用户名: 密码: 验证码:
甘肃省小麦品种抗条锈病和白粉病基因分析及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由专性寄生菌条形柄锈菌[Puccinia striiformis f.sp tritici]和布氏白粉菌[Blumeriagraminis f.sp.tritici Em.Marcha1]引起的小麦条锈病和白粉病是发生于甘肃省及我国小麦生产上最重要的真菌性病害,种植抗病品种是防治两病害最经济有效且有利于保护环境的措施。
     本文通过温室和田间相结合,对已知抗条锈病和白粉病基因进行有效性评价、对重要小麦生产品种(系)及抗源材料进行成株期抗病性评价和苗期抗病基因分析、选用含有不同抗病基因的品种混种和感病品种与其他作物间种,研究作物多样性防治小麦条锈病和白粉病效果。通过4年研究,得到如下结果和结论:
     1.已知抗病因有效性评价与利用
     (1)在兰州温室,分别对采自甘肃各地的430个和192个小麦条锈菌及白粉菌单孢菌系接种在含有已知基因载体品种上进行毒性频率测定,同时结合多年多点成株期异地自然诱发鉴定结果,发现:Yr5、Yr10、Yr15、Yr24/Yr26及Pm2、Pm4b、Pm13、Pm21、Pm2+6、Pm1+2+9、Pm2+Mld目前抗病性较好,是今后一段时期利用的重点。对Yr10、Yr24/Yr26具有联合毒性作用的新菌系贵农22致病类群近年来出现频率持续上升,目前已达到14.8%,应引起育种和生产上的高度重视。采自甘肃陇南麦区的白粉菌对Pm21、Pm4b的毒性频率高于中部麦区,且对这两个基因有毒性的菌系主要出现在陇南低海拔和高海拔地区。田间抗性鉴定及监测结果显示,兰天16号等10个品种(系)具有成株抗条锈病特性,兰天14号等10个品种(系)具有慢条锈特性;陇原034等6个品种(系)具有成株抗白粉病特点。
     2.小麦品(系)抗病因分析
     (1)选用26个来自国内外具有不同毒性谱的条锈菌单孢菌系,对50个甘肃省主要生产品种(系)及抗源材料进行苗期条锈病抗性鉴定,结合系谱分析,发现有Yr3、Yr3a、Yr4a、Yr9、Yr10、Yr12、Yr16、Yr26、YrMor、YrCle等10个抗病基因分布于16个品种(系)中。
     (2)对小麦生产品种(系)陇鉴9343、陇鉴9811、陇鉴9821和93保4-4进行苗期抗条锈性遗传分析结果发现:陇鉴9343对CYR29的抗病性由2对显性抗性基因控制;对CYR32和CYR33的抗病性均由1对显性基因控制。93保4-4对CYR29、CYR32、CYR33的抗病性均由2对显性基因控制。陇鉴9811对CYR32的抗病性由1对隐性基因控制,可能来自外源基因玉米,暂定为YrLongjian9811。陇鉴9821对CYR33的抗病性由1对显性基因控制,可能来自外源基因高粱,暂定为YrLongjian9821。
     (3)对40个小麦品种(系)抗条锈基因分子检测结果发现:兰天14号等14个品种(系)含有Yr9,兰天17和92R178含有Yr26。
     (4)选用17个致病力不同的小麦白粉病菌单孢菌系,对64个甘肃省主要生产品种(系)及抗源材料进行苗期白粉病抗性鉴定,结合系谱分析,初步推定有Pm5、Pm6、Pm8、Pm19和Pm21分布于10个小麦品种(系)中。
     3.利用生物多样性控制小麦条锈病和白粉病究
     (1)2008~2010年,利用抗病和感病品种混种进行小麦条锈病和白粉病防治效果研究结果表明:品种混种后病情指数、早春病点率和病叶率显著低于单种感病品种;筛选出了具有较好控病增产作用、且具有一定利用价值的山区品种组合-洮157/中梁22组合,该组合与单种感病品种洮157相比较,其对小麦条锈病的相对防效在48.71%~64.33%之间,相对增产率稳定保持在5.71%~12.63%之间。
     (2)感病小麦生产品种与其他作物间种防治小麦条锈病和白粉病结果发现:与对照单种小麦相比较,小麦与玉米间种处理对条锈病和白粉病的相对防效分别在16.73%~45.69%和14.74%~36.99%之间,产量相对增加率52.41%~139.99%之间;小麦与油葵间种处理,对条锈病和白粉病的相对防效分别在5.89%~28.86%和11.74%~18.37%之间,产量相对增加率在-1.4%~24.81%之间。经方差分析,两组合处理相对防效、产量相对增加率与单种小麦处理间差异显著,在甘肃陇南值得推广利用。小麦与马铃薯、小麦与辣椒间种组合,对条锈病和白粉病的相对防效在-4.51%~11.68%和-15.38%~5.23%之间,产量相对增加率在150%以上,对其利用尚需进一步研究。
Wheat stripe rust and powdery mildew, caused by Puccinia striiformis Westend.f.sp. triticiEriks and Blumeria graminis f.sp.tritici Em.Marcha1, are two important wheat diseases inworldwide. Using resistant varieties is the most economical, effective, and environmentallyfriendly approach of controlling stripe rust and powdery mildew, reducing yield losses. In thispaper, according to (1) evaluated the resistance of tester gene (genes), known its value inbreeding.(2) postulated the resistant gene (genes) of about50or64commercial wheat varieties(lines) or resistant sources to stripe rust and powdery mildew, and analysized the resistantinheritance of four major wheat varieties (lines) Longjian9343,93Bao4-4, Longjian9811andLongjian9821to stripe rust in seedling stage, and molecular detection on40wheat varieties(lines) to stripe rust, to known its gene in wheat.(3) using bio-diversity principle and methods,selected some wheat varieties (lines) which resistant or susceptible to stripe rust and powderymildew and possessed different gene (genes), to mixed together or inter-planted with othercrops, evaluated its controlling effect to stripe rust and powdery mildew. According to4yearslater, the main results are as follows.
     1. The results of evaluated on effective genes for resistance to stripe rust and powderymildew virulence of Puccinia striiformis f. sp. tritici and Blumeria graminis f.sp.tritici inGansu province.
     (1) Using43or192different mono isolates on Puccinia striiformis Westend. f.sp. triticiEriks and Blumeria graminis f.sp.tritici, testing virulence frequency on35or28resistant gene(genes) in Lanzhou greenhouse, patterns of wheat stripe rust and powdery mildew were studiedunder the field conditions across16environmentally different locations by planting trap nurseryof testers and high susceptible variety Mingxian169during2007~2011. The results revealedthat the resistant gene (genes) Yr5, Yr10, Yr12, Yr24/Yr26and Pm2、Pm4b、Pm13、Pm21、Pm2+6、Pm1+2+9、Pm2+Mld were resistant in seedling stage. The gene (genes) foundeffective against stripe rust and powdery mildew under natural conditions may be deployedsingly or in combination to develop higher resistant to wheat varieties. It worth using in future,but avoid the single resistant gene wildly used in southern of Gansu province at different attitude that deduced new virulence races emerging, and loosing its resistance in field. The newvirulence isolates which virulent to resistant wheat varieties Guinong22, Moro,92R137andChuanmai42in seedling stage, its emergency frequencies approached14.8%in2011in Gansuprovince. It worth caution in wheat breeding and planting in future, especially screened itsresistant variation of wheat varieties Guinong22, Moro,92R137, Chuanmai42and itspedigrees in field. The virulence frequency of testing isolates of powdery mildew which comefrom Longnan region, Gansu province were higher than Middle region. The resistant genePm4b had virulent isolates which come from high mountain in Longnnan region. According toidentificated and evaluated on resistance of testing wheat varieties (lines) in different16locations in Gansu province,10wheat varieties (lines) may had adult resistant character such asLantian16,10wheat varieties (lines) may had slow-rusting character, such as Lantian14.6wheat varieties (lines) Longyuan034, Longjian386, Huapei764, Huining18, Longjian127andY9220-12maybe had adult resistant character to powdery mildew.
     2. Studies gene postulation, resistant inheritance and molecular detection of resistant geneto stripe rust and powdery mildew.
     (1) By means of artificial inoculation of26Puccinia striiformis or17powdery mildewisolates with different spectra of pathogenicity at seedling stage, the resistance to stripe rust andpowdery mildew were identified in50or64wheat varieties (lines) from Gansu Province. Incombination with pedigree analysis and resistance reactions of30or26standard varieties withknown resistant genes, the resistance genes in the50or64varieties (lines) were postulated. Theresults showed that the wheat variety Zhongliang25was postulated Yr3and unknown genes.The wheat variety Lantian20was postulated to possess Yr3a, Yr4a, Yr16, and unknown genes.The wheat line Y9220-12was postulated to possess Yr9, YrCle, and unknown genes. Thevarieties (lines) Lantian14, Longyuan932, Longyu216, and Longyuan992were postulated topossess Yr9and unknown genes. Genes Yr10and YrMor were postulated in Longjian9343,93Bao4-4, Tianxuan43, and Guinong22. The variety Lantian19was postulated to possess Yr12and unknown resistant genes. Gene Yr26was postulated in Lantian17,95-111-3,98-178-3-2-4,and92R137. The wheat line Longyuan932was postulated to possess Pm5and unknown genes.The wheat variety Xifeng20was postulated to possess Pm6and unknown genes. The wheat line98Bao1-2was postulated to possess Pm8and unknown genes. Gene Pm19was postulatedin two wheat varieties (lines)863-13and Shi7816. Six varieties (lines) Tianxuan43, X9610,95-111-3, Lantian17,92R137and Guinong22were postulated to possess Pm21.Unknowngenes were found in other wheat varieties (lines), which resistant types were different from thetested genes.
