用户名: 密码: 验证码:
小麦族H、P、St和Y基因组遗传演化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族包含23个基本基因组,其中H、P、St和Y基因组在小麦族中占有十分重要的地位。在小麦族中,携带H、P、St和Y基因组的植物主要包括大麦属(Hordeum L.,H)、冰草属(AgropyronGaertn., P)和假鹅观草属(Pseudoroegneria L., St)等的二倍体和同源多倍体物种,以及同时含有其中两个或三个基因组的鹅观草属(Roegneria C. Koch., StY)、偃麦草属(Elytrigia Desv., StE)、披碱草属(Elymus L., StHY or StH)和以礼草属(Kengyilia Yen et J.L Yang, StPY)的所有异源多倍体物种。本试验主要以含H、P、St和Y基因组的二倍体和多倍体物种及其属间和种间天然杂种为材料,利用分子细胞遗传学、反转录转座子LTR序列分析等方法,探讨物种进化过程中H、P、St和Y基因组间的遗传演化关系。获得的主要结果如下:
     1、首次建立了能够区分St、P和Y基因组的GISH/FISH技术,并以大颖草(Kengyiliagrandiglumis Keng,StStPPYY)居群内的5个单株为材料,对St、P和Y基因组核型结构进行了分析。发现各基因组染色体在不同单株间均表现出染色体结构上的多态性,且主要发生在染色体的端部;在3个基因组的所有染色体中,1P、1St、3St、1Y、2Y和3Y上的多态性最高。这些结果对于小麦族野生植物资源的收集、保存、研究与利用具有重要的理论指导意义。
     2、为了研究环境因子对多倍体化后St、P和Y基因组间重排的影响,利用双色GISH方法对采自9个不同生态环境的梭罗草(Kengyilia thoroldiana,StStPPYY)居群进行了分析。结果发现,在不同基因组间,染色体相对较大的P基因组与染色体相对较小的St和Y基因组间有异源易位的发生,其中P和Y基因组间的异源易位频率为22.22%, P和St基因组间的异源易位频率为8.15%;而染色体相对较小的St和Y基因组间没有异源易位的发生;在生态环境对异源易位的影响上,采自高寒山地和草原草场环境的居群异源易位频率显著高于谷底和湖盆环境的居群(P<0.05);染色体易位类型和海拔高度间存在极显著的正相关(r=0.809, P<0.01),随着海拔高度的增加,居群的易位类型越复杂,说明自然环境在基因组的演化过程中发挥着重要作用。
     3、为了研究不同海拔高度对梭罗草物种P基因组内不同染色体参与异源易位的影响,对采自海拔4015m的居群Z2538和海拔4710m的居群Z2633进行了分析。结果显示,低海拔居群Z2538参与异源易位的是1P和7P染色体,而高海拔居群Z2633参与异源易位的是2P和5P染色体,进一步说明了自然环境对基因组不同染色体演化的影响是不同的。
     4、为了探讨多倍体物种的形成机理,以采自西藏的3个天然杂种为材料,分别命名为Ⅲ、Ⅳ和Ⅴ。根据育性,基因组构成,形态学和伴生植物结果综合推断,Ⅲ、Ⅳ为垂穗披碱草(Elymusnutans)和披碱草(Elymus dahuricus)间的天然杂种,Ⅴ为垂穗披碱草和短颖鹅观草(Roegneriabreviglumis)间的天然杂种。分子细胞遗传学分析发现,Ⅲ、Ⅳ为六倍体,各含有7条异源易位染色体;Ⅴ为五倍体,含有6条异源易位染色体;多价体主要是由非同源染色体St和Y配对形成或者是由大片段异源易位染色体形成;尽管3个天然杂种的平均c值间没有显著差异(P>0.05),但在基因组间,St-Y的c值显著高于St-H和H-Y,说明这3个基因组中St和Y基因组间具有较近的亲缘关系,这对探讨Y基因组的起源演化具有重要意义。进一步的分析表明,多倍体物种的形成不是通过一次简单的天然杂交、加倍形成的,而是一个复杂的网状进化过程,并通过不同基因组间不同染色体的结构重排并逐步达到遗传平衡后才能成为一个稳定的新物种。
     5、采用含H、P和St基因组的二倍体和同源多倍体,含St、Y基因组的异源多倍体,以及短柄草物种为材料,利用反转录转座子LTR序列进行分子系统发育和拷贝数多态性分析发现,H、P、St和Y这4个基因组间都存在一定的同源关系,这为进一步探讨小麦族不同基因组的遗传演化提供了一定的分子生物学基础。
There are23basic genomes in the tribe Triticeae, and the H, P, St, and Y genomes are importantgenomes of this group. The H, P, St, and Y genomes in Triticeae are mainly found in some diploid andautopolyploid species, for example, Hordeum L.(H genome), Agropyron Gaertn.(P genome),Pseudoroegneria L.(St genome), and some allopolyploid species, for eaxmple, Roegneria C. Koch.(StYgenomes), Elytrigia Desv.(StE genomes), Elymus L.(StH or StHY genomes), and Kengyilia Yen et J.LYang (StPY genomes). In order to study the genetic evolution relationship among H, P, St, and Ygenomes, some diploid and polyploid species including H, P, St, and Y genomes, and their naturalhybrids were ananlyzed in our study using molecular cytogenetics, LTR sequeces analysis ofretrotransposons and so on. The main results as follows:
     1. A GISH-FISH method was first developed to distinguish the St, P, and Y genomes, and thekaryotypes of five individuals from population Z1925of Kengyilia grandiglumis Keng (2n=6x=42,StStPPYY) were analyzed. The results showed that there were structural polymorphisms in all of thechromosomes from the three individual genomes. The polymorphisms were mainly found in theterminal regions of chromosomes, and infrequently near the centromeric region. Of all thechromosomes,1P,1St,1Y,2Y,3St and3Y showed the highest polymorphisms. The polymorphismswithin the individual chromosomal structures provided important guidance on the collection,preservation, study and utilization of wild species in Triticeae.
