用户名: 密码: 验证码:
小麦—玉米轮作体系长期施肥下农田土壤碳氮相互作用关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田生态系统碳、氮循环是其最基本的生态过程,不仅影响作物产量和肥料养分利用率,而且影响土壤CO2、N2O等温室气体的排放,是农业可持续发展的基础,因而受到人们广泛的关注。
     本研究针对农田生态系统不同施肥下碳氮耦合关系研究相对薄弱,选择不同地域的小麦-玉米轮作体系下的4个长期定位试验点(昌平、郑州、杨凌、祁阳)的数据进行分析。采用数理统计分析的方法,研究7个不同施肥处理(不施肥Control、单施化学氮肥N、施化学氮磷肥NP、施化学氮磷钾肥NPK、氮磷钾配施有机肥NPKM、氮磷钾配施高量有机肥hNPKM和氮磷钾配合秸秆还田NPKS)长期施肥下土壤碳氮比对施肥的响应、碳投入与土壤有机碳的关系。通过CENTURY模型与长期试验数据相结合,分析不同区域农田土壤有机碳的变化趋势以及土壤的固碳潜力。主要研究结果与结论如下:
     1.土壤有机碳和全氮对不同施肥处理的响应不同。在小麦-玉米轮作中所有处理的土壤有机碳均持续上升,而施用化肥处理,祁阳点的土壤全氮含量呈现下降趋势;NPKM处理下土壤有机碳和全氮均随时间的延长明显增加但二者增加速率不同。与初始值相比,4个长期试验点土壤有机碳增加35%~(-1)47%而土壤全氮增加10%-33%。
     2.长期施肥对不同气候区域土壤碳氮比的影响不同。昌平、郑州、杨凌点(均处于温带地区)的土壤碳氮比基本不变,而祁阳点(位于亚热带区域)的土壤碳氮比显著增加。说明大部分地区土壤碳、氮为耦合关系。祁阳点土壤碳氮呈现非耦合的现象与土壤有机质分解有关。通过碳氮收支平衡的计算发现NPK处理祁阳点分解的土壤有机质碳氮比(23.7)明显小于其他三个点(44.0-48.2)。
     3.采用修改后的米氏方程可很好的拟合土壤有机碳与碳投入的关系。土壤需保持0.03~(-1).32Mg C ha~(-1)yr~(-1)投入即可维持现在土壤有机碳的水平。长期施用化肥(NP和NPK)下,来源于作物的碳投入为0.9-3.3Mg C ha~(-1)yr~(-1)。说明平衡施用化肥可提供充足的碳投入量来维持目前的土壤有机碳水平。而如果土壤有机碳拟每年增加1Mg/ha,多数试验点的碳投入量需超过10Mg C ha~(-1)yr~(-1),施用有机肥处理的碳投入可达到11.05Mg C ha~(-1)yr~(-1)。说明施用有机肥是快速提高土壤有机碳的含量的最有效途径。
     4.4.5版本的CENTURY模型能够很好的模拟不同气候区域下不同施肥处理土壤有机碳的变化(模拟值与实测值之间的标准化均方根误差小于15%)。高量有机肥投入处理(hNPKM)4个试验点的土壤有机碳水平在2100年将达到31.6-54.7Mg ha~(-1)。与1990年土壤有机碳含量相比,预计土壤固碳潜力可达到9.2-38.2Mg ha~(-1)。模拟结果发现长期施肥下各试验点土壤慢性碳库增加而惰性碳库降低。土壤慢性碳库的变化决定土壤有机碳的变化。
     总之,土壤碳氮比的变化主要受有机质分解过程的影响。施肥措施通过影响土壤慢性库的碳含量来改变土壤有机碳的含量。增加外源有机碳的投入是提高土壤有机碳含量的最有效途径。
As an important part of terrestrial ecosystems, cropland plays a large role in the terrestrial carboncycle. On the one hand, cropland has a large potential to sequestrate carbon through photosynthesis inthe cropping system. On the other hand, cropland may release a large amount of carbon in associationwith cultivation for crop production. Hence, how to maintain or increase the cropland carbon pool hasattracted much attention.
