002. Spatial and seasonal variation of gross nitrogentransformations and microbial biomass in Northeastern US grassland. Soil Biology andBiochemistry,34:445-457.
    Matson PA, Lohse KA and Hall SJ.2002. The globalization of nitrogen deposition: consequencesfor terrestrial ecosystems. AMBIO: A Journal of the Human Environment,31(2):113–119.
    Matson PA and Vitousek PM..1981. Nitrogen mineralization and nitrification potentials followingclearcutting in the Hoosier National Forest, Indiana. Forest Science,27:781-791.
    McLaughlin JW, Gale MR, Jurgensen MF et al.2000. Soil organic matter and nitrogen cycling inresponse to harvesting, mechanical site preparation, and fertilization in a wetland with a mineralsubstrate. Forest Ecology and Management,129:7-23.
    Meer HGV, Ryden JC, Ennik GC.1986. Nitrogen fluxes in intensive grassland systems.Dordrecht Boston: Martinus Nijnoff publishers,1-15.
    Mentzer JL, Goodman RM, Balser TC.2006. Microbial response over time to hydrologic andfertilization treatments in a simulated wet prairie. Plant and Soil.2006,284:85-100.
    Mistch WJ, Gosselin JG. Wetlands.2000. New York: Van Nostrand Reinhold Company Inc,89-125.
    Mooney H, Vitousek PM, Matson PA.1987. Exchange of materials between terrestrial ecosystemsand the atmosphere. Science,238:926-932.
    Moretto AS, Distel RA, Didone′NG.2001. Decomposition and nutrient dynamic of leaf litter androots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology,18:31-37.
    Myron JM, Charles TD, Shreeram I et al.2003. Nitrogen biogeochemistry in the AdirondackMountains of New York: hardwood ecosystems and associated surface waters. EnvironmentalPollution,123:355-364.
    Nadelhoffer KJ, Emmett BA, Gundersen P et al.1999. Nitrogen deposition makes a minorcontribution to carbon sequestration in temperate forests. Nature,398:145–148.
    Narteh LT, Sahrawat KL.1997. Potentially mineralizable nitrogen in West African lowland ricesoils. Geoderma,76(1-2):145-154.
    Natali SN, Schuur EAG, Trucco C et al.2011. Effects of experimental warming of air, soil andpermafrost on carbon balance in Alaskan tundra. Global Change Biology,17:1394-1407.
    Neff JC, Townsend AR, Gleixner G et al.2002. Variable effects of nitrogen additions on thestability and turnover of soil carbon. Nature,419:915-917.
    Neuvonen S, Suomela J.1990. The effect of simulated acid rain on pine needle and birch leaf litterdecomposition. Journal of Applied Ecology,27:857-872.
    Ohrui K, Mitchell MJ, Bischoff JM.1999. Effects of landscape position on N mineralization andnitrification in a forested watershed in the Adirondack Mountain of New York. CanadianJournal of Forest Research,29:597-508.
    Oorschot MV, Gaalen NV, Maltby E et al.2000. Experimental manipulation of water levels intwo French riverine grassland soils. Acta Oecologica,21(1):49-62.
    Ouyang XJ, Zhou GY, Huang ZL et al.2008. Effect of N and P addition on soil organic Cpotential mineralization in forest soils in South China. Journal of Environmental Sciences-China,20:1082-1089.
    Paromita G, Kashyap AK.2003. Effects of rice cultivars on rate of N-mineralization, nitrificationand nitrifier population size in an irrigated rice ecosystem. Applied Soil Ecology,24:27-41.
    Pastor J, Aber JD, McClaugherty CA et al.1994. Above-ground production and N and P cyclingalong a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Journal of Ecology,65:256-268.
    Pathak H, Rao DLN.1998. Carbon and nitrogen mineralization form added organic matter insaline and alkali soils. Soil Biology and Biochemistry,30(6):695-702.
    Pennanen T, Fritze H, Vanhala P et al.1998. Structure of a microbial community in soil afterprolonged addition of low levels of simulated acid rain. Applied and EnvironmentalMicrobiology,64:2173–2180.
    Persson T, Karlsson PS, Seyferth U et al. Carbon mineralisation in European forest soils. In:Schulze, E.-D.(Ed.), Ecological Studies—Carbon and Nitrogen Cycling in European ForestEcosystems. Springer, Berlin,2000a,257-275.
    Persson T, Rudebeck JH, Jussy JH et al. Soil nitrogen turnover—mineralisation, nitrification anddenitrificationin European forest soils. In: Schulze, E.-D.(Ed.), Ecological Studies—Carbonand Nitrogen Cycling in European Forest Ecosystems. Springer, Berlin,2000b,295-331.
    Powers RF. Nitrogen mineralization along a latitudinal gradient: interactions of temperature,moisture and substrate quality. Forest Ecology and. Manage,1990,30(1):19-29.
    Prescott CE.1995. Does nitrogen availability control rates of litter decomposition in forests? Plantand Soil,168–169:83-88.
    Ribeiro C, Madeira M, Araugo MC.2002. Decomposition and nutrient release from leaf litter ofEucalyptus globulus grown under different water and nutrient regimes. Forest Ecology andManagement,171:31-41.
    Rodionov A, Flessa H, Grabe M et al.2007. Organic carbon and total nitrogen variability inpermafrost-affected soils in a forest tundra ecotone. European Journal of Soil Biology,58:1260-1272.
    Sahrawat KL.1980. Soil and fertilizer nitrogen transformations under alternate folding dryingmoisture regimes. Plant and Soil,55(2):225-228.