     2. To investigate intergenomic rearrangements after polyploidization of Triticeae species and todetermine the effects of environmental factors on them, nine populations of a typical polyploid Triticeaespecies, Kengyilia thoroldiana (Keng) J.L.Yang et al.(2n=6x=42, StStPPYY), collected from differentenvironments, were studied using genome in situ hybridization (GISH). We found that intergenomicrearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) andY (22.22%), in polyploid species via various types of translocations compared to their diploidprogenitors. However, no translocation was found between the relatively small St and Y chromosomes.Environmental factors may affect rearrangements among the three genomes. Chromosometranslocations were significantly more frequent in populations from cold alpine and grasslandenvironments than in populations from valley and lake-basin habitats (P<0.05). There is a significantpositive correlation between types of chromosome translocations and altitude (r=0.809, P<0.01). Thetypes of chromosomal translocations become more complex with increasing altitude, which indicatedthat environment play an important role in genome evolution.
     3. To investigate the effects of different altitudes on different P chromosomes involving inintergenomic translocations in K. thoroldiana, the two populations Z2538from4015m and Z2633from4710m were analyzed in our study. The results showed that P chromosomes involving in intergenomictranslocations are1P and7P chromosomes in population Z2538, while2P and5P chromosomes inpopulation Z2633, which indicated that the effects of environment on different chromosomes evolution of the same genome were different.
     4. To discuss formation mechanisms of polyploid species, three natural hybrids collected inTibet, which were named Ⅲ, Ⅳ, and Ⅴ, were studied. Based on the fertility, genomes constitute, andmorphology and their accompanied species, it was inferred that Ⅲ and Ⅳ were natrual hybrids betweenElymus nutans and Elymus dahuricus, and hybrid Ⅴ was natrual hybrid between Elymus nutans andRoegneria breviglumis (2n=28, StStYY). Ⅲ and Ⅳ were hexaploids hybrids including7translocationchromosomes separately, and hybrid Ⅴ was pentaploid hybrid including6translocation chromosomesusing cytogenetics. Multivalent was mainly formed by St-Y chromosomes or large fragmenttranslocation chromosomes respectively. Although there were no significant differences among themean c values of these three hybrids (P>0.05), the c value of (St-Y) genomes was significantly higherthan that of (St-H),(H-Y), so closest relationship occur between St and Y genomes among the threegenomes, which is significant for study the origin and evolution of Y genome. The further analysissuggested that polyploid species become a stable and new species not by only one simple natrualhybridization and chromosomes doubling, but complex reticulate evolution.
     5. Some diploid and polyploid species including H, P, St, and Y genomes, allopolyploid speciesincluding St and Y genomes, and Brachypodium sylvaticum were used as materials and studied bymolecular phylogenetic analysis and copy numbers variation of LTR sequeces of retrotransposons. Wefound that some relationhip occurred among H, P, St, and Y genomes, which provided molecularbiology basis for further research on genetic evolution of different genome in Triticeae.
引文
1.蔡联炳,冯海.生鹅观草属4个种核型与进化的研究[J].植物研究,1999,19(3):268-272.
    2.蔡联炳.中国鹅观草属的分类研究[J].植物分类学报,1997,35(2):148-177.
    3.蔡联炳.根据外部形态特征试论鹅观草属的亲缘演化关系[J].西北植物学报,1998,18(4):606-
    612.
    4.蔡联炳.以礼草属的地理分布[J].植物分类学报,2001,39(3):248-259.
    5.陈海梅,李林志,卫宪云,李斯深,雷天东,胡海洲,王洪刚,张宪省.小麦EST-SSR标记的开发,染色体定位和遗传作图[J].科学通报,2005,50(20):2208-2216.
    6.董英山,庄炳昌,赵丽梅,孙寰,张明,何孟元.中国野生大豆遗传多样性中心[J].作物学报2000,26(5):521-527.
    7.董玉琛,郑殿升.中国小麦遗传资源[M].北京:中国农业出版社,2000.
    8.耿以礼,陈守良.国产鹅观草属Roegneria C. Koch之订正[J].南京大学学报,1963,1:1-92.
    9.郭本兆.中国植物志:第九卷,第三分册[M].北京:科学出版社,1987.
    10.郭延平,郭本兆.小麦族植物的属间亲缘和系统发育的探讨[J].西北植物学报,1991,11(2):159-169.
    11.郭兆奎,杨谦,姚泉洪,万秀清,颜培强.转拟南芥AtKup1基因高含钾量烟草获得[J].中国生物工程杂志,2005,25(12):24-28.
    12.黄瑶,李朝銮,马诚,吴乃虎.叶绿体DNA及其在植物系统学研究中的应用[J].植物学通报,1994,11(2):11-25.