     This study is based on four long-term experimental sites in China: three in the temperate zone andone in the sub-tropical zone. Both statistical analysis and CENTURY model are chosen to complete theresearch. We use statistical analysis to examine:(i) responses of soil C/N ratio to various fertilizationsacross the sites;(ii) the relationship between soil carbon change and carbon inputs. We also integratelong-term experimental data with CENTURY model simulation to find out soil carbon sequestrationpotential for different area in China. The main findings are as following:
     1. Soil organic carbon (SOC) and total nitrogen (TN) had different responses to the treatments.There was an increasing trend in SOC, even without fertilizer. However, applying inorganic fertilizersonly (NPK) did not maintain TN contents at some sites. The NPKM treatment resulted in a largeincrease in both SOC (35~(-1)47%) and TN (33~(-1)0%) contents, relative to the initial values.
     2. The soil C:N ratio shows a significant increase over time at the sub-tropical site but little changeat the three temperate sites. Our analysis shows similar C:N ratios (37-38) in gross input of organicmaterials under the NPK treatments. However, the estimated C:N ratio during decomposition was muchsmaller at the sub-tropical site (23.7) than at the three temperate sites (44.0-48.2) under the NPKtreatments, which may explain the increased soil C:N ratio at the sub-tropical site. Thus, we concludethat variations in soil C:N ratio are not caused by organic matter inputs but by decomposition in thewheat-corn double cropping systems.
     3. Different amounts of balanced fertilization show little impact on the C inputs derived by plants,reaching to~3.5Mg C ha~(-1)yr~(-1). The SOC change rate is much higher under the manure application thantreatments with chemical fertilizers only. Statistical analysis shows that the linear and non-linearequations perform equally well (p<0.01) within the experimental data interval. But the non-linearequation is more suitable for specific purpose. Using the non-linear equation, we can predict that minimum C input to maintain the current SOC level would be0.03~(-1).32Mg C ha~(-1)yr~(-1)at the four sites.The chemical nitrogen and phosphate fertilization yield sufficient carbon biomass inputs to maintain thecurrent SOC levels. However, to increase SOC at1Mg C ha~(-1)yr~(-1), soils need over10Mg C ha~(-1)yr~(-1)atmost sites. Our results suggest that the increment of SOC stocks would be mainly related to theadditional carbon inputs for the long-term perspectives.
     4. The CENTURY model (version4.5) can simulate fertilization effects on SOC change in differentclimate conditions and soil properties (n-RMSE<15%). After running the CENTURY over the period of1990-2100, the SOC levels are supposed to increase to31.6-54.7Mg ha~(-1)across the sites. With thecomparison of SOC stocks in1990and2100, we estimate that the carbon sequestration potential wouldbe9.2-38.2Mg ha~(-1)under the current high manure application (hNPKM). Analysis of organic carbon ineach carbon pool indicates that long-term fertilization enhances the slow pool proportion but decreasethe passive pool proportion. Our results suggest that the change in slow carbon pool determines theSOC dynamics under long-term fertilization.
     In summary, soil C:N ratio change is mainly influenced by the decomposition of soil organic matter.Long-term fertilizations would affect the proportion of slow carbon pool, and thus the soil oraganiccarbon pool. Applying additional carbon inputs is the most effective way for enhancing soil organiccarbon level.