     (2) Four wheat varieties (lines) Longjian9343,93Bao4-4, Longjian9811and Longjian9821from Southern Gansu, was used as maternal parents and hybridized with the susceptiblecultivar Mingxian169, to study the inheritance of the resistance to stripe rust in seedling plants,and the F2populations of the crosses were inoculated with CYR29, CYR32and CYR33.Theresults showed that the wheat variety Longjian9343were controlled by2dominant genes toCYR29, one dominant gene to CYR32and CYR33in seedling stage respectively. The wheatline93Bao4-4were controlled by two dominant genes to testing races CYR29,CYR32andCYR33. The two wheat varieties Longjian9811and Longjian9821were used pollen-tubepathway, which was one of the effective transgenic techniques in wheat breeding, introducedthe total DNA of maize and sorghum into common wheat cultivar Tao157, which wassusceptible to stripe rust in field in Gansu province, to obtained. The resistant inheritanceresults showed that there was one dominant gene which controlled by to CYR29, which comefrom parents wheat variety Tao157. There was a new recessive gene YrLongjian9811, whichresistant to CYR32in wheat variety Longjian9811, maybe come from maize. There was a newdominant gene YrLongjian9821, which resistant to CYR33in wheat variety Longjian9821,maybe come from sorghum.
     (3) The resistant genes Yr5, Yr10, Yr15, Yr26, and Yr9(1B/1R) were validated usingmolecular markers in40wheat varieties (lines). There were14wheat varieties (lines) detectedto be Yr9, which accounted for35.0%of the total wheat varieties (lines). The gene Yr26wasdetected in92R178and its pedigree Lantian17. And the other wheat varieties (lines) did notdetect Yr5, Yr10and Yr15.
     3. Studies of using bio-diversity principle to controlling the wheat stripe rust and powderymildew.
     (1) Selected10or7wheat varieties (lines) which possessed different genes of stripe rust and powdery mildew, and planted in different range in Gangu testing station, institute of plantprotection, Gansu academy of agricultural sciences, Gansu province, during2008~2010, to testits controlling effect to stripe rust and powdery mildew in field. The results showed thatcompared with susceptible wheat varieties, the final disease index, diseased leaved rate,diseased spot rate of mixture plots were lower than mono plots on susceptible varieties (lines).Maybe it is a better way to control the stripe rust and powdery mildew in field. The mixedwheat combination Tao157/Zhongliang22, which planted in Longnan mountain, relativecontrolling effect are48.71%~64.33%, and relative increase effect on yield are5.71%~12.63%,better than mono plots of susceptible varieties. It was worth using in future in Longnan region,Gansu province.
     (2) Plot experiments were conducted to study the effect of stripe rust and powdery mildewon susceptible wheat varieties (lines) intercropped with other crops in different location ofGansu province. The results showed that compared with susceptible wheat varieties (lines),intercropped with maize, the relative controlling effect were increased16.73%~45.69%towheat stripe rust, and increased14.74%~36.99%to powdery mildew. Its relative yieldincreased52.41%~139.99%. When intercropped with sunflower, the relative controlling effectwere increased5.89%~28.86%to wheat stripe rust and11.74%~18.37%to powdery mildew,and its relative yield increased-1.4%~24.81%. The above two combinations were worth usingin future in Longnan region, Gansu province. Intercropped with potato and paper, the relativecontrolling effect were-4.51%~11.68%to wheat stripe rust and-15.38%~5.23%to powderymildew, and its relative yield increased above150%.
引文
[1] Andow D A. Vegetational diversity and arthropod population response [J]. Annual Reviewof Entomology,1991,36:561-586
    [2] Altieri M A. The ecological role of biodiversity in agroecosystems [J]. Agriculture,Ecosystems and Environment,1999,74:19-31
    [3] Akanda S I,Mundt C C. Effects of two component wheat cultivar mixtures on stripe rustseverity [J]. Phytopathology,1996,86:347-353
    [4] Ashraful Alam Md,Xue F,Wang C Y,et al. Powdery mildew resistance genes in wheat:identification and genetic analysis [J]. Journal of Molecular Biology Research,2011,1:20-39
    [5] Bansal U K,Forrest K L, Hayden M J,et al. Characterisation of a new stripe rustresistance gene Yr47and its genetic association with the leaf rust resistance gene Lr52[J].Theor Appl Genet,2011,122:1461-1466
    [6] Bartos P,Johnson R,Stubbs R W. Postulated genes for resistance to yellow rust inCzechoslavakian wheat cultivars [J]. Cereal rusts Bulletin,1987,15:79-84
    [7] Bennet F G A. Resistance to powdery mildew in wheat, a review of its use in agricultureand breeding programs [J]. Plant Pathology,1984,33:279-300
    [8] Ben-David R,Xie W L,Pelet Z,et al. Identification and mapping of PmG16,a powderymildew resistance gene derived from wild emmer wheat. Theor Appl Genet,2010,121:499–510
    [9] Biffen R H. Mendel's law of inheritance and wheat breeding [J]. Agric Science,1905,1:4-48
    [10] Botstein D R,White R L,Skolnick M. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms [J]. Am J Hum Genet,1980,32:314-331
    [11] Bouws H,Finckh M. Effects of strip intercropping of potatoes with non-hosts on lateblight severity and tuber yield in organic production [J]. Plant Pathology,2008,57:916-927
    [12] Browning J,Frey K. Multiline cultivars as a means of disease control [J]. Annual Reviewof Phytopathology,1969,7:355-382
    [13] Budak H,Shearman R C,Parmaksiz I,et al. Comparative analysis of seeded andvegetative biotype buffalo grasses based on phylogenetic relationship using ISSRs, SSRs,RAPDs and SRAPs [J]. Theor Appl Genet,2004,109:280-288
    [14] Cao Z J,Deng Z Y,Wang M N,et al. Inheritance and molecular mapping of an alienstripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line [J].Plant Science,2008,174:544-549
    [15] CenciA,D Ovidio R,Tanzarella O A,et al. Identification of molecular markers linked toPm13,an Aegilops longissima gene conferring resistance to powdery mildew in wheat.Theor Appl Genet,1999,98:448-454
    [16] Chague V,Fahima T,Dahan A,et al. Isolation of microsatellite and RAPD markersflanking the Yr15gene of wheat using NILs and bulked segregant analysis [J]. Genome,1999,42:1050-1056
    [17] Chen X M, Line R F. Gene action in wheat cultivars for durable, high-temperature,adult-plant resistance and interaction with race-specific, seedling resistance to Pucciniastriiformis [J]. Phytopathology,1995,85:567-572
    [18] Chen X M,Line R F,Leung H. Genome scanning for resistance-gene analogs in rice,barley, and wheat by high-resolution electrophoresis [J]. Theor Appl Genet,1998,97:345-355
    [19] Chen X M,Soria M A,Yan G P,et al. Development of sequence tagged site and cleavedamplified polymorphic sequence markers for wheat stripe rust resistance gene Yr5[J].Crop Science,2003(3):601-605
    [20] Cheng P,Chen X M. Molecular mapping of a gene for stripe rust resistance in springwheat cultivar IDO377s [J]. Theor Appl Genet,2010,121(1):195-204
    [21] Chin K M,Wolfe M S. The spread of Erysiphe graminis f.sp. hordei in mixtures of barleyvarieties [J]. Plant Pathology,1984,33:89-100
    [22] Cox C M,Garrett K A,Bowden R L,et al. Cultivar mixtures for the multaneousmanagement of multiple diseases tanspot and leaf rust of wheat [J]. Phytopathology,2004,94(9):961-969
    [23] Cox R D. Genetics of slow rusting in cereals [J]. Phytopathology,1981,71:989-993
    [24] Dedryver E,Jubier M E,Thouvenin J,et al. Molecular markers linked to the leaf rustresistance gene Lr34in different wheat cultivars [J]. Genome,1996,39:830-835
    [25] Dileone J,Mundt C. Effect of wheat cultivar mixtures on populations of Pucciniastriiformis races [J]. Plant Pathology,1994,43(5):917-930
    [26] Dubin H J,Johnson R,Stubbs RW. Postulated genes for resistance to stripe rust inselected CIMMYT and related wheats [J]. Plant Disease,1989,73:472-475
    [27] Dyck P L,Johnson R. Temperature sensitivity of genes for resistance in wheat toPuccinia recondita [J]. Can J Plant Pathol,1983,5:229-234
    [28] Eriksson,J. Uberie spezialisierung des Parsritismus beiden Getreiderost Pilzen [J]. Ber.Dtseh. Bot Ges.,1894,12:292-331
    [29] Fang Z D. Physiological specialization of Puccinia glumarum Erikss and Henn in China[J]. Phytopathlogy,1944,34:1020-1024
    [30] Feng J,Zhang Z Y,Lin R M,et al. Postulation of seedling resistance genes in20wheatcultivars to yellow rust (Puccinia striiformis f. sp. tritici)[J]. Agricultural Sciences inChina.2009,8(12):1429-1439
    [31] Finckh M R,Mundt C C. Plant competition and disease in genetically diverse wheatpopulations [J]. Oecologia,1992,91:82-92
    [32] Finckh M R. Integration of breeding and technology into diversification strategies fordisease control in modern agriculture [J]. European Journal of Plant Pathology,2008,121(3):399-409
    [33] Finckh M R,Gacek E S,Czembor H J,et al. Host frequency and density effects onpowdery mildew and yield in mixtures of barley cultivars [J]. Plant Pathol,1999,48:807-816
    [34] Finckh M R,Mundt C C. Stripe rust,yield,and plant competition in wheat cultivarmixtures [J]. Phytopathology,1992,82:905-913
    [35] Fu D L,Uauy C,Distelfeld S,et al. A kins re-start gene confers temperature-dependentresistance to wheat stripe rust [J]. Science,2009,323:1357-1360