    13.贾继增,张正斌,Devos K.小麦21条染色体RFLP作图位点遗传多样性分析[J].中国科学: C辑,2001,31(1):13-21.
    14.兰保祥,李立会,王辉.蒙古冰草居群遗传多样性研究[J].中国农业科学,2005,38(3):468-473.
    15.李立会,杨欣明,李秀全,董玉琛.中国小麦野生近缘植物的研究与利用[J].中国农业科技导报,2000,2(6):73-76.
    16.刘占林,赵桂仿.居群遗传学原理及其在珍稀濒危植物保护中的应用[J].生物多样性,1999,7(4):340-346.
    17.卢宝荣,颜济,杨俊良.鹅观草属三个种的形态变异与核型的研究[J].云南植物研究,1988,10(2):139-146.
    18.卢宝荣.小麦族遗传资源的多样性及其保护[J].生物多样性,1995,3(2):63-68.
    19.牟金叶,李集临,王献平,景建康,张相岐.异源细胞质小麦-中间偃麦草易位系的培育与荧光原位杂交鉴定[J].科学通报,2000,45(3):297-300.
    20.宁顺斌,金危危,丁毅,宋运淳.基因组原位杂交比较玉米和水稻基因组同源性[J].科学通报,2000,45(22):2431-2434.
    21.乔永刚,宋芸.利用EXCLE制作核型模式图[J].农业网络信息,2006,(10):97-98.
    22.石凤敏,云锦凤,赵彦,张瑞霞.蒙古冰草基因组类反转录转座子基因同源序列的克隆与序列分析[J].华北农学报,2010,25(6):52-56.
    23.唐益苗,马有志.植物反转录转座子及其在功能基因组学中的应用[J].植物遗传资源学报,2005,6(2):221-225.
    24.王晓丽,凡星,张春,沙莉娜,张海琴,周永红.用nrDNA ITS序列探讨小麦族含StH基因组物种的系统发育[J].草业学报,2009,(6):82-90.
    25.王子成,李忠爱,邓秀新.植物反转录转座子及其分子标记[J].植物学通报,2003,20(3):287-294.
    26.魏秀华,周永红,杨瑞武,丁春邦,张利,张海琴.鹅观草属三个物种及其居群间核型变异研究[J].草业学报,2005,14(2):57-62.
    27.吴嫚,张晓科,刘伟华,杨欣明,李立会.冰草P基因组特异RAPD标记的筛选[J].西北植物学报,2007,27(8):1550-1557.
    28.肖海峻,徐柱,翟利剑,李玉冰,谢继红,孟利前.鹅观草居群表型多样性研究[J].西北植物学报,2007,27(11):2222-2227.
    29.颜济,杨俊良,Baurn B.小麦族生物系统学(第三卷)[eds].北京:中国农业出版社,2006.
    30.杨继.植物多倍体基因组的形成与进化[J].植物分类学报,2001,39(4):357-371.
    31.张利,周永红,丁春邦,杨瑞武,凡星.基于ITS序列分析仲彬草属植物的亲缘关系[J].西北植物学报,2007,27(3):490-496.
    32.张利,周永红,郑有良,张颖,刘世贵.仲彬草属6个物种的核型与进化研究[J].四川大学学报:自然科学版,2003,40(2):361-366.
    33.张新全,杨俊良.大鹅观草的染色体组组成[J].草地学报,1996,4(3):207-212.
    34.周永红.仲彬草属5种植物的核型研究[J].广西植物,1994,14(2):163-169.
    35. Abbott RJ. Plant invasions, interspecific hybridization and the evolution of new plant taxa[J].Trends Ecol Evol,1992,7(12):401-405.
    36. Alonso L, Kimber G. The analysis of meiosis in hybrids. II. Triploid hybrids. Can. J. Genet. Cytol,1981,23(2):221-234.
    37. Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilops.1. Distribution of highlyrepetitive DNA sequences on chromosomes of diploid species[J]. Genome,1996,39(2):293-306.
    38. Baum BR, Estes JR, Gupta PK. Assessment of the genomic system of classification in theTriticeae[J]. American Journal of Botany,1987,74(9):1388-1395.
    39. Bento M, Pereira H, Rocheta M, Gustafson P, Viegas W, Silva M. Polyploidization as a retractionforce in plant genome evolution: sequence rearrangements in Triticale[J]. PLoS ONE,2008,3(1):e1402.
    40. Blackburn E. Telomeres: structure and synthesis[J]. J. Biol. Chem.,1990,265:5919-5921.
    41. Bothmer Rv, Flink J, Landstr m T. Meiosis in interspecific Hordeum hybrids. I. Diploidcombinations. Genome,1986,28(4):525-535.
    42. Brown KM, Burk LM, Henagan LM, Noor MAF. A test of the chromosomal rearrangement modelof speciation in Drosophila pseudoobscura[J]. Evolution,2004,58(8):1856-1860.
    43. Brysting A, Holst-Jensen A, Leitch I. Genomic origin and organization of the hybrid Poajemtlandica (Poaceae) verified by genomic in situ hybridization and chloroplast DNA sequences[J].Annals of Botany,2000,85(4):439-445.
    44. Cerbah M, Souza-Chies T, Jubier M, Lejeune B, Siljak-Yakovlev S. Molecular phylogeny of thegenus Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for chromosomalevolution[J]. Molecular Biology and Evolution,1998,15(3):345-354.