引文
1.苗慧田,张文菊,吕家珑等.长期施肥对潮土玉米碳含量及分配比例的影响.中国农业科学,2010,43(23):4852-4861
    2.中国农业技术推广服务中心编著.中国有机肥料养分数据集.中国科学技术出版社,1999
    3. Aciego Pietri J.C., Brookes P.C., Nitrogen mineralisation along a pH gradient of a silty loamUK soil. Soil Biology and Biochemistry,2008,40:797-802
    4. Alvarez R., A review of nitrogen fertilizer and conservation tillage effects on soil organiccarbon storage. Soil Use and Management,2005,21:38-52
    5. álvaro-Fuentes J., López M.V., Arrúe J.L., Moret D., Paustian K., Tillage and croppingeffects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Centurymodel. Agriculture, Ecosystems&Environment,2009,134:211-217
    6. Amelung W., Flach K.W., Zech W., Climatic effects on soil organic matter composition in thegreat plains. Soil Science Society of America Journal,1997,61:115-123
    7. Andren O., Katterer T., ICBM: The introductory carbon balance model for exploration of soilcarbon balances. Ecological Applications,1997,7:1226-1236
    8. Bélanger G., Richards J.E., Angers D.A., Long-term fertilization effects on soil carbon underpermanent swards. Canadian Journal of Soil Science,1999,79:99-102
    9. Batjes N.H., Total carbon and nitrogen in the soils of the world. European Journal of SoilScience,1996,47:151-163
    10. Batlle-Aguilar J., Brovelli A., Porporato A., Barry D.A., Modelling soil carbon and nitrogencycles during land use change. A review. Agronomy for Sustainable Development,2011,31:251-274
    11. Bayer C., Lovato T., Dieckow J., Zanatta J.A., Mielniczuk J., A method for estimatingcoefficients of soil organic matter dynamics based on long-term experiments. Soil&TillageResearch,2006,91:217-226
    12. Benbi D., Senapati N., Soil aggregation and carbon and nitrogen stabilization in relation toresidue and manure application in rice–wheat systems in northwest India. Nutrient Cycling inAgroecosystems,2010,
    13. Bhattacharyya T., Pal D.K., Easter M., Williams S., Paustian K., et al, Evaluating the CenturyC model using long-term fertilizer trials in the Indo-Gangetic Plains, India. Agriculture,Ecosystems&Environment,2007,122:73-83
    14. Bhattacharyya T., Pal D.K., Williams S., Telpande B.A., Deshmukh A.S., et al, Evaluating theCentury C model using two long-term fertilizer trials representing humid and semi-arid sitesfrom India. Agriculture, Ecosystems&Environment,2010,139:264-272
    15. Binkley D., Kaye J., Barry M., Ryan M.G., First-rotation changes in soil carbon and nitrogenin a Eucalyptus plantation in Hawaii. Soil Science Society of America Journal,2004,68:1713-1719
    16. Blanco-Canqui H., Lal R., Post W.M., Izaurralde R.C., Owens L.B., Rapid changes in soilcarbon and structural properties due to stover removal from no-till corn plots. Soil Science,2006,171:468-482
    17. Bolinder M.A., Andren O., Katterer T., de Jong R., VandenBygaart A.J., et al, Soil carbondynamics in Canadian Agricultural Ecoregions: Quantifying climatic influence on soilbiological activity. Agriculture Ecosystems&Environment,2007,122:461-470
    18. Bond-Lamberty B., Thomson A., Temperature-associated increases in the global soilrespiration record. Nature,2010,464:579-582
    19. Bronick C.J., Lal R., Soil structure and management: a review. Geoderma,2005,124:3-22
    20. Bruun S., Christensen B.T., Hansen E.M., Magid J., Jensen L.S., Calibration and validation ofthe soil organic matter dynamics of the Daisy model with data from the Askov long-termexperiments. Soil Biology&Biochemistry,2003,35:67-76
    21. Campbell C.A., Biederbeck V.O., Zentner R.P., Lafond G.P., Effect of crop rotations andcultural practices on soil organic matter, microbial biomass and respiration in a thin BlackChernozem. Canadian Journal of Soil Science,1991a,71:363-376
    22. Campbell C.A., Zentner R.P., Bowren K.E., Townley-Smith L., Schnitzer M., Effect of croprotations and fertilization on soil organic matter and some biochemical properties of a thickBlack Chernozem. Canadian Journal of Soil Science,1991b,71:377-387