    [36] Frey K J,Maldonado U. Relative productivity of homogeneous and heterogeneous oatcultivars in optimum and suboptimum environments [J]. Crop Science,1967,7:532-535
    [37] Francis H A,Leitch A R,Koebner R M D. Conversion of a RAPD-generated PCRproduct,containing a novel dispersed repetitive element,into a fast and robust assay forthe presence of rye chromatin in wheat [J]. Theor Appl Genet,1995,90(5):636-642
    [38] Garrett K A,Nundt C C. Epidemiology in mixed host populations [J]. Phytopathology,1999,89:984-990
    [39] Griffey C A, Das M.Inheritance of adult-plant resistance to powdery mildew in Knox62and Massey winter wheats [J]. Crop Sciences,1994,34:641-646
    [40] Gustalaon G D,Shaner G.influence plant age on the expression slow-mildewingresistance in wheat [J].Phytopathology,1982,72:746-749
    [41] He R L,Chang Z J,Yang Z J,et al. Inheritance and mapping of powdery mildewresistance gene Pm43introgressed from Thinopyrum intermedium into wheat [J]. TheorAppl Genet,2009,118:1173-1180
    [42] Herrera-Foessel S A,Lagudah E S,Huerta-Espino J,et al. New slow-rusting leaf rust andstripe rust resistance genes Lr67and Yr46in wheat are pleiotropic or closely linked [J].Theor Appl Genet,2011,122:239-249
    [43] Hadi Bux1,Muhammad Ashraf,Xianming Chen,et al. Effective genes for resistance tostripe rust and virulence of Puccinia striiformis f. sp. tritici in Pakistan [J]. AfricanJournal of Biotechnology,2011,10,5489-5495
    [44] Hovm ller M S. Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheat [J]. Plant Breed,2007,126:225-233
    [45] Huang X Q,Hsam S L K,Zeller F J. Chromosomal location of Powdery mildewresistance genes in Chinese whea(tTriticum aestivum L.em.Thell.)landraces Xiaobaidongand Fuzhuang30[J]. J Genet Breed,2000,54:311-317
    [46] Huang X Q,Hsam S L K,Zeller F J. Chromosomal location of genes for resistance topowdery mildew in common wheat (Triticum aestivum L.em.Thell.)4.Gene Pm24inChinese landrace Chiyacao [J]. Theor Appl Genet,1997,95:950-953
    [47] Huang L,Zhang L Q,Liu B L,et al. Molecular tagging of a stripe rust resistance gene inAegilops tauschii [J]. Euphytica,2011,179:313-318
    [48] James W C,Shi C S,Callbeck L C,et al. Interplot interference in field experiments withlate blight of potato(Phytophthora infestans)[J]. Phytopathology,1973,63:1269-1275
    [49] Ji J H,Qin B,Wang H Y,et al. STS markers for powdery mildew resistance gene Pm6in wheat [J]. Euphytica,2008,163:159-165
    [50] Jin Y,Szabo L J,Carson M. Century-Old Mystery of Puccinia striiformis life historysolved with the identification of berberis as an alternate host [J]. Phytopathology,2010,100:432-435
    [51] Jin Y. Role of Berberis spp. as alternate hosts in generating new races of Pucciniagraminis and P. striiformis [J]. Euphytica,2011,179:105-108
    [52] Johnson R. The concept of durable resistance [J]. Phytopathlogy.1979,69:198-199
    [53] Johnson R. Durable resistance,definition of genetic control and attainment in plantbreeding [J]. Phytopathology,1981,71:567-568
    [54] Johnson R. Durable resistant to yellow (stripe) rust in wheat and its implication in plantbreeding: In breeding strategies for resistance to the rusts of wheat [J]. N.W.Simmonds andRejaram Technical Editors,1990:63-75
    [55] Kang Z S,Zhao J,Han D J,et al. Status of wheat rust research and control in China [M].BGRI2010Technical Workshop,2010,30-31:1-21
    [56] Lannou C,C de Vallavieille-Pope,H Goyeau. Deduced resistance in host-mixtures and itseffect on disease control in computer-simulated epidemics [J]. Plant Pathology,1995,44:478-489
    [58] Lagudah E S,McFadden H,Singh R P,et al. Molecular genetic characterization of theLr34/Yr18slow rusting resistance gene region in wheat [J]. Theor.Appl.Genet,2006,114:21-30
    [59] Li G Q,Li Z F. Molecular mapping of stripe rust resistance gene YrCH42in Chinesewheat cultivar Chuanmai42and its allelism with Yr24and Yr26[J]. Theor Appl Genet,2006,112(8):1434-1440
    [60] Li Q,Chen X M,Wang M N,et al. Yr45,a new wheat gene for stripe rust resistance onthe long arm of chromosome3D [J]. Theor Appl Genet,2011,122:189-197
    [61] Li G,Fang T,Zhang H,et al. Molecular identification of a new powdery mildewresistance gene Pm41on chromosome3BL derived from wild emmer(Triticum turgidumvar. dicoccoides)[J]. Theor Appl Genet,2009,119:531-540
    [62] Li G,Gao M,Yang B. Gene for gene alignment between the Brassica and Arabidopsisgenomes by direct transcriptome mapping [J]. Theor Appl Genet,2003,107(1):168-180
    [63] Li M J,Feng J,Cao S Q,et al. Postulation of Seedlings Resistance Genes to Yellow Rustin Commercial Wheat Cultivars from Yunnan Province in China [J]. Agricultural Sciencesin China,2011,10(11):1723-1731
    [64] Li W,Li D,Twieg E,et al. Optimized quantification of unculturable candidatusliberibacter spp. in host-plants using realtime PCR [J]. Plant Disease,2008,92:854-861
    [65] Li Z F,Xia X C,Zhou X C,et al. Seedling and slow rusting resistances to stripe rust inChinese common wheat [J]. Plant Disease,2006,90:1302-1312
    [66] Lin F,Chen X M. Genetics and molecular mapping of genes for race-specific all-stageresistance and non-race-specific high-temperature adult-plant resistance to stripe rust inspring wheat cultivar Alpowa [J]. Theor Appl Genet,2007,114:1277-1287
    [67] Lin F,Chen X M. Molecular mapping of genes for race-specific overall resistance tostripe rust in wheat cultivars Express [J]. Theor Appl Genet,2008,116:797-806
    [68] Line R F. Stripe rust of wheat and barley in North America: a retrospective historicalreview [J]. Annu Rev Phytopathology,2002,40:75-118
    [69] Liu Z,Sun Q,Ni Z,et al. Development of SCAR markers linked to the Pm21geneconferring resistance to powdery mildew in common wheat. Plant Breeding,1999,118(3):215-219
    [70] Loegering W Q,Burton C H. Computer generated hypoythetical genotypes for reactionand pathogenicity of wheat cultivars and cultures of Puccinia graminis tritici [J].Phytopathology,1974,64:1380-1384
    [71] Luo P G,Luo H Y,Chang Z J,et al. Characterization and chromosomal location of Pm40in common wheat: a new gene for resistance to powdery mildew derived from Elytrigiaintermedium [J]. Theor Appl Genet,2009,118:1059-1064
    [72] Ma Z Q,We i J B,Cheng S H. PCR based markers for the powdery mildew resistancegene Pm4a in wheat [J]. Theor Appl Genet,2004,109:140-145
    [73] Ma C Y,Feng J,Gan A H,et al. Genetic analysis of Chinese differential cultivar earlypremium for yellow rust resistance genes [J]. Int. J. Agric. Biol.,2011,13:683-688
    [74] Ma J X,Zhou R H,Dong Y S,et al. Molecular mapping and detection of the yellow rustresistance gene Yr26in wheat transferred from Triticum turgidum L. using microsatellitemarkers [J]. Euphytica,2001,120:219-226
    [75] Ma H,Kong Z,Fu B,et al. Identification and mapping of a new powdery mildewresistance gene on chromosome6D of common wheat [J]. Theor Appl Genet,2011,123(7):1099-1106
    [76] Ma H,Singh R R. Expression of adult resistance to stripe rust at different growth stagesof wheat [J].Plant Disease,1996,80:375-379
    [77] Maqsood Qumar,Dilnawaz Ahmad,Asad Hussain,et al. Postulation of stripe rustresistant genes in some Australia bread wheat cultivars and their response to temperature[J]. Pak J Bot,2008,40(6):2573-2585
    [78] McIntosh R A,Devos K M,Dubcovsky J,et al. Catalogue of gene symbols for wheat:2004supplement [online]. http://wheat.pw.usda.gov/ggpages/wgc/2004upd.html
    [79] McIntosh R A,Devos K M,Dubcovsky J,et al. Catalogue of gene symbols for wheat:2005supplement [online]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html
    [80] McIntosh R A,Devos K M,Dubcovsky J,et al. Catalogue of gene symbol for wheat:2007supplement. http://wheat.pw.usda.gov/ggpages/awn/53/Textfiles/WGC.html
    [81] McIntosh R A,Dubcovsky J,Rogers W J,et al. Catalogue of gene symbols for wheat:2009supplement. Online: http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009.pdf
    [82] Mohler V,Jaboor A. Allele-specific amplification of polymorphic sites for the detectionof powdery mildew resistance loci in cereals. Theor Appl Genet,1996,93:1078-1082
    [83] Mohler V,Hsam S L K,Zeller F J,et al. An STS marker distinguishing the rye derivedpowdery mildew resistance alleles at thePm8/Pm17locus of common wheat. PlantBreeding,2001,120:448-450
    [84] Mundt C C. Use of multiline cultivars and cultivar mixtures for disease management [J].Annu.Rev.Phytopathology,2002,40:381-410
    [85] Mundt C C. Use of host genetic diversity to control cereal diseases [J]. Implications forrice blast,1994,293-308
    [86] Mundt C C,Rophy L S,Schmitt M E. Disease severity and yield of pure line wheatcultivars and mixtures in the presence of eyespot,yellow rust,and their combination [J].Plant Pathol,1995,44:173-182
    [87] Matinelli J A,Brown J K M,Wolfe M S. Effects of barley genotype on induced resistanceto powdery mildew [J]. Plant Pathology,1993,42:195-202
    [88] Nasu S,Suzuki J,Ohta R,et al. Search for and analysis of single nucleotidepolymorphisms (SNPs) in rice (Oryza sativa,Oryza rufipogon) and establishmentof SNP markers [J]. DNA Res,2002,9:163-171
    [89] Niu J S,Wang B Q,Wang Y H,et al. Chromosome location and microsatellite markerslinked to a powdery mildew resistance gene in wheat line―Lankao90(6)‖. PlantBreeding,2008,127:346-349
    [90] Ochoa J B,Danial D L,Paucar B. Virulence of wheat yellow rust races and resistancegenes of wheat cultivars in France [J]. Euphytica,2007,153:287-293.