    45. Chen Z, Ni Z. Mechanisms of genomic rearrangements and gene expression changes in plantpolyploids[J]. BioEssays,2006,28(3):240-252.
    46. Chen Z, Wang J, Tian L, Lee H, Wang J, Chen M, Lee J, Josefsson C, Madlung A, Watson B. Thedevelopment of an Arabidopsis model system for genome-wide analysis of polyploidy effects[J].Biological Journal of the Linnean Society,2004,82(4):689-700.
    47. Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional ricecentromeres are marked by a satellite repeat and a centromere-specific retrotransposon[J]. ThePlant Cell,2002,14(8):1691-1704.
    48. Comai L, Tyagi A, Winter K, Holmes-Davis R, Reynolds S, Stevens Y, Byers B. Phenotypicinstability and rapid gene silencing in newly formed Arabidopsis allotetraploids[J]. The Plant Cell,2000,12(9):1551-1567.
    49. Cook L, Soltis P, Brunsfeld S, Soltis D. Multiple independent formations of Tragopogontetraploids (Asteraceae): evidence from RAPD markers[J]. Molecular Ecology,1998,7(10):1293-1302.
    50. Crombach A, Hogeweg P. Chromosome rearrangements and the evolution of genome structuringand adaptability[J]. Molecular Biology and Evolution,2007,24(5):1130-1139.
    51. Devos K, Millan T, Gale M. Comparative RFLP maps of the homoeologous group-2chromosomesof wheat, rye and barley. Theoretical and Applied Genet,1993,85(6):784-792.
    52. Dewey D. The genomic system of classification as a guide to intergeneric hybridization with theperennial Triticeae[M]. Gene manipulation in plant improvement. New York: Plenum Press,1984.
    53. Diaz O, Salomon B, Von Bothmer R. Genetic variation and differentiation in Nordic populationsof Elymus alaskanus (Scrib. ex Merr.) L ve (Poaceae)[J]. Theoretical and Applied Genetics,1999,99(1):210-217.
    54. Díaz O, Sun GL, Salomon B, von Bothmer R.. Levels and distribution of allozyme and RAPDvariation in populations of Elymus fibrosus (Schrenk) Tzvel.(Poaceae)[J]. Genetic Resources andCrop Evolution,2000,47(1):11-24.
    55. Dong Y, Zhou R, Xu S, Li L, Cauderon Y, Wang R.. Desirable characteristics in perennial Triticeaecollected in China for wheat improvement[J]. Hereditas,1992,116(1-2):175-178.
    56. Dong Y, Zhuang B, Zhao L, Sun H, He M. The genetic diversity of annual wild soybeans grown inChina[J]. Theoretical and Applied Genetics,2001,103(1):98-103.
    57. Driscoll C, Gordon G, Kimber G. Mathematics of chromosome pairing[J]. Genetics,1980,95(1):159-169.
    58. Ehrendorfer F. Polyploidy and distribution[J]. Polyploidy-Biological Relevance. New York:Plenum Press,1980.
    59. Endo TR, Gill BS. The heterochromatin distribution and genome evolution in diploid species ofElymus and Agropyron[J]. Canadian journal of genetics and cytology,1984,26(6):669-678.
    60. Fan X, Sha LN, Yang RW, Zhang HQ, Kang HY, Ding CB, Zhang L, Zheng YL, Zhou YH.Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nucleargene encoding plastid acetyl-CoA carboxylase[J]. BMC Evolutionary Biology,2009,9(1):247.
    61. Fan X, Zhang HQ, Sha LN, Zhang L, Yang RW, Ding CB, Zhou YH. Phylogenetic analysis amongHystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of a geneencoding plastid acetyl-CoA carboxylase[J]. Plant Science,2007,172(4):701-707.
    62. Feldman M, Liu B, Segal G, Abbo S, Levy A, Vega J. Rapid elimination of low-copy DNAsequences in polyploid wheat: a possible mechanism for differentiation of homoeologouschromosomes[J]. Genetics,1997,147(3):1381-1387.
    63. Feldman M. The Origin of cultivated wheat[M]. Paris: Lavoisier Publishing. The world wheat book,
    2001.
    64. Ferguson D, Sang T. Speciation through homoploid hybridization between allotetraploids inpeonies (Paeonia)[J]. Proceedings of the National Academy of Sciences,2001,98(7):3915.
    65. Frederiksen S, Seberg O. Phylogenetic analysis of the Triticeae (Poaceae)[J]. Hereditas,1992,116(1-2):15-19.
    66. Gaeta R, Pires J. Homoeologous recombination in allopolyploids: the polyploid ratchet[J]. Newphytologist,2010,186(1):18-28.
    67. Gale M, Devos K. Plant comparative genetics after10years[J]. Science,1998,282(5389):656-659.
    68. Gao L. Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): aregion-wide perspective from microsatellite variation[J]. Molecular Ecology,2004,13(5):1009-1024.
    69. Gao Y, Tang M, Luo S, Shen Z, Li C. Some aspects of recent research on the Qinghai-XizangPlateau meteorology[J]. Bulletin of the American Meteorological Society,1981,62(1):31-35.
    70. Gill B. Nucleocytoplasmic interaction (NCI) hypothesis of genome evolution and speciation inpolyploid plants. In: SasakumaT, KinoshitaT, eds. Yokohama.1991.