    23. Carter M.R., Kunelius H.T., Sanderson J.B., Kimpinski J., Platt H.W., Bolinder M.A.,Productivity parameters and soil health dynamics under long-term2-year potato rotations inAtlantic Canada. Soil&Tillage Research,2003,72:153-168
    24. Carter M.R., Parton W.J., Rowland I.C., Schultz J.E., Steed G.R., Simulation of SoilOrganic-Carbon and Nitrogen Changes in Cereal and Pasture Systems of Southern Australia.Australian Journal of Soil Research,1993,31:481-491
    25. Cerri C.C., Bernoux M., Cerri C.E.P., Feller C., Carbon cycling anal sequestrationopportunities in South America: the case of Brazil. Soil Use and Management,2004,20:248-254
    26. Cerri C.E.P., Easter M., Paustian K., Killian K., Coleman K., et al, Simulating SOC changes in11land use change chronosequences from the Brazilian Amazon with RothC and Centurymodels. Agriculture, Ecosystems&Environment,2007,122:46-57
    27. Chilcott C.R., Dalal R.C., Parton W.J., Carter J.O., King A.J., Long-term trends in fertility ofsoils under continuous cultivation and cereal cropping in southern Queensland. IX*.Simulation of soil carbon and nitrogen pools using CENTURY model. Australian Journal ofSoil Research,2007,45:206-217
    28. Cole C.V., Flach K., Lee J., Sauerbeck D., Stewart B., Agricultural Sources and Sinks ofCarbon. Water Air and Soil Pollution,1993,70:111-122
    29. Coleman K., Jenkinson D.S., Crocker G.J., Grace P.R., Klir J., et al, Simulating trends in soilorganic carbon in long-term experiments using RothC-26.3. Geoderma,1997,81:29-44
    30. Collins H.P., Rasmussen P.E., Douglas C.L., Crop Rotation and Residue Management Effectson Soil Carbon and Microbial Dynamics. Soil Sci. Soc. Am. J.,1992,56:783-788
    31. Copeland P.J., Crookston R.K., Crop sequence affects nutrient composition of corn andsoybean grown under high fertility. Agronomy Journal,1992,84:503-509
    32. Davidson E.A., Janssens I.A., Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change. Nature,2006,440:165-173
    33. Davidson E.A., Samanta S., Caramori S.S., Savage K., The Dual Arrhenius andMichaelis–Menten kinetics model for decomposition of soil organic matter at hourly toseasonal time scales. Global Change Biology,2012,18:371-384
    34. Drury C.F., Tan C.S., Long-term(35years)effects of fertilization, rotation and weather oncorn yields. Canadian Journal of Plant Science,1995,75:355-362
    35. Du Z.L., Ren T.S., Hu C.S., Tillage and residue removal effects on soil carbon and nitrogenstorage in the north China plain. Soil Science Society of America Journal,2010,74:196-202
    36. Easter M., Paustian K., Killian K., Williams S., Feng T., et al, The GEFSOC soil carbonmodelling system: A tool for conducting regional-scale soil carbon inventories and assessingthe impacts of land use change on soil carbon. Agriculture, Ecosystems&Environment,2007,122:13-25
    37. Edmeades D.C., The long-term effects of manures and fertilisers on soil productivity andquality: a review. Nutrient Cycling in Agroecosystems,2003,66:165-180
    38. Esser G., Kattge J., Sakalli A., Feedback of carbon and nitrogen cycles enhances carbonsequestration in the terrestrial biosphere. Global Change Biology,2011,17:819-842
    39. Falloon P., Smith P., Accounting for changes in soil carbon under the Kyoto Protocol: need forimproved long-term data sets to reduce uncertainty in model projections. Soil Use andManagement,2003,19:265-269
    40. Falloon P., Smith P., Simulating SOC changes in long-term experiments with RothC andCENTURY: model evaluation for a regional scale application. Soil Use and Management,2002,18:101-111
    41. Falloon P., Smith P., Betts R., Jones C.D., Smith J., et al. Carbon sequestration andgreenhouse gas fluxes from cropland soils-climate opportunities and threats. In ClimateChange and Crops, ed. S.N. Singh2009.81-111: Springer Berlin Heidelberg. Number of81-111pp.