    [91] Pathan A K,Wellings C R,Bariana H S,et al. Evaluation of seedling and adult plantresistance in European wheat cultivars to Australian isolates of Puccinia striiformis f. sp.tritici [J]. Euphytica,2008,163:283-301
    [92] Peng J H,Fahima T,Roeder M S,et al. High-density molecular map of chromosomeregion harboring stripe-rust resistance genes YrH52and Yrl5derived from wild emmerwheat,Triticum dicoccoides [J]. Genetica,2000,109(3):199-210
    [93] Peng J H,Fahima T,R der M S,et al. Microsatellite high-density mapping of the striperust resistance gene YrH52region on chromosome1B and evaluation of itsmarker-assisted selection in the F2generation in wild emmer wheat [J]. New Phytologist,2000,146:141-154
    [94] Perwaiz M S,Johnson R. Genes for resistance to yellow rust in seedlings of wheatcultivars from Pakistan tested with British isolates of Puccinia striiformis [J]. PlantBreeding,1986,97:289-296
    [98] Poeder A G. Plant community diversity herbivore movement,and an insect-transmitteddisease of maize [J]. Ecology,1987,68:1658-1669
    [99] Qayoum A,Line R F. High-temperature adult plant resistance to stripe rust of wheat [J].Phytopathology,1985,75:1121-1125
    [100] Rafalski A. Applications of single nucleotide polymorphisms in crop genetics [J]. CurrentOpinion in Plant Biology,2002,5:94-100
    [101] Robert O,Abelard C,Dedryver F. Identification of molecular markers for the detection ofthe yellow rust resistance gene Yr17in wheat [J]. Molecular Breeding,1999,5:167-175
    [102] Roelfs A P. Effects of barberry eradication on stem rust in the United States [J]. PlantDisease,1982,66:177-181
    [103] Schachermayr G,Siedler H,Gale M D,et al. Identification and localization of molecularmarkers linked to the Yr9leaf rust resistance gene of wheat [J]. Theor Appl Genet,1994,88:110-115
    [104] Singh H. Genes for race-specific resistance to yellow rust (Puccinia striiformis) inIndian wheat cultivars [J]. Plant pathology,1990,39:424-433
    [105] Singh R P, Rajaram S. Eighth International Wheat Genetics Symposium [M]. In: Li Z S,Xin Y Z.1993. Beijing: China Agricultural Sciences. And technology Press,901-905
    [106] Sharma S,Louwers J M,Karki C B,et al. Postulation of resistance genes to yellow rustin wild emmer wheat derivatives and advanced wheat lines from Nepal [J]. Ephytica,1995,81:271-277
    [107] Smithson J B,Lenne J M. Varietial mixtures: a viable strategy for sustainable productivityin subsistence agriculture [J]. Ann.Appl Biol,1996,128:127-158
    [108] Sui X X,Wang M N,Chen X M. Molecular mapping of a stripe rust resistance gene inspring wheat genotype Zak‘[J]. Phytopathlogy,2009,99:1209-1215
    [109] Stakman EC. The black stem rust and the barberry. In: yearbook of the United States.Department Agriculture,Washington Government Printing office,Washington D C,1919,75-100
    [110] Uauy C,Brevis J C,Chen X M,et al. High-temperature adult-plant (HTAP) striperust resistance gene Yr36from Triticum turgidums sp. dicoccoidesis closely linked to thegrain protein content locus Gpc-B1[J]. Theor Appl Genet,2005,112:97-105
    [111] Vallavieille-Pope C De. Specific resistance factors to yellow rust in seedlings of someFranch varieties and races of P.striiformis West in France [J]. Agronomic,1990,2:103-113
    [112] Vanden B F,Verhaar M A,Buiel A A M,et al. Focus expansion in plant disease. IV.Expansion rates in mixtures of resistant and susceptible host [J]. Phytopathlogy,1990,80:598-602
    [113] Wan A M,Zhao Z H,Chen X M,et al. Wheat stripe rust epidemics and virulence ofPuccinia striiformis in China in2002[J]. Plant Disease,2003,88(8):896-904
    [114] Wang B T,Hu X P,Li Q,et al. Development of race-specific SCAR markers for detectionof Chinese races CYR32and CYR33of Puccinia striiformis f. sp. tritici [J]. PlantDisease,2010,94(2):221-228
    [115] Wang C M,Zhang Y P,Han D J,et al. SSR and STS markers for wheat stripe rustresistance gene Yr26[J]. Euphytica,2008,159:359-366
    [116] Wei H,Liu Z J,Zhu J,et al. Identification and genetic mapping of Pm42, a new recessivewheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var.dicoccoides)[J]. Theor Appl Genet,2009,119:223-230
    [117] William M,Singh R P,Huerta-Espino J,et al. Molecular marker mapping of leaf rustresistance gene Lr46and its association with stripe rust resistance gene Yr29in wheat [J].Phytopathology,2003,93:153-159
    [118] Wellings C R,McIntosh R A. Puccinia striiformis f.sp tritici in Australia:pathogenicchanges during the first10years [J]. Plant Pathology,1990,39:316-325
    [119] Wolfe M S. The current status and prospects of multiline cultivars and variety mixtures fordisease resistance [J]. Annual Review of Phytopathology,1985,23(1):251-273
    [120] Wolfe M S,Barrett J A. Population genetics of powdery mildew epidemics in Agriculture[J]. Annals of the New York. Academy of Sciences,1977,287:151-163
    [121] Wolfe M S. Variety mixture: Concept and value. In: variety mixture in theory andpractice,Wolfe M S(ed.)European union variety and species mixtures working group ofCOST action817[M]. online at www scri.sari.ac.uk/Tipp
    [122] Wolfe M S. Crop strength through diversity [J]. Nature,2000,46:681-682
    [123] Xu H X,Yao G Q,Xiong L,et al. Identification and mapping of Pm2026: a recessivepowdery mildew resistance gene in einkorn (Triticum monococcum L.)[J]. Theor ApplGenet,2008,117:471-477
    [124] Xu X D,Feng J,Lin R M,et al. Postulation of stripe rust resistance genes in44Chinesewheat cultivars [J]. International Journal of Agriculture&Biology,2011,655-670
    [125] Xu W G,Li C X,Hu L,et al. Molecular mapping of powdery mildew resistance genePmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai22[J]. Mol Breed,2010,26:31–38
    [126] Zeng S M,Luo Y. Long distance spread and inter regional epidemics of wheat stripe rustin China [J]. Plant Disease,2006,90(8):980-988.