    71. Grant V. Plant speciation[M]. New York: Columbia University Press,1981.
    72. Grant V. The origin of adaptations[M]. New York: Columbia University Press,1963.
    73. Grant V. The regulation of recombination in plants[M]. In: Cold Spring Harbor Laboratory Press.1958,337-363.
    74. Grun P. Effect of environment upon chromosomal pairing of some species and hybrids of Poa[J].American Journal of Botany,1952,39(5):318-323.
    75. Han F, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T. Characterization of six wheat×Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH[J]. Genome,2003,46(3):490-495.
    76. Han F, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids ofwheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage proteinanalysis[J]. Theoretical and Applied Genetics,2004,109(5):1070-1076.
    77. Hastings A. Population biology: concepts and models[M]. Springer,1997.
    78. Hegarty M, Hiscock S. Hybrid speciation in plants: new insights from molecular studies[J]. Newphytologist,2005,165(2):411-423.
    79. Heslop-Harrison J, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences andcentromeric chromosomal regions of Arabidopsis species[J]. Chromosome Research,2003,11(3):241-253.
    80. Hsiao C, Chatterton N, Asay K, Jensen K. Phylogenetic relationships of the monogenomic speciesof the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer)sequences[J]. Genome,1995,38(2):211-223.
    81. Hsiao C, Richard RCW, Dewey DR. Karyotype analysis and genome relationships of22diploidspecies in the tribe Triticeae[J]. Canadian journal of genetics and cytology,1986,28(1):109-120.
    82. Islam A, Shepherd K. Production of wheat-barley recombinant chromosomes through inducedhomoeologous pairing[J]. Theoretical and Applied Genetics,1992,83(4):489-494.
    83. Jellen E, Gill B, Cox T. Genomic in situ hybridization differentiates between A/D-and C-genomechromatin and detects intergenomic translocations in polyploid oat species (genus Avena)[J].Genome,1994,37(4):613-618.
    84. Jensen K, Griffin G. Resistance of diploid Triticeae species and accessions to the Columbiaroot-knot nematode, Meloidogyne chitwoodi[J]. Journal of Nematology,1994,26(4S):635-639.
    85. Jensen KB. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus, and E.batalinii (Poaceae: Triticeae)[J]. Genome,1990,33(5):668-673.
    86. Jensen KB. Genome analysis of Eurasian Elymus thoroldianus, E. melantherus, and E. kokonoricus(Triticeae: Poaceae)[J]. International Journal of Plant Sciences,1996,157(1):136-141.
    87. Jiang J, Birchler JA, Parrott WA, Kelly Dawe R. A molecular view of plant centromeres[J]. Trendsin Plant Science,2003,8(12):570-575.
    88. Jones T, Redinbaugh M, Zhang Y. The western wheatgrass chloroplast genome originates inPseudoroegneria[J]. Crop Sci,2000,40(1):43-47.
    89. Kellogg EA. Comments on genomic genera in the Triticeae (Poaceae)[J]. American Journal ofBotany,1989,76(6):796-805.
    90. Kenton A, Parokonny AS, Gleba YY, Bennett MD. Characterization of the Nicotiana tabacum L.genome by molecular cytogenetics[J]. Molecular and General Genetics,1993,240(2):159-169.
    91. Kihara H." Genom" analysis in Triticum and Aegilops. Cytologia,1930,1:263-270.
    92. Koch MA, Dobe C, Mitchell-Olds T. Multiple hybrid formation in natural populations: concertedevolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North AmericanArabis divaricarpa (Brassicaceae)[J]. Molecular Biology and Evolution,2003,20(3):338-350.
    93. Koebner R, Shepherd K. Controlled introgression to wheat of genes from rye chromosome arm1RS by induction of allosyndesis[J]. Theoretical and Applied Genetics1986,73(2):197-208.
    94. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary geneticsanalysis and sequence alignment[J]. Briefings in bioinformatics,2004,5(2):150-163.
    95. Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica[J]. Genetics,1996,144(4):1903-1910.
    96. Leitch I, Bennett M. Polyploidy in angiosperms[J]. Trends in Plant Science,1997,2(12):470-476.
    97. Levin D. Polyploidy and novelty in flowering plants[J]. American Naturalist,1983,122(1):1-25.
    98. Levy A, Feldman M. The impact of polyploidy on grass genome evolution[J]. Plant Physiology,2002,130(4):1587-1593.
    99. Lexer C, Welch M, Durphy J, Rieseberg L. Natural selection for salt tolerance quantitative trait loci(QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploidhybrid species[J]. Molecular Ecology,2003,12(5):1225-1235.
    100. Liu B, Vega J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticumand Aegilops. II. Changes in low-copy coding DNA sequences[J]. Genome,1998a,41(4):535-542.
    101. Liu B, Vega J, Segal G, Abbo S, Rodova M, Feldman M. Rapid genomic changes in newlysynthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNAsequences[J]. Genome,1998b,41(2):272-277.
    102. Liu Q, Ge S, Tang H, Zhang X, Zhu G, Lu B. Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-Fsequences[J]. New phytologist,2006,170(2):411-420.
    103. Liu QL, Zhang NN, Li L, Liu J. Identification of Elymus (Triticeae, Poaceae) and its related generagenomes by RFLP analysis of PCR-amplified Adh genes[J]. Molecular biology reports,2010,37(7):3249-3257.
    104. Liu Z, Chen Z, Pan J, Li X, Su M, Wang L, Li H, Liu G. Phylogenetic relationships in Leymus(Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplasttrnL-F sequences[J]. Molecular Phylogenetics and Evolution,2008,46(1):278-289.