    42. Fierer N., Craine J.M., McLauchlan K., Schimel J.P., Litter quality and the temperaturesensitivity of decomposition. Ecology,2005,86:320-326
    43. Follett R.F., Soil management concepts and carbon sequestration zin cropland soils. Soil&Tillage Research,2001,61:77-92
    44. Follett R.F., Castellanos J.Z., Buenger E.D., Carbon dynamics and sequestration in an irrigatedVertisol in Central Mexico. Soil&Tillage Research,2005,83:148-158
    45. Fornara D.A., Tilman D., Hobbie S.E., Linkages between plant functional composition, fineroot processes and potential soil N mineralization rates. Journal of Ecology,2009,97:48-56
    46. Franko U., Crocker G.J., Grace P.R., Klir J., Korschens M., et al, Simulating trends in soilorganic carbon in long-term experiments using the CANDY model. Geoderma,1997,81:109-120
    47. Franzluebbers A.J., Soil organic carbon sequestration and agricultural greenhouse gasemissions in the southeastern USA. Soil&Tillage Research,2005,83:120-147
    48. Franzluebbers A.J., Hons F.M., Zuberer D.A., Long-Term Changes in Soil Carbon andNitrogen Pools in Wheat Management-Systems. Soil Science Society of America Journal,1994,58:1639-1645
    49. Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., et al, Transformation ofthe Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science,2008,320:889-892
    50. Gao C.S., Wang J.G., Zhang X.Y., Sui Y.Y., The Evolution of Organic Carbon in ChineseMollisol Under Different Farming Systems: Validation and Prediction by Using CenturyModel. Agricultural Sciences in China,2008,7:1490-1496
    51. Gonzalez-Chavez M.D.A., Aitkenhead-Peterson J.A., Gentry T.J., Zuberer D., Hons F.,Loeppert R., Soil microbial community, C, N, and P responses to long-term tillage and croprotation. Soil&Tillage Research,2010,106:285-293
    52. Grant R.F., Changes in Soil Organic Matter under Different Tillage and Rotation:Mathematical Modeling in ecosys. Soil Sci. Soc. Am. J.,1997,61:1159-1175
    53. Gregorich E.G., Drury C.F., Baldock J.A., Changes in soil carbon under long-term maize inmonoculture and legume-based rotation. Canadian Journal of Soil Science,2001,81:21-31
    54. Gregorich E.G., Liang B.C., Ellert B.H., Drury C.F., Fertilization Effects on Soil OrganicMatter Turnover and Corn Residue C Storage. Soil Sci. Soc. Am. J.,1996,60:472-476
    55. Halvorson A.D., Reule C.A., Follett R.F., Nitrogen fertilization effects on soil carbon andnitrogen in a dryland cropping system. Soil Science Society of America Journal,1999,63:912-917
    56. Halvorson A.D., Wienhold B.J., Black A.L., Tillage, Nitrogen, and Cropping System Effectson Soil Carbon Sequestration. Soil Sci. Soc. Am. J.,2002a,66:906-912
    57. Halvorson A.D., Wienhold B.J., Black A.L., Tillage, nitrogen, and cropping system effects onsoil carbon sequestration. Soil Science Society of America Journal,2002b,66:906-912
    58. Hati K.M., Swarup A., Singh D., Misra A.K., Ghosh P.K., Long-term continuous cropping,fertilisation, and manuring effects on physical properties and organic carbon content of asandy loam soil. Soil Research,2006,44:487-495
    59. Hermle S., Anken T., Leifeld J., Weisskopf P., The effect of the tillage system on soil organiccarbon content under moist, cold-temperate conditions. Soil&Tillage Research,2008,98:94-105
    60. Houghton R.A., Temporal patterns of land-use change and carbon storage in China andtropical Asia. Science in China Series C-Life Sciences,2002,45:10-17
    61. Huang Y., Sun W.J., Changes in topsoil organic carbon of croplands in mainland China overthe last two decades. Chinese Science Bulletin,2006,51:1785-1803
    62. Huang Y., Yu Y., Zhang W., Sun W., Liu S., et al, Agro-C: A biogeophysical model forsimulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology,2009a,149:106-129
    63. Huang Y., Yu Y.Q., Zhang W., Sun W.J., Liu S.L., et al, Agro-C: A biogeophysical model forsimulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology,2009b,149:106-129
    64. Huggins D.R., Fuchs D. Long-term N management effects on crop yield and soil C of anAquic Haplustoll in Minnesota. In Soil organic matter in temperate agroecosystems, ed. E.A.Paul, K.A. Paustian, E.T. Elliott, C. Vernon Cole1997. Boca Raton, FL: CRC Press. Numberof.
    65. Izac A.M.N., Developing policies for soil carbon management in tropical regions. Geoderma,1997,79:261-276
    66. Jansson S.L., Persson J. Mineralization and immobilization of soil nitrogen. In Nitrogen inagricultural soils(Agronomy Monograph), ed. F.J. Stevenson, W.R. Raun1982.22:229-252.Madison, WI: ASA, CSSA, and SSSA. Number of229-252pp.