    [127] Zhang S Y,Xu Z Q,Wang R,et al. Genetics and Molecular Mapping of Stripe RustResistance Gene YrShan515in Chinese Wheat Cultivar Shan515[J]. AgriculturalSciences in China,2011,10(4):553-559
    [128] Zhu Y Y,Chen H,Fan J,et al. Genetic diversity and disease control in rice [J]. Nature,2000,406:718-722
    [129]白玉路,孙权,张春宇,等.美国西北部59个小麦品种(系)抗条锈病基因分子检测及对中国条锈菌系抗性鉴定[J].中国农业科学,2010,43(6):1147-1155
    [130]曹克强,曾士迈.小麦品种混合种植的抗病增产作用[J].麦类作物学报,1992,(3):47-48
    [131]曹克强,曾士迈.小麦混合品种对条锈、叶锈及白粉病的群体抗病性研究[J].植物病理学报,1994,24(3):21-24
    [132]曹克强,曾士迈.品种混合种植的防病保产作用[J].植物保护,1990,16(2):4648
    [133]曹世勤,郭建国,骆惠生,等.甘肃小麦白粉病抗源材料的筛选及抗病基因库的组建[J].植物保护,2008,34(1):49-52
    [134]曹世勤,骆惠生,伍翠平,等.193份甘肃省小麦地方品种资源对白粉病的抗性评价[J].甘肃农业科技,2010,5:8-10
    [135]曹世勤,张勃,李明菊,等.甘肃省50个主要小麦品种(系)苗期抗条锈基因推导及成株期抗病性分析[J].作物学报,2011,37(8):1360-1371
    [136]曹世勤,骆惠生,武翠平,等.两个陇南冬小麦品种苗期抗白粉病性遗传分析[J].植物保护,2010a,36(2):133-135
    [137]曹世勤,骆惠生,武翠平,等.冬小麦新品系93保4-4对条锈菌和白粉菌苗期抗性遗传分析[J].甘肃农业大学学报,2010b,45(2):38-41
    [138]曹世勤,骆惠生,金明安,等.2010年甘肃陇南麦区小麦白粉病发生特点及今后防控策略[J].中国植保导刊,2011,31(11):24-26
    [139]曹世勤.小麦条锈菌条中32号及水14致病类型毒性基因分析[J].甘肃农业科技,2008,6:5-7
    [140]曹世勤,金社林,段霞瑜,等.甘肃中部麦区小麦条锈病越夏调查及品种抗性变异监测结果初报[J].2011,37(3):133-138
    [141]曹世勤,骆惠生,金社林,等.甘肃天水小麦白粉菌越夏及有性时期在侵染循环中的作用[J].植物保护,2011,37(1):115-119
    [142]曹世勤,金社林,贾秋珍,等.小麦慢条锈品种成株期抗性组分分析[J].植物保护,2006,32(4):39-42
    [143]曹学仁,周益林,段霞瑜,等.我国主要麦区101个小麦品种(系)的抗白粉病基因推导[J].麦类作物学报,2010,30(5):948-953
    [144]曹丽华,康振生,郑文明,等.小麦条锈菌条中31号生理小种SCAR检测标记的建立[J].菌物学报,2005,24(1):98-103
    [145]曹张军,井金学,王美南,等.贵农22抗条锈性遗传分析[J].西北植物学报,2004,24(6):991-996
    [146]柴春月,刘红彦,伊艳杰,等.小麦抗白粉病基因Pm23分子标记的初步鉴定.河南农业科学,2006,5:47-50
    [147]程颖,宋伟,刘志勇,等.小麦品种贵农21抗条锈病基因的SSR标记[J].作物学报,2006,32(12):1867-1872
    [148]陈万权,胡长程.我国28个小麦品种抗叶锈基因的推导[J].作物学报,1993,19(3):268-275
    [149]陈万权,王剑雄.76个小麦种质资源抗叶锈及秆锈基因初步分析[J].作物学报,1997,23(6):655-663
    [150]陈万权,秦庆明,陈扬林,等.我国40个小麦品种抗叶锈性研究[J].植物病理学报,2001,31(1):16-25
    [151]陈企村,朱有勇,李振岐,等.不同品种混种对小麦产量及条锈病的影响[J].中国生态农业学报,2009,17(1):29-33
    [152]陈扬林,谢水仙,洪锡午,等.阿坝州小麦条锈病秋季菌源控制的初步研究[J].植物保护学报,1988,15(4):217-222
    [153]陈善铭,周嘉平,李瑞碧,等.华北冬小麦条锈病流行规律研究[J].植物病理学报,1957,3(1):63-85
    [154]陈峰,蔺瑞明,高乾坤,等.中国小麦条锈菌鉴别寄主维尔对条锈病的温敏抗性研究[J].植物保护,2008,34(6):85-87
    [155]陈吉宝,景蕊莲,员海燕,等.小TaDREB1基因的单核苷酸多态性分析[J].中国农业科学,2005,38(12)2387-2394
    [156]陈国跃,陈华,魏育明,等.印度圆粒小麦抗条锈病新基因YrSph的遗传分析和SSR标记定位[J].植物病理学报,2011,41(6)611-617
    [157]赤国彤,乔桂霞,杨文香,等.39个小麦品种(系)抗小麦叶锈菌基因分析[J].植物病理学报,1994,24(1):54-57
    [158]邓怀义,鲁振超,邹亚暄,等.临夏州2005年小麦条锈病越夏调查[J].中国植保导刊,2005,25(12):32-33
    [159]杜秀蓂,翁池中.小麦白粉病在秋苗上的初侵染来源[J].江苏农业科学,1983,(8):39-41
    [160]董云,周祥椿,殷学贵,等.几个小麦持久抗条锈品种病情扩展动态研究[J].甘肃农业大学学报,2004,39(2):177-182
    [161]段霞瑜,盛宝钦,周益林,等.小麦白粉病菌生理小种的鉴定与病菌毒性的监测[J].植物保护学报,1998,25(1):31-36
    [162]房辉,朱有勇,王云月,等.品种多样性混合间栽田间种植模式研究[M].生物多样性持续控制作物病害理论与技术/朱有勇主编,云南科技出版社,2004
    [163]冯峰,曾士迈.小麦慢条锈品种抗性组分的研究[J].中国科学(B辑),1988,(1):51-59
    [164]冯晶,章振羽,蔺瑞明,等.小麦持久抗性品种Champlein的抗性遗传分析[J].植物保护,2010,36(6):31-35
    [165]高东,何霞红,朱有勇.农业生物多样性持续控制有害生物的机理研究进展[J].植物生态学报2010,34(9):1107–1116
    [166]郭世保,黄丽丽,康振生,等.小麦多品种混播控制条锈病的效果和机理研究[J].中国农业科学,2009,42(10):3485-3492
    [167]郭世保,黄丽丽,康振生,等.小麦品种混播条件下条锈病发生、扩展研究[J].中国生态农业学报,2010,18(1):106-110
    [168]郭爱国,刘颖超,朱之堉.河北省21个小麦品种抗叶锈基因的推导[J].河北农业大学学报,1993,16(1):59-62
    [169]仝淑玫,蔺瑞明,何月秋,等.小麦抗源Holdfast和Flinor抗条锈病主效、微效基因的遗传分析[J].中国农业科学,2006,39(11):2243-2249
    [170]淦爱华,蔺瑞明,徐世昌,等.中国小麦条锈菌鉴别寄主丰产3号抗条锈性遗传分析[J].植物保护学报,2006,33(4):369-373
    [171]韩俊,张连松,李根桥,等.从野生二粒小麦导入普通小麦的抗白粉病基因MlWE18分子标记定位.作物学报,2009,35(10):1791-1797
    [172]郝保军,王保通,李强,等.小麦条锈菌水源11类群的RAPD分析及SCAR标记的建立[J].植物病理学报,2010,40(1):1-6
    [173]郝晨阳,王兰芬,张学勇,等.我国育成小麦品种的遗传多样性演变[J].(中国科学(C辑)),2005,35(5):408-415
    [174]何家泌,宋玉立,张忠山,等.小麦白粉病及其防治I.小麦白粉病的分布、症状和危害[J].河南农业科学,1998(1):17-18
    [175]何家泌.小麦抗锈性遗传及抗锈育种[J].中国农业科学,1980,13(4):53-64
    [176]何霞红,朱书生,王海宁,等.马铃薯与玉米多样性种植生态防治病害的试验研究(英文)[J].2010,1(1):45-50
    [177]何世川,林代福,庞纯翠,等.贵州小麦白粉病初侵染源的探讨[J].植物保护学报,1984,11(3):214-216