    105. Liu Z, Li D, Zhang X. Genetic relationships among five basic genomes St, E, A, B and D inTriticeae revealed by genomic Southern and in situ hybridization[J]. Journal of Integrative PlantBiology,2007,49(7):1080-1086.
    106. L ve A. Conspectus of the Triticeae[M]. Feddes Repert,1984.
    107. Lu B, Bothmer R. Cytological studies of a dihaploid and hybrid from intergeneric cross Elymusshandongensis×Triticum aestivum[J]. Hereditas,1990,111(3):231-238.
    108. Lu B, Salomon B, Bothmer Rv. Meiotic studies of the hybrids among Pseudoroegneria cognata,Elymus semicostatus and E. pendulinus (Poaceae)[J]. Hereditas,1991,114(2):117-124.
    109. Lu B, Salomon B. Differentiation of the SY genomes in Asiatic Elymus[J]. Hereditas,1992,116:121-126.
    110. Lu BR, Salomon B, von Bothmer R. Cytogenetic studies of progeny from the intergeneric crossesElymus×Hordeun and Elymus×Secale[J]. Genome,1990,33(3):425-432.
    111. Mallet J. Hybridization as an invasion of the genome[J]. Trends in Ecology and Evolution2005,20(5):229-237.
    112. Marhold K, Lihová J. Polyploidy, hybridization and reticulate evolution: lessons from theBrassicaceae[J]. Plant systematics and evolution,2006,259(2):143-174.
    113. Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus andthe monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets[J]. Genome,2002,45(6):991-1002.
    114. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in anallohexaploid grass[J]. Systematic Biology,2004,53(1):25-37.
    115. Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms[J].Science,1994,264(5157):421-424.
    116. McCarthy EM, Liu J, Lizhi G, McDonald JF. Long terminal repeat retrotransposons of Oryzasativa[J]. Genome Biol,2002,3(10):53.1-53.11.
    117. McIntyre C, Clarke B, Appels R. Amplification and dispersion of repeated DNA sequences in theTriticeae[J]. Plant systematics and evolution,1988,160(1):39-59.
    118. McMillan E, Sun G. Genetic relationships of tetraploid Elymus species and their genomic donorspecies inferred from polymerase chain reaction-restriction length polymorphism analysis ofchloroplast gene regions[J]. Theoretical and Applied Genetics,2004,108(3):535-542.
    119. Meimberg H, Rice KJ, Milan NF, Njoku CC, McKay JK. Multiple origins promote the ecologicalamplitude of allopolyploid Aegilops (Poaceae)[J]. American Journal of Botany,2009,96(7):1262-1273.
    120. Morris K, Gill B. Genomic affinities of individual chromosomes based on C-and N-bandinganalyses of tetraploid Elymus species and their diploid progenitor species[J]. Genome,1987,29(2):247-252.
    121. Mukai Y, Gill B. Detection of barley chromatin added to wheat by genomic in situ hybridization[J].Genome,1991,34(3):448-452.
    122. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes inhexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highlyrepeated DNA probes[J]. Genome,1993,36(3):489-494.
    123. Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, DaweRK. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structureand evolutionary dynamics of maize centromeres[J]. Genetics,2003,163(2):759-770.
    124. Nagy E, Molnár-Láng M, Linc G, Láng L. Identification of wheat-barley translocations bysequential GISH and two-colour FISH in combination with the use of genetically mapped barleySSR markers[J]. Genome,2002,45(6):1238-1247.
    125. Naranjo T. Chromosome Rearrangements[J]. Encyclopedia of Plant and Crop Science,2004,1(1):270-272.
    126. Nederlof P, Van der Flier S, Wiegant J, Raap A, Tanke H, Ploem J, Van der Ploeg M. Multiplefluorescence in situ hybridization[J]. Cytometry Part A,1990,11(1):126-131.
    127. Nevo E, Baum B, Beiles A, Johnson DA. Ecological correlates of RAPD DNA diversity of wildbarley, Hordeum spontaneum, in the Fertile Crescent[J]. Genetic Resources and Crop Evolution,1998,45(2):151-159.
    128. Ni Y, Asamoah-Odei N, Sun G. Maternal origin, genome constitution and evolutionaryrelationships of polyploid Elymus species and Hordelymus europaeus[J]. Biologia Plantarum,2011,55(1):68-74.
    129. Otto S. The evolutionary consequences of polyploidy[J]. Cell,2007,131(3):452-462.
    130. Parokonny A, Marshall J, Bennett M, Cocking E, Davey M, Power JB. Homoeologous pairing andrecombination in backcross derivatives of tomato somatic hybrids [Lycopersicon esculentum (+) L.peruvianum][J]. Theoretical and Applied Genetics,1997,94(6):713-723.
    131. Pearce SR, Li D, Flavell A, Harrison G, Heslop-Harrison J, Kumar A. The Ty1-copia groupretrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomallocalisation[J]. Molecular and General Genetics,1996,250(3):305-315.
    132. Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat bytwo-colour FISH[J]. Genome,1997,40(5):589-593.
    133. Petersen G, Seberg O. Phylogenetic Analysis of the Triticeae (Poaceae) Based on rpoA SequenceData[J]. Molecular Phylogenetics and Evolution,1997,7(2):217-230.