    67. Janzen H.H., Carbon cycling in earth systems--a soil science perspective. Agriculture,Ecosystems&Environment,2004,104:399-417
    68. Janzen H.H., The soil carbon dilemma: Shall we hoard it or use it? Soil Biology&Biochemistry,2006,38:419-424
    69. Janzen H.H., Campbell C.A., Izaurralde R.C., Ellert B.H., Juma N., et al, Management effectson soil C storage on the Canadian prairies. Soil and Tillage Research,1998,47:181-195
    70. Jarecki M.K., Lal R., James R., Crop management effects on soil carbon sequestration onselected farmers' fields in northeastern Ohio. Soil&Tillage Research,2005,81:265-276
    71. Jenkinson D.S., The Turnover of Organic-Carbon and Nitrogen in Soil. PhilosophicalTransactions of the Royal Society of London Series B-Biological Sciences,1990,329:361-368
    72. Jenkinson D.S., Brandbury N.J., Colman K. How the Rothamsted classical experiments havebeen used to develop and test models for the turnover of carbon and nitrogen in soil. InLong-term experiments in agricultural and ecological sciences, ed. R.A. Leigh, A.E.Johnston1994.117-138. Wallingford: CAB International. Number of117-138pp.
    73. Jenkinson D.S., Rayner J.H., The Turnover of Soil Organic Matter in Some of the RothamstedClassical Experiments. Soil Science,1977,123:298-305
    74. Johnston A.E., The value of long-term field experiments in agricultural, ecological, andenvironmental research. Adv Agron,1997,59:291-333
    75. Jones S.K., Rees R.M., Kosmas D., Ball B.C., Skiba U.M., Carbon sequestration in atemperate grassland; management and climatic controls. Soil Use and Management,2006,22:132-142
    76. K rschens M., The importance of long-term field experimentsfor soil science andenvironmental research-a review. Plant, soil and environment,2006,52:1-8
    77. Karlen D.L., Kumar A., Kanwar R.S., Cambardella C.A., Colvin T.S., Tillage system effectson15-year carbon-based and simulated N budgets in a tile-drained Iowa field. Soil&TillageResearch,1998,48:155-165
    78. Kelly R.H., Parton W.J., Crocker G.J., Grace P.R., Klir J., et al, Simulating trends in soilorganic carbon in long-term experiments using the century model. Geoderma,1997,81:75-90
    79. Kemmitt S.J., Wright D., Goulding K.W.T., Jones D.L., pH regulation of carbon and nitrogendynamics in two agricultural soils. Soil Biology and Biochemistry,2006,38:898-911
    80. Kirschbaum M.U.F., Paul K.I., Modelling C and N dynamics in forest soils with a modifiedversion of the CENTURY model. Soil Biology and Biochemistry,2002,34:341-354
    81. Kong A.Y.Y., Six J., Bryant D.C., Denison R.F., van Kessel C., The Relationship betweenCarbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable CroppingSystems. Soil Sci. Soc. Am. J.,2005,69:1078-1085
    82. Kundu S., Bhattacharyya R., Prakash V., Ghosh B.N., Gupta H.S., Carbon sequestration andrelationship between carbon addition and storage under rainfed soybean-wheat rotation in asandy loam soil of the Indian Himalayas. Soil&Tillage Research,2007,92:87-95
    83. Lal R., Carbon Sequestration in Dryland Ecosystems. Environmental Management,2004,33:528-544
    84. Lal R., Soil carbon dynamics in cropland and rangeland. Environmental Pollution,2002a,116:353-362
    85. Lal R., Soil carbon sequestration in China through agricultural intensification, and restorationof degraded and desertified ecosystems. Land Degradation&Development,2002b,13:469-478
    86. Leifeld J., Zimmermann M., Fuhrer J., Simulating decomposition of labile soil organic carbon:Effects of pH. Soil Biology&Biochemistry,2008,40:2948-2951
    87. Leigh R.A. Long-term experiments in agricultural and ecological sciences1994. pp. Oxford:Oxford University Press