    [178]侯茂林,盛承发.农田生态系统植物多样性对害虫种群数量的影响[J].应用生态学报,1999,10(2):245-250
    [179]胡琴,张秋萍,邓怀义,等.临夏地区小麦条锈菌越夏特点[J].植物保护,2007,33(1):94-97
    [180]胡茂林,陈洁,程晶晶,等.小麦品种N.Strampelli的抗条锈基因定位与分子作图[J].中国农业科学,2009,42(6):1972-1979
    [181]胡铁柱,李洪杰,解超杰,等.小麦品种―唐麦4号‖抗白粉病基因的分子标记与染色体定位[J].作物学报,2008a,34(7):1193-1198
    [182]胡铁柱,李洪杰,刘子记,等.普通小麦品种―豫麦66‖抗白粉病基因的鉴定与分子标记[J].作物学报,2008b,34(4):545-550
    [183]黄冲,郭洁滨,马占鸿,等.小麦品种混(间)种对小麦条锈病防治效果和产量影响研究[J].植物保护,2009,35(3):115-117
    [184]黄光明.陕甘青三省毗邻地区小麦条锈菌源考察[J].植物保护,1983,(2):14
    [185]霍治国,陈林,刘万才,等.中国小麦白粉病发生地域分布的气候分区[J].生态学报,2002,22(11):1873-1881
    [186]霍云凤,曹丽华,段霞瑜,等.河南省西部山区小麦白粉菌群体遗传多样性分析[J].植物保护学报,2010,37(6):481-486
    [187]贾继增.分子标记种质资源鉴定和分子育种[J].中国农业科学,1996,29(4):1-10
    [188]贾少锋,段霞瑜,周益林,等.小麦白粉菌ISSR分子标记体系构建及其分离菌株的多样性分析[J].植物保护学报,2007,34(5):493-499
    [189]贾秋珍,黄瑾,曹世勤,等.感染我国重要小麦抗源材料贵农22的条锈菌新菌系的发现及致病性初步分析[J].甘肃农业科技,2012,1:3-5
    [190]贾秋珍,金社林,曹世勤,等.2004~2009年甘肃省小麦条锈菌生理专化研究[J].中国农学通报,2011,27(9):85-90
    [191]贾秋珍,金社林,曹世勤,等.警惕小麦条锈菌条中33号的流行与危害[J].甘肃农业科技,2010,1:31-33
    [192]贾秋珍,金社林,曹世勤,等.2006~2007年甘肃省小麦条锈菌生理小种监测结果[J].植物保护,2009,35(5):105-108
    [193]姜兆远.小麦品种混合种植控制白粉病效果的研究及RGA分析[D].硕士论文,吉林农业大学,2006
    [194]姜瑞中,商鸿生,蒲崇建,等,甘肃南部小麦条锈病越夏考察[J].西北农业大学学报,1993,21(2):9-11
    [195]金社林,李继平,贾秋珍,等.小麦条锈菌新小种条中31号及致病类型洛13-Ⅲ、洛13-Ⅷ毒性基因推导[J].甘肃农业科技,2006,10:33-35
    [196]江丽娜.小麦抗白粉新基因鉴定[D].硕士论文,华中农业大学,2008
    [197]康振生,曹丽华,郑文明,等.小麦条锈菌条中29号生理小种SCAR检测标记的建立[J].西北农林科技大学学报,2005,33(5):53-56
    [198]赖世龙,谢水仙.小麦持久抗性品种对中国条锈菌(系)抗病性特点的分析[J].植物保护学报,2002,29(1):35-40
    [199]李继平,金社林,曹世勤,等.小麦抗白粉病基因在甘肃的有效性及评价[J].植物保护学报,2003,30(1):30-34
    [200]李继平,金社林,史延春,等.小麦白粉病菌有性时期在侵染循环中的作用[J].植物保护,2006,26(3):41-44
    [201]李继平,李刚.甘肃省小麦白粉病流行区划初探[M].刘万才主编,小麦白粉病测报与防治技术研究.中国科学技术出版社,2000:152-155
    [202]李伯宁,周益林,段霞瑜.小麦白粉病与温度的定量关系研究[J].植物保护,2008,34(3):22-25
    [203]李伯宁.基于GIS的小麦白粉病越夏和越冬区划[D].硕士论文,中国农科院研究生院,2008
    [204]李隆业,华世贞,石遂兴.小麦白粉病基因在四川的有效性研究[J].西南农业大学学报,1987,9(1):15-20
    [205]李隆业,黄元江.小麦白粉病已知基因的效应及评价[J].中国农业科学,1990,23(3):20-26
    [206]李振岐.我国小麦品种抗条锈性丧失原因及其控制策略[J].大自然探索,1998,17(4):21-24
    [207]李振岐,曾士迈.小麦锈病及其防治[M].中国科技出版社,2002
    [208]李振岐,商鸿生.小麦锈病及其防治[M].上海:上海科学技术出版社,1989
    [209]李振岐,刘汉文.陕甘青毗邻地区小麦条锈病发生发展规律之初步研究[J].西北农学院学报,1956(4):l-18
    [210]李明菊.云南省小麦条锈病流行体系的研究现状[J].植物保护,2004,30(3):30-33
    [211]李强,贺苗苗,董海丽,等.小麦品种贵农22抗条锈基因的遗传分析及分子标记[J].植物病理学报,2011,41(5):495-501
    [212]李强,胡茂林,井金学,等.小麦持久抗条锈性品种N. strampelli苗期抗性遗传分析[J].植物病理学报,2008,38(5):521-525
    [213]李洋,袁喜丽,姚强,等.欧洲小麦品种Mega抗条锈病基因的遗传分析及分子标记[J].植物病理学报,2010,40,(1):51-56
    [214]李迅,肖悦岩,刘万才,等.小麦白粉病地理空间分布特征[J].植物保护学报,2002,29(1):41-46
    [215]李峰奇,韩德俊,魏国荣,等.黄淮麦区126个小麦品种(系)抗条锈病基因的分子检测[J].中国农业科学,2008,41(10):3060-3069
    [216]梁丹,杨芳萍,何中虎,等.利用STS标记检测CIMMYT小麦品种(系)中Lr34/Yr18、Rht-B1b和Rht-D1b基因的分布[J].中国农业科学,2009,42(1):17-27
    [217]刘逸卿.小麦白粉菌无性世代在侵染循环中的作用[J].植物病理学报,1985,15(3):191-192.
    [218]刘二明,朱有勇,肖放华,等.水稻品种多样性混栽持续控制稻瘟病研究[J].中国农业科学,2003,36(2):164-168
    [219]刘芳,袁鹰,高树仁,等.外源DNA花粉管通道途径导入机理研究进展[J].玉米科学,2007,15(4):59-62
    [220]刘瞳,张学博.水稻对稻瘟病抗性的遗传研究-福建主要籼稻抗源的基因分析[J].植物病理学报,1990,20(1):41-46
    [221]刘立毅,黄自强,余毓君.禾谷类作物品种混合的育种学评价[J].湖北农业科学,1991,(11):69
    [222]令利军,倪建福,张正英.花粉管通道转基因技术及在小麦分子育种中的应用[J].分子植物育种,2004,2(3):407-412
    [223]吕亮,陈其志,陈茂华,等.不同水稻品种间栽控制稻瘟病的田间试验[J].华中农业大学学报,2002,21(3):228-230
    [224]卢凯洁.天水市小麦品种系抗白粉病性鉴定[J].中国植保导刊,2004,24(4):16-18
    [225]陆师义,范桂芳,谢淑敏,等.小麦条锈病研究-小麦条锈菌的专化性研究[J].植物病理学报,1956,2(2):153-167
    [226]刘孝坤,洪锡午,谢水仙.陇南南部小麦条锈菌越夏的初步研究[J].植物病理学报,1984,14(1):9-15
    [227]刘孝坤.小麦条锈病抗条锈遗传研究结果初报[J].植物保护学报,1988,15(1):33-39
    [228]卢建春,王向东,金万有,等.临夏小麦条锈病流行及越夏特点[J].甘肃农业科技,2007,9:34-36
    [229]栾敖武,刘文祥,李青梅,等.陇东小麦条锈菌越夏菌量测定方法研究初报[J].植保技术与推广,1992,12(增):74
    [230]雷勃均,尹光初,卢翠华,等.外源野生大豆DNA导入栽培大豆及RAPD分子验证[J].中国科学(B辑),1994,23(7):707-713
    [231]马占鸿,石守定,王海光,等.我国小麦条锈菌既越冬又越夏地区的气候区划[J].西北农林科技大学学报,2005,33(增刊):11-13
    [232]马占鸿,石守定,姜玉英,等.基于GIS的中国小麦条锈菌越夏区气候区划[J].植物病理学报,2004,34(5):455-462.