    134. Piao S, Fang J, He J. Variations in vegetation net primary production in the Qinghai-XizangPlateau, China, from1982to1999[J]. Climatic Change,2006,74(1):253-267.
    135. Raina S, Mukai Y. Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wildprogenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species[J]. Plantsystematics and evolution,1999,214(1):251-262.
    136. Ralna S, Mukai Y. Detection of a variable number of18S-5.8S-26S and5S ribosomal DNA loci byfluorescent in situ hybridization in diploid and tetraploid Arachis species[J]. Genome,1999,42(1):52-59.
    137. Rayburn AL, Gill BS. Isolation of a D-genome specific repeated DNA sequence from Aegilopssquarrosa[J]. Plant Molecular Biology Reporter,1986,4(2):102-109.
    138. Redinbaugh MG, Jones TA, Zhang Y. Ubiquity of the St chloroplast genome in St-containingTriticeae polyploids[J]. Genome,2000,43(5):846-852.
    139. Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM. Role of gene interactions in hybridspeciation: evidence from ancient and experimental hybrids[J]. Science,1996,272(5262):741-745.
    140. Rieseberg LH. Chromosomal rearrangements and speciation[J]. Trends in Ecology and Evolution,2001,16(7):351-358.
    141. Rieseberg LH. Hybrid origins of plant species[J]. Annual Review of Ecology and Systematics,1997,28:359-389.
    142. Rohlf F. Ntsys-Pc Numerical taxonomy and multivariate analysis system version2.1. ExeterSoftware, Setauket, NY.[Links].2000.
    143. Sankoff D. Comparative mapping and genome rearrangement. From Jay Lush to genomics: Visionsfor animal breeding and genetics. Ames, Iowa: Iowa State University:1999,124-134.
    144. Schubert I, Wobus U. In situ hybridization confirms jumping nucleolus organizing regions inAllium[J]. Chromosoma,1985,92(2):143-148.
    145. Schwarzbach A, Rieseberg L. Likely multiple origins of a diploid hybrid sunflower species[J].Molecular Ecology,2002,11(9):1703-1715.
    146. Sepsi A, Molnár I, Szalay D, M M-L. Characterization of a leaf rust-resistant wheat-Thinopyrumponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH[J]. Theoretical andApplied Genetics,2008,116(6):825-834.
    147. Sha L, Fan X, Yang R, Kang H, Ding C, Zhang L, Zheng Y, Zhou Y. Phylogenetic relationshipsbetween Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Acc1, DMC1and chloroplast trnL-F sequences[J]. Molecular Phylogenetics and Evolution,2010,54(2):327-335.
    148. Sharp P, Kreis M, Shewry P, Gale M. Location of β-amylase sequences in wheat and itsrelatives[J]. Theoretical and Applied Genetics,1988,75(2):286-290.
    149. Soltis D, Soltis P. Molecular data and the dynamic nature of polyploidy[J]. Critical Reviews inPlant Sciences,1993,12(3):243-273.
    150. Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution[J]. Trends in Ecologyand Evolution,1999,14(9):348-352.
    151. Soltis DE, Soltis PS. The dynamic nature of polyploid genomes[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,1995,92(18):8089-8091.
    152. Soltis P, Soltis D. The role of genetic and genomic attributes in the success of polyploids[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(13):7051-7057.
    153. Soltis P, Soltis D. The role of hybridization in plant speciation[J]. Annual review of plant biology,2009,60:561-588.
    154. Stebbins G. Chromosomal evolution in higher plants. Cambridge, UK: CUP216pp. Cytology.Evolution, Genetics (PMBD,185508067).1971.
    155. Stebbins G. The hybrid origin of microspecies in the Elymus glaucus complex[J]. Cytologia Suppl,1957,36:336-340.
    156. Stebbins G. Variation and evolution in plants[M]. New York: Columbia University Press,1950.
    157. Sun G, Komatsuda T. Origin of the Y genome in Elymus and its relationship to other genomes inTriticeae based on evidence from elongation factor G (EF-G) gene sequences[J]. MolecularPhylogenetics and Evolution,2010,56(2):727-733.
    158. Sun G, Ni Y, Daley T. Molecular phylogeny of RPB2gene reveals multiple origin, geographicdifferentiation of H genome, and the relationship of the Y genome to other genomes in Elymusspecies[J]. Molecular Phylogenetics and Evolution,2008,46(3):897-907.
    159. Sun G, Ni Y, Daley T. Molecular phylogeny of RPB2gene reveals multiple origin, geographicdifferentiation of H genome, and the relationship of the Y genome to other genomes in Elymusspecies. Molecular Phylogenetics and Evolution,2008,46(3):897-907.
    160. Sun G. Genetic diversity of rbcL gene in Elymus trachycaulus complex and their phylogeneticrelationships to several Triticeae species[J]. Genetic Resources and Crop Evolution,2007,54(8):1737-1746.
    161. Sun GL, Diaz O, Salomon B, Von Bothmer R. Genetic diversity and structure in a natural Elymuscaninus population from Denmark based on microsatellite and isozyme analyses[J]. Plantsystematics and evolution,2001,227(3):235-244.
    162. Tzvelev N, ed. Poaceae URSS. Nauka, Leningrad.1976.
    163. Ungerer M, Baird S, Pan J, Rieseberg L. Rapid hybrid speciation in wild sunflowers[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95(20):11757-11762.
    164. Wang J, Xiang F, Xia G. Agropyron elongatum chromatin localization on the wheat chromosomesin an introgression line[J]. Planta,2005,221(2):277-286.