    88. Li C., Frolking S., Frolking T.A., A model of nitrous oxide evolution from soil driven byrainfall events:1. Model structure and sensitivity. Journal of Geophysical Research,1992,97:9759-9776
    89.87. Li C., Zhuang Y., Frolking S., Galloway J., Harriss R., et al, Modeling Soil OrganicCarbon Change in Croplands of China. Ecological Applications,2003,13:327-336
    90. Liu L., Greaver T.L., A global perspective on belowground carbon dynamics under nitrogenenrichment. Ecology Letters,2010,13:819-828
    91. Lu F., Wang X., Han B., OuYang Z., Duan X., et al, Soil carbon sequestrations by nitrogenfertilizer application, straw return and no-tillage in China's cropland. Global Change Biology,2009,15:281-305
    92. Müller M.M., Berg B., Release of carbon and nitrogen from decomposing roots of red-cloveras affected by liming of soil. Plant and Soil,1988,105:149-152
    93. Müller T., H per H., Soil organic matter turnover as a function of the soil clay content:consequences for model applications. Soil Biology and Biochemistry,2004,36:877-888
    94. Maia S.M.F., Ogle S.M., Cerri C.C., Cerri C.E.P., Changes in soil organic carbon storageunder different agricultural management systems in the Southwest Amazon Region of Brazil.Soil&Tillage Research,2010,106:177-184
    95. Malhi S.S., Lemke R., Wang Z.H., Chhabra B.S., Tillage, nitrogen and crop residue effects oncrop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil&TillageResearch,2006,90:171-183
    96. Manzoni S., Porporato A., Soil carbon and nitrogen mineralization: Theory and models acrossscales. Soil Biology&Biochemistry,2009,41:1355-1379
    97. Manzoni S., Porporato A., A theoretical analysis of nonlinearities and feedbacks in soil carbonand nitrogen cycles. Soil Biology and Biochemistry,2007,39:1542-1556
    98. Matthews R.B., Pilbeam C., Modelling the long-term productivity and soil fertility ofmaize/millet cropping systems in the mid-hills of Nepal. Agriculture, Ecosystems&Environment,2005,111:119-139
    99. McCarty G.W., Meisinger J.J., Effects of N fertilizer treatments on biologically active N poolsin soils under plow and no tillage. Biology and Fertility of Soils,1997,24:406-412
    100. Mccarty G.W., Meisinger J.J., Jenniskens F.M.M., Relationships between Total-N, Biomass-Nand Active-N in Soil under Different Tillage and N Fertilizer Treatments. Soil Biology&Biochemistry,1995,27:1245-1250
    101. McGill W.B. Review and classification of ten soil organic matter(SOM)models. InEvaluation of Soil Organic Matter Models Using Existing Long-Term Datasets, ed. D.S.Powlson, P. Smith, J.U. Smith1996. Vol.38:111-132. Heidelberg: Springer-Verlag. Number of111-132pp.
    102. Melillo J.M., Kicklighter D.W., McGuire A.D., Peterjohn W.T., Newkirk K.M., Globalchange and its effects on soil organic carbon stocks. Dahl Ws Env,1995,16:175-189
    103. Michaelis L., Menten M.L., Die kinetik der invertin wirkung. Biochem. Z.,1913,49:334-336
    104. MOA. China Agriculture Yearbook20072008. pp. Beijing: China Agriculture Press
    105. Molina J.A.E., Smith P. Modeling Carbon and Nitrogen Processes in Soils. In Advances inAgronomy, ed. L.S. Donald1997. Volume62:253-298: Academic Press. Number of253-298pp.
    106. Morari F., Lugato E., Berti A., Giardini L., Long-term effects of recommended managementpractices on soil carbon changes and sequestration in north-eastern Italy. Soil Use andManagement,2006,22:71-81
    107. Nave L.E., Vance E.D., Swanston C.W., Curtis P.S., Impacts of elevated N inputs on northtemperate forest soil C storage, C/N, and net N-mineralization. Geoderma,2009,153:231-240
    108. NCATS. Chinese organic fertilizer handbook1994a. pp200. Chinese Agricultural Publisher.200pp.
    109. NCATS.1994b. Chinese organic fertilizer handbook, National Center for AgriculturalTechnology Service, Chinese Agricultural Publisher
    110. Nieto O.M., Castro J., Fernandez E., Smith P., Simulation of soil organic carbon stocks in aMediterranean olive grove under different soil-management systems using the RothC model.Soil Use and Management,2010,26:118-125
    111. Ogle S.M., Breidt F.J., Easter M., Williams S., Paustian K., An empirically based approach forestimating uncertainty associated with modelling carbon sequestration in soils. EcologicalModelling,2007,205:453-463
    112. Pan G., Li L., Wu L., Zhang X., Storage and sequestration potential of topsoil organic carbonin China's paddy soils. Global Change Biology,2003,10:79-92
    113. Pan G., Smith P., Pan W., The role of soil organic matter in maintaining the productivity andyield stability of cereals in China. Agriculture, Ecosystems&Environment,2009,129:344-348
    114. Pan G.X., Song G.H., Li L.Q., Zhang Q., Topsoil organic carbon storage of China and its lossby cultivation. Biogeochemistry,2005,74:47-62
    115. Parton W., Silver W.L., Burke I.C., Grassens L., Harmon M.E., et al, Global-scale similaritiesin nitrogen release patterns during long-term decomposition. Science,2007,315:361-364
    116. Parton W., Stewart J., Cole C., Dynamics of C, N, P and S in grassland soils: a model.Biogeochemistry,1988,5:109-131
    117. Parton W.J., Haxeltine A., Thornton P., Anne R., Hartman M., Ecosystem sensitivity toland-surface models and leaf area index. Global and Planetary Change,1996,13:89-98
    118. Parton W.J., Rasmussen P.E., Long-Term Effects of Crop Management in Wheat-Fallow: II.CENTURY Model Simulations. Soil Science Society of America Journal,1994,58:530-536
    119. Parton W.J., Schimel D.S., Cole C.V., Ojima D.S., Analysis of Factors Controlling SoilOrganic-Matter Levels in Great-Plains Grasslands. Soil Science Society of America Journal,1987,51:1173-1179
    120. Paul E.A., Clark F.E. Soil Microbiology and Biochemistry, Second Edition1996. pp. SanDiego, CA: Academic Press
    121. Paustian K. Modelling soil biology and biochemical processes for sustainable agriculturalresearch. In Soil Biota. Management in Sustainable Farming Systems, ed. C.E. Pankhurst,V.V.S.R. Gupta, P.R. Grace1994.182-193. Melbourne: CSIRO Information Services. Numberof182-193pp.
    122. Paustian K., Parton W., Persson J., Modeling Soil Organic Matter in Organic-Amended andNitrogen-Fertilized Long-Term Plots. Soil Science Society of America Journal,1992,56:476-488
    123. Petersen B.M., Berntsen J., Hansen S., Jensen L.S., CN-SIM-a model for the turnover of soilorganic matter. I. Long-term carbon and radiocarbon development. Soil Biology&Biochemistry,2005,37:359-374
    124. Plentinger M.C., Penning de Vries F.W.T. CAMASE: Register of Agro-ecosystems Models.In Available at http://library.wur.nl/way/bestanden/clc/1763788.pdf.1996, p.^pp.
    125. Power J.F., Wiese R., Flowerday D., Managing Farming Systems for Nitrate Control. J.Environ. Qual.,2001,30:1866-1880
    126. Powlson D., Zhao B.Q., Li X.Y., Li X.P., Shi X.J., et al, Long-Term Fertilizer ExperimentNetwork in China: Crop Yields and Soil Nutrient Trends. Agronomy Journal,2010,102:216-230
    127. Powlson D.S., Whitmore A.P., Goulding K.W.T., Soil carbon sequestration to mitigate climatechange: a critical re-examination to identify the true and the false. European Journal of SoilScience,2011,62:42-55
    128. Qian Y.L., Bandaranayake W., Parton W.J., Mecham B., Harivandi M.A., Mosier A.R.,Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbonand nitrogen dynamics: The CENTURY model simulation. Journal of Environmental Quality,2003,32:1694-1700
    129. Ramachandran Nair P.K., Nair V.D., Mohan Kumar B., Showalter J.M. Chapter Five-CarbonSequestration in Agroforestry Systems. In Advances in Agronomy, ed. L.S. Donald2010.Volume108:237-307: Academic Press. Number of237-307pp.
    130. Rasmussen P.E., Albrecht S.L., Smiley R.W., Soil C and N changes under tillage and croppingsystems in semi-arid Pacific Northwest agriculture