    [233]马占鸿,石守定,姜玉英,等.基于GIS和地统计学研究小麦条锈菌越夏区气候区划[J].植物病理学报,2005,34(5):455-462
    [234]马占鸿,石守定,王海光,等.我国小麦条锈菌既越冬又越夏地区的气候区划[J].西北农林科技大学学报,2005,33(增刊):11-13
    [235]马青,王美楠,商鸿生,等.小麦慢锈性和高温抗锈性组分分析[J].西北农业大学学报,2002,30(4):51-54
    [236]马雨磊,骆惠生,贾秋珍,等.中梁22号小麦抗条锈基因的遗传分析[J].甘肃农业大学学报,2008,43(5):110-112
    [237]马强,罗培高,任正隆,等.两个抗小麦白粉病新基因的遗传分析与染色体定位[J].作物学报,2007,33(1):1-8
    [238]孟亚雄,仲军,马小乐,等.甘肃省小麦条锈病主要流行小种的RAPD分析及Su11-4小种SCAR标记建立[J].草业学报,2010,19(6):180-186
    [239]倪建福,欧巧明,令利军,等.小麦抗条锈新品系89144抗锈机理研究[J].植物保护,2006,32(1):30-34
    [240]牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J].植物病理学报,2000,3(2):122-128
    [241]牛永春,李振岐,商鸿生.条形柄锈菌赖草专化型和披碱草专化型[J].西北农业大学学报,1991,19(增刊):58-62
    [242]欧巧明,倪建福,崔文娟,等.高粱DNA导入引起小麦HMW-GS的变异及其品质改良和变异机理分析[J].中国粮油学报,2011,26(1):15-19
    [243]潘广,陈万权,刘太国,等.天水地区不同海拔高度小麦条锈菌越冬调查初报[J].植物保护,2011,37(2):103-106
    [244]潘娟娟,骆勇,黄冲,等.应用realtimePCR定量检测小麦条锈菌潜伏侵染量方法的建立[J].植物病理学报,2010,40(5):504-510
    [245]裴新梧,崔凯荣,孔英珍,等.导入高梁DNA选育丰产、抗逆小麦新品系及其RAPD分子验证[J].兰州大学学报(自然科学版),1999,35(2):130-135
    [246]彭化贤,刘波微,罗林明,等.间栽和混播对作物病害的防治效果[J].西南农业学报,2003,19(6):1058-1062
    [247]蒲崇建,张秋萍.甘肃文县开展小麦条锈病源头区综合治理成效显著[J].中国植保导刊,2006,26(11):15-17
    [248]秦琳,李杉,崔凯荣,等.小麦抗锈变异体的RAPD分子验证[J].西北植物学报,1997,17(6):22-26
    [249]任强,刘慧娟,陈洋,等.人工合成小麦CI191抗条锈病基因的鉴定及分子标记定位[J].作物学报,2010,36(5):721-727
    [250]司权民,张新心,段霞瑜,盛宝钦.小麦白粉病菌生理小种鉴定[J].中国农业科学,1987,20(5):64-70
    [251]沈丽,叶香萍,廖华明,等.小麦多品种混播对条锈病的控制及稳产作用研究[J].农业科学与技术(英文)2008,9(1):134-138
    [252]商鸿生,王利国,陆和平,等.小麦对条锈病高温抗病性表达规律的研究[J].植物保护学报,1997,24(2):97-100
    [253]商鸿生,马青.陕甘小麦品种及抗源的高温抗条锈性研究[J].西北农业大学学报,2000,28(1):101-104
    [254]商鸿生.小麦高温抗条锈性研究[J].中国农业科学,1998,29(2):143-148
    [255]邵振润,刘万才.我国小麦白粉病的发生现状与治理对策[J].中国农学通报,1996,12(6):21-23
    [256]邵映田,牛永春,朱立煌,等.小麦抗条锈病基因Yr10的AFLP标记[J].科学通报,2001,46(8):669-672
    [257]沈克全,杨作民,王小军,等.小麦单体系用于抗条锈基因定位研究[J].北京农业大学学报,1991,16(2):33-37
    [258]盛宝钦,周益林.小麦慢发抗性抗白粉病品种鉴定[J].北京农业科学,1990,8(3):43-46
    [259]盛宝钦,段霞瑜.对记载小麦成株白粉病0~9级法的改进[J].农业新技术,1991,(1):38-39
    [260]盛宝钦,段霞瑜,周益林,等.内蒙古地区小麦白粉病菌在野生植物上的寄生范围研究[J].内蒙古农业科技,1995a,(4):4-7
    [261]盛宝钦,向齐君,段霞瑜,等.吉林省小麦白粉病菌寄主范围研究[J].吉林农业科学,1995b,(2):47-50
    [262]盛宝钦,王剑雄,段霞瑜,等.小麦白粉病菌在黑龙江省野生植物上寄主范围的研究[J].黑龙江农业科学,1995c,(4):1-6
    [263]盛宝钦,段霞瑜,周益林,等.小麦白粉病菌对由前苏联引入的小麦近缘植物的侵染研究[J].新疆农业科学,1998,(1):18-20
    [264]石守定,马占鸿,王海光,等.基于GIS和地统计学研究小麦条锈菌越冬范围[J].植物保护学报,2005,32(1):29-32
    [265]沈瑛,朱培良,袁筱萍,等.中国稻瘟病菌的遗传多样性[J].植物病理学报,1993,23(4):309-313
    [266]沈其益,汪可宁.中国小麦条锈病流行规律研究现状和今后研究的商榷[J].植物保护学报,1962,l(4):393-402
    [267]司全民,张新心,段霞瑜,等.小麦白粉病菌生理小种鉴定[J].中国农业科学,1987,20(5):64-70
    [268]孙雁,周天富,王云月,等.辣椒玉米间作对病害的控制作用及其增产效应[J].园艺学报,2006,33(5):995-1000
    [269]陶家凤,沈言章,秦家忠,等.四川西部小麦白粉病的发生与病原菌生物学特性的观察[J].微生物学报,1976,16(4):318-327
    [270]陶家凤,文成敬,张敏,等.小麦白粉菌对几种禾本科植物侵染的观察[J].四川农业大学学报,1985,3(2):1-8
    [271]田月娥,黄静,李强,等.源于华山新麦草抗条锈病基因YrH122遗传分析和SSR标记[J].植物病理学报,2011,41(1):64-71
    [272]万安民.小麦条锈病发生及研究现状[J].世界农业,2000,(5):39-40
    [273]万安民,袁文焕,贾秋珍,等.1991~1996年我国小麦条锈菌生理专化研究[J].植物病理学报,1999,29(1):15-21
    [274]万安民,张忠军,金社林,等.湖北省西北部山区小麦条锈菌越夏研究简报[J].植物病理学报,2004,34(1):90-92
    [275]万安民,牛永春,徐世昌,等.持久抗条锈病小麦品种抗性特点及其在我国的利用价值[J].作物学报,2000,26(2):751-755
    [276]王保通,商鸿生.小麦高温抗条锈性的组织病理学和超微结构变化[J].植物保护学报,2003,30(2):119-124
    [277]王保通,商鸿生.小麦高温抗条锈性表达与木质素合成的关系[J].植物保护学报,1996,23(3):229-234
    [278]王保通.中国小麦条锈菌优势种群预测及主要流行菌系的AFLP指纹分析[D].博士论文,西北农林科技大学,2007
    [279]王凤乐,吴立人,万安民,等.陕甘川重要小麦品种抗条锈基因分析[J].作物学报,1994a,20(5):589-594.
    [280]王凤乐,吴立人,谢水仙,等.我国小麦重要抗源材料抗条锈基因推导及其成株抗病性分析[J].植物病理学报,1994b,24(2):175-180
    [281]王向东,杨海玲,罗惠荣,等.临夏州小麦条锈病越夏及消长规律研究[J].现代农业科技,2008(12):116-117
    [282]王立新,常利芳,段绍光,等.通过花粉管通道导入外源DNA创造抗白粉病小麦新种质[J].中国农业科学,2003,36(12):1576-1581
    [283]王利国,商鸿生,井金学.高温抗条锈品种的筛选和鉴定[J].西北农业学报,1995,4(1):35-38
    [284]王永芳,张军,崔润丽,等.利用花粉管通道转化谷子DNA基因获得转基因小麦[J].华北农学报,2009,24(2):17-21
    [285]王彦梅,钟冠昌,穆素梅,等.小麦品种―高优503‖抗条锈基因染色体定位[J].作物学报,2001,27(3):383-386
    [286]王玉元.染色体遗传中的一个不解之谜-B染色体[J].武汉植物学研究,1997,15(1):73-79
    [287]王吉庆,宋位中.小麦锈病-甘肃农作物病虫害[M].兰州:甘肃人民出版社,1982
    [288]王吉庆,宋位中.小麦锈病[M].兰州:甘肃人民出版社,1979
    [289]王吉庆,陆家兴,刘守俭,等.甘肃地区小麦条锈病病菌越夏规律的初步研究[J].植物病理学报,1965,8(1):1-8
    [290]王吉庆,宋位中,刘守俭.甘肃省小麦条锈病流行规律研究[M].甘肃省小麦条锈病研究专辑,甘肃省农科院植保所、甘肃省农科院情报所编印,1981,38-52
    [291]王秀娜.不同品种混合种植对白粉病的影响[D].硕士论文,中国农科院研究生院,2010
    [292]王岭岭,侯冬媛,王文立,等.小麦品系中梁93444的抗条锈性遗传分析与分子作图[J].植物保护学报,2011,38(2):109-115
    [293]王睿,张书英,徐中青,等.簇毛麦易位系V9125-2抗条锈基因YrWV的遗传分析和SSR分子标记[J].中国农业科学,2011,44(1):9-19
    [294]王万磊,刘勇,纪祥龙,等.小麦间作大蒜或油菜对麦长管蚜及其主要天敌种群动态的影响[J].应用生态学报,2008,19(6):1331-1336
    [295]王振英,赵红梅,洪敬欣,等.簇毛麦6VS上4个新分子标记的鉴定及与抗白粉病基因Pm21的连锁分析[J].作物学报,2007,33(4):605-611
    [296]汪可宁,洪锡午,司权民,等.我国小麦条锈菌生理专化研究[J].植物保护学报,1963,2(1):23-35
    [297]汪可宁,吴立人,孟庆玉,等.1975~1984年我国小麦条锈菌生理专化研究[J].植物病理学报,1986,16(2):79-85