    165. Wang Q, Xiang J, Gao A, Yang X, Liu W, Li X, Li L. Analysis of chromosomal structuralpolymorphisms in the St, P, and Y genomes of Triticeae (Poaceae)[J]. Genome,2010,53(3):241-249.
    166. Wang R, Dewey D, Hsiao C. Genome analysis of the tetraploid Pseudoroegneria tauri[J]. Cropscience (USA),1986,26(4):723-727.
    167. Wang R. An assessment of genome analysis based on chromosome pairing in hybrids of perennialTriticeae. Genome,1989,32(2):179-189.
    168. Wang R. Comparative chromosome pairing in triploids and diploids of perennial Triticeae.Genome,1990,33(1):89-94.
    169. Wang R. Genome relationships in the perennial Triticeae based on diploid hybrids and beyond[J].Hereditas,1992,116(1-2):133-136.
    170. Wang RRC. Diploid perennial intergeneric hybrids in the tribe Triticeae. I. Agropyron cristatum×Pseudoroegneria libanotica and Critesion violaceum×Psathyrostachys juncea[J]. Crop Sci,1986,26(1):75-78.
    171. Wang RRC. Diploid perennial intergeneric hybrids in the tribe Triticeae. III. Hybrids among Secalemontanum, Pseudoroegneria spicata, and Agropyron mongolicum[J]. Genome,1987,29(1):80-84.
    172. Weidema IR, Magnussen LS, Philipp M. Gene flow and mode of pollination in a dry-grasslandspecies, Filipendula vulgaris (Rosaceae)[J]. Heredity,2000,84(3):311-320.
    173. Wendel J, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution followingallopolyploid speciation in cotton (Gossypium)[J]. Proceedings of the National Academy ofSciences of the United States of America,1995,92(1):280-284.
    174. Wendel J. Genome evolution in polyploids[J]. Plant Molecular Biology,2000,42(1):225-249.
    175. Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W. The introgression of chromosome6P specifyingfor increased numbers of florets and kernels from Agropyron cristatum into wheat[J]. Theoreticaland Applied Genetics,2006,114(1):13-20.
    176. Xu D, Ban T. Phylogenetic and evolutionary relationships between Elymus humidus and otherElymus species based on sequencing of non-coding regions of cpDNA and AFLP of nuclearDNA[J]. Theoretical and Applied Genetics,2004,108(8):1443-1448.
    177. Yang W, Glover BJ, Rao GY, Yang J. Molecular evidence for multiple polyploidization and lineagerecombination in the Chrysanthemum indicum polyploid complex (Asteraceae)[J]. Newphytologist,2006,171(4):875-886.
    178. Zeng J, Cao G, Liu J, Zhang HQ, Zhou YH. C-banding analysis of eight species of Kengyilia(Poaceae: Triticeae)[J]. Journal of Applied Genetics,2008a,49(1):11-21.
    179. Zeng J, Zhang L, Fan X, Zhang H, Yang R, Zhou Y. Phylogenetic analysis of Kengyilia speciesbased on nuclear ribosomal DNA internal transcribed spacer sequences[J]. Biologia Plantarum,2008b,52(2):231-236.
    180. Zhang C, Fan X, Yu H, Zhang H, Wang X, Zhou Y. Phylogenetic analysis of questionabletetraploid species in Roegneria and Pseudoroegneria (Poaceae: Triticeae) inferred from a geneencoding plastid acety1-CoA carboxylase[J]. Biochemical Systematics and Ecology,2009,37(4):412-420.
    181. Zhang HQ, Fan X, Sha LN, Zhang C, Yang RW, Zhou YH. Phylogeny of Hystrix and relatedgenera (Poaceae: Triticeae) based on nuclear rDNA ITS sequences[J]. Plant Biology,2008,10(5):635-642.
    182. Zhang XQ, Yang JL, Yen C, Zhen YL, Zhou YH. Cytogenetic and systematic analyses of Kengyiliagobicola, K. zhaosuensis and K. batalinii var. nana (Poaceae)[J]. Genetic Resources and CropEvolution,2000,47(4):451-454.
    183. Zhang XQ, Yen C, Yang JL, Yen Y. Cytogenetic analyses in Kengyilia laxiflora (Poaceae, Triticeae)[J]. Plant systematics and evolution,1998,212(1):79-86.
    184. Zhou H, Xie Z, Ge S. Microsatellite analysis of genetic diversity and population genetic structureof a wild rice (Oryza rufipogon Griff.) in China[J]. Theoretical and Applied Genetics,2003,107(2):332-339.
    185. Zhou X, Yang X, Li X, Li L. Genome origins in Leymus (Poaceae: Triticeae): evidence of maternaland paternal progenitors and implications for reticulate evolution[J]. Plant systematics andevolution,2010,289(3):165-179.
    186. Zhou YH, Yen C, Yang JL, Zheng YL. Biosystematic study of Roegneria tenuispica, R. ciliaris andR. pendulina (Poaceae: Triticeae). Plant systematics and evolution,1999,217(3):215-220.
    187. Zwierzykowski Z, Zwierzykowska E, Taciak M, Jones N, Kosmala A, Krajewski P. Chromosomepairing in allotetraploid hybrids of Festuca pratensis×Lolium perenne revealed by genomic in situhybridization (GISH)[J]. Chromosome Research,2008,16(4):575-585.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700