    Salomé C, Numan N, Pouteau V et al.2010. Carbon dynamics in topsoil and in subsoil may becontrolled by different regulatory mechanisms. Global Change Biology,16:416-426.
    Sj berg G, Bergkvist B, Berggren D et al.2003. Long-term N addition effects on the Cmineralization and DOC production in mor humus under spruce. Soil Biology and Biochemistry,35:1305–1315.
    Sj berg G, Knicker H, Nilsson SI et al.2004. Impact of long-term N fertilization on the structuralcomposition of spruce litter and mor humus. Soil Biology and Biochemistry,36(4):609-618.
    Silvan N, Tuittila E, Kitunen V et al.2005. Nitrate update by Eriophorum vaginatum controls N2Oproduction in a restored peatland. Soil Biology and Biochemistry,37:1519-1526.
    Song CC, Liu DY, Yang GS et al.2011. Effect of nitrogen addition on decomposition ofCalamagrostis angustifolia litters from freshwater marshes of Northeast China. EcologicalEngineering,37:1578-1582.
    Stanford G, Binkley J and Smith S.1974. Estimates of potentially mineralizable soil nitrogenbased on short-term incubations. Soil Science Society of America Proceedings,38:99-103.
    Stanford G and Smith S.1972. Nitrogen mineralization potentials of soils. Soil Science Society ofAmerica Proceedings,36:465-472.
    Stewart BA. Advance in Soil Science.1992. Heidelberg: Springer-Verlag,249-272.
    Szumigalski AR, Bayley SE.1997. Decomposition along a moderate-rich fen-marsh peatlandgradient in boreal Alberta, Canada. Wetlands,17:123-137.
    Taylor BR, Parkinson D, Parson WFJ.1989. Nitrogen and lignin content as predictors of litterdecay rates: a microcosm test. Ecology,70:97-104.
    Trumbore S.2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth and PlanetarySciences,37:47-66.
    Updegraff K, Pastor J, Bridghm SD et al.1995. Environmental and substrate controls over carbonand nitrogen mineralization in northern wetlands. Ecological Applications,5(1):151-163.
    Valiela I, Wilson J, Buchsbaum R et al.1984. Importance of chemical composition of salt marshlitter on decay rates and feeding by detritivores. Bulletin of Marine Science,35:261-269.
    Verhoeven JT, Maltby E, Schmitz MB.1990. Nitrogen and phosphorus mineralization in fens andbogs. Journal of Ecology,78(3):713-726.
    Verhoeven JT, Keuter A, Logtestijn RV et al.1996. Control of local nutrient dynamics in mites byregional and climatic factors:a comparison of Duch an Polish sites.Journal of Ecology,84:647-656.
    Vitousek PM.1982. Nutrient cycling and nutrient use efficiency. American Naturalist,119:553-572.
    Vitousek PM, Aber JD, Howarth RW et al.1997. Human alteration of the global nitrogen cycle:sources and consequences. Ecological Applications,7(3):737-750.
    Wagenet RJ, Baveye P, Stewart BA.1994. Interacting processes in soils. Soil Science,45(2):126-133.
    Waldrop MP, Zak DR, Sinsabaugh RL.2004. Microbial community response to nitrogendeposition in northern forest ecosystems. Soil Biology and Biochemistry,36:1443-1451.
    Wang CY, Feng XF, Guo P et al.2010. Response of degrafative enzymes to N fertilization duringlitter decomposition in a subtropical forest through a microcosm experiment. Ecology Research,25:1121-1128.
    Weand MP, Arthur MA, Lovett GM et al.2010. Effects of tree species and N additions on forestfloor microbial communities and extracellular enzyme activities. Soil Biology andBiogeochemistry,42:2161-2173.
    Weedon J, Kowalchuk GA, Aerts R et al.2011. Summer warming accelerates sub-arctic peatlandnitrogen cycling without changing enzyme pools or microbial community structure. GlobalChange Biology, doi:10.1111/j.1365-2486.2011.02548.x.
    Weintraub MN, Schimel JP.2003. Nitrogen mineralization and soil organic matter chemistry inArctic tundra soil. Ecosystem,6:129-143.
    Williams BL,Silcock DJ. l997. Nutrient and microbial changes in the peat profile beneathSphagnum magellanicum in response to additions of ammonium nitrate. Applied Ecology,34:961-970.
    Wilson DJ, Jefferies RL.1996. Nitrogen mineralization, plant growth and goose herbivory in anArctic coastal ecosystem. Journal of Ecology,84:841-851.
    World Meteorological Organization (WMO).2006. Annual Greenhouse Gas Bulletin.http://www.wmo.ch/pages/prog/arep/gaw/ghg/ghgbull06_en.html.
    Xie YH, Yu D, Ren B.2004. Effects of nitrogen and phosphorus availability on the decompositionof aquatic plants. Aquatic Botany,80:29-37.
    Yang JS, Liu JS, Yu JB et al.2006. Decomposition and nutrient dynamics of marsh litter in theSanjiang Plain, Northeast China. Acta Ecological Sinica,26(5):1297-1302.
    Zhang LH, Song CC, Wang YY et al.2007. Effects of exogenous nitrogen on freshwater marshplant growth and N2O fluxes in Sanjiang Plain, Northeast China. Atmospheric Environment,41:1080-1090.
    Zhu WX, Ehrenfelc JG.1999. Nitrogen mineralization and nitrification in suburban and
    undeveloped Atlantic white cedar wetlands. Journal of Environmental Quality,28(2):523-529.
    Zimov S A,Schuur E A G,Chapin F S Ⅲ.2006. Permafrost and the global carbon budget. Science,
    312:1612-1613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700