    [298]汪华,杨立军,向礼波,等.408份小麦品种(系)白粉病抗性的评价[J].麦类作物学报,2011,31(3):544-548
    [299]伍玲,谭君,朱华忠,等.四川近年小麦区试品系中Yr5、Yr10和Yr15的分子标记检测[J].西南农业学报,2007,20(2):316-320
    [300]伍玲,夏先春,朱华忠,等. CIMMYT273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测[J].中国农业科学,2010,43(22):4553-4561
    [301]吴立人,杨华安,袁文焕,等.1985~1990年我国小麦条锈菌生理专化研究[J].植物病理学报,1993,23(3):269-274
    [302]邬建国,Orie L Loucks.自然均衡观与现代生态学理论生态学思想中的一场根本性变革[M].当代生态学博论,北京:中国科学技术出版社,1992.16-29
    [303]向齐君,段霞瑜,盛定钦,等.小麦白粉病菌子囊抱子释放和侵染实验[J].植物保护,1995,21(2):40
    [304]肖靖秀,周桂夙,汤利,等.小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J].植物营养与肥料学报,2006,12(4):517-522
    [305]肖靖秀,郑毅,汤利,等.小麦蚕豆间作系统中的氮钾营养对小麦锈病发生的影响[J].云南农业大学学报,2005,20(5):640-645
    [306]肖靖秀,曾广飞,汤利,等.小麦/蚕豆间作条件下硅对小麦白粉病发生的影响[J].中国农学通报,2011,27(1):229-233
    [307]谢水仙,陈扬林,陈万权,等.阿坝州小麦条锈病发生规律的研究[J].植物保护学报,1985,15(2):55-59
    [308]谢水仙,陈万权,陈扬林,等.陇南和阿坝地区小麦条锈菌传播的研究[J].植物病理学报,1992,22(2):138-141
    [309]谢水仙,汪可宁,陈扬林,等.我国小麦条锈菌传播与高空气流关系的初步研究[J].植物病理学报,1993,23(3):203-209
    [310]谢水仙,陈扬林,宋位中,等.陇东小麦条锈病发生规律调查[J].甘肃农业科技,1995,(5):34-36
    [311]谢水仙,陈万权,陈扬林,等.陇南和阿坝地区小麦条锈菌传播的研究[J].植物病理学报,1992,22(2):137-143
    [312]徐中青,张书英,王睿,等.小麦品系M8003-5抗条锈病基因遗传分析和分子作图[J].作物学报,2010,36(12):2116-2123
    [313]杨世诚,冉云.云南省小麦条锈菌越夏规律研究[J].中国农业科学,1986,(2):72-77
    [314]徐志,梅丽宏,李志英,等.利用AFLP分子标记和无毒基因构建小麦白粉菌遗传连锁图谱[J].植物病理学报,2009,39(1):16-22
    [315]薛飞,翟雯雯,段霞瑜,等.小麦地方品种小白冬抗白粉病基因分子标记[J].作物学报,2009,36(10):1806-1811
    [316]闫佳会,骆勇,潘娟娟,等.应用realtime PCR定量检测田间小麦条锈菌潜伏侵染的研究[J].植物病理学报,2011,41(6):610-616
    [317]杨敏娜,徐智斌,王美南,等.小麦品种中梁22抗条锈病基因的遗传分析和分子作图[J].作物学报,2008,34(7):1280-1284
    [318]杨文雄,杨芳萍,梁丹,等.中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J].作物学报,2008,34(7):1109-1103
    [319]杨芳萍,王忠伟,周祥椿,等.甘肃冬小麦品种(系)抗条锈基因Yr18的鉴定及其转育[J].西北农林科技大学学报,2011,39(3):61-66
    [320]杨悦,马东方,王文立,等.中梁93447抗条锈病基因遗传分析和分子作图[J].植物病理学报,2010,40(5):482-488
    [321]杨昌寿,孙茂林.对利用多样化抗性防治小麦条锈病的评价[J].西南农业学报,,1989,2:53-56
    [322]杨进成,刘坚坚,安正云,等.小麦蚕豆间作控制病虫害与增产效应分析[J].云南农业大学学报,2009,24(3):340-348
    [323]殷贵鸿,王建武,司伟锷,等.小麦抗条锈病基因YrZH84的RGAP标记及其应用[J].作物学报,2009a,35(7):1274-1281
    [324]殷贵鸿,李根英,何中虎,等.小麦新品种济麦22抗白粉病基因的分子标记与定位[J].作物学报,2009b,35(8):1425-1431
    [325]殷学贵,尚勋武,庞斌双,等. A-3中抗条锈新基因YrTp1和YrTP2的分子标记定位分析[J].中国农业科学,2006,39(1):10-17
    [326]殷学贵,张莹花,阎秋洁,等.小麦持久抗条锈品种斯汤佩利的遗传机制研究[J].植物遗传资源学报,2005,4(4):390-393
    [327]殷学贵,尚勋武,宋建荣,等.小麦品种里勃留拉的持久抗条锈性遗传机制研究[J].麦类作物学报,2006,21(2):147-150
    [328]袁文焕,张忠军,冯锋,等.小麦慢条锈性品种的筛选及小种专化性[J].中国农业科学,1995,28(3):35-40
    [329]袁军海,刘太国,陈万权.中国47个小麦新品种(系)苗期抗叶锈基因推导[J].中国农业科学,2007,40(9):1925-1935
    [330]岳爱琴,李昂,毛新国,等.小麦果聚糖合成酶基因6-SFT-A单核苷酸多态性分析及其定位[J].中国农业科学,2011,44(11):2216-2224
    [331]曾士迈.植物病理学研究文集(1948-2005)[M].中国农业出版社,2005
    [332]曾士迈.小麦条锈病的大区流行规律和流行区系[J].植物保护,1963,(1):1-13
    [333]张勃,骆惠生,黄瑾,等.冬小麦品种兰天17号抗条锈性遗传初步分析[J].甘肃农业科技,2011,(6):14-16.
    [334]张勃,郝保军,王保通,等.小麦条锈菌条中32号生理小种SCAR检测标记的建立[J].西北农林科技大学学报(自然科学版),2009,37(1):177-181。
    [335]张秋萍.甘肃省小麦条锈病综合治理初见成效[J].中国植保导刊,2005,25(11):17-19
    [336]张旭,臧宇辉,刘朝晖,等.小麦抗白粉病基因Pm17在亲本和F2代抗感集群中的RAPD分析[J].江苏农学院学报,1998,19(2):67-70
    [337]张宏,任志龙,胡银岗,等.陕麦139抗条锈病基因遗传分析[J].作物学报,2010,36(1):109-114
    [338]张连松,华为,关海英,等.野生二粒小麦导入普通小麦的抗白粉病基因MlWE29分子标记定位.作物学报,2009,35(6):998-1005
    [339]张先平,孙敏,邓根生,等.水稻多品种混合间栽控制稻瘟病研究[J].西北农业学报,2004,13(3):62-65
    [340]张重权,何霞红,王云月,等.云南粳稻区水稻品种多样性田间稻瘟病菌群体的遗传结构[J].中国水稻科学,2004,18(4):346-350
    [341]张新军,吕润海,梁卫理.麦类作物不同品种混合群体的生产性能评述[J].中国农学通报,2007,23(8):146-149
    [342]张志德,胡忠.以低位功能叶鉴定成株小麦对白粉病的抗性[J].植物保护.1989,5:44-45
    [343]张志德,李振歧,刘卿.四个小麦品种的慢白粉病抗性研究[J].植物病理学报,1994,24(3):197-201
    [344]章振羽,冯晶,白玉路,等.小麦重要抗源Holdfast抗条锈性遗传分析[J].中国农业大学学报,2011,16(5):1-5
    [345]翟雯雯,段霞瑜,周益林,等.我国小麦地方品种蚂蚱麦、小白冬麦、游白兰、红卷芒抗白粉病性遗传分析[J].植物保护,2008,34(1):37-40
    [346]赵多长.坚持综合治理,有效控制小麦条锈病流行为害[J].中国植保导刊,2007,27(10):17-19
    [347]赵宁娟,薛飞,王长友,等.小麦农家品种白葫芦抗白粉病基因的SSR分析[J].麦类作物学报,2010,30(3):411-414
    [348]赵杰,张宏昌,姚娟妮,等.中国小麦条锈菌转主寄主小檗的鉴定[J].菌物学报,2011,30(6):895-900
    [349]赵磊,孙振宇,黄冲,等.小麦品种混种对条锈病控制效果及产量影响的研究[J].中国农业大学学报,2010,15(5):49-54
    [350]仲军,孟亚雄,尚勋武,等.甘肃省小麦条锈菌流行小种的RAPD标记[J].分子植物育种,2010,8(3):469-472
    [351]仲军.甘肃省小麦条锈菌流行小种的RAPD标记[D].硕士论文,甘肃农业大学,2010
    [352]周桂夙,肖靖秀,郑毅,等.小麦蚕豆间作条件下蚕豆对钾的吸收及对蚕豆赤斑病的影响[J].云南农业大学学报,2005,20(5):779-782
    [353]周祥椿,杜久元,杨俊海.甘肃陇南小麦不同品种类型抗条锈性变化特点分析[J].植物病理学报,2003,33(6):550-554
    [354]周益林,段霞瑜,陈刚,等.40个小麦优良品种资源的抗白粉病基因推导[J].植物病理学报,2002,32(4):301-305
    [355]周光宇,黄俊麒,翁坚,等.农业分子育种,授粉后外源DNA导入植物的技术[J].中国农业科学,1998,21(3):1-6
    [356]朱有勇,陈海如,范静华,等.利用水稻品种多样性控制稻瘟病研究[J].中国农业科学,2003,36(2):521-527
    [357]朱有勇,陈海如,王云月,等.利用抗病基因多样性持续控制水稻病害[J].中国农业科学,2004,37(6):832-839
    [358]朱有勇,陈海如,王云月,等.利用抗病基因多样性持续控制水稻病害[J].中国农业科学,2004,37(6):832-839
    [359]朱有勇.生物多样性持续控制作物病害理论与技术[M].昆明:云南科技出版社,2004
    [360]朱有勇.遗传多样性与作物病害持续控制[M].科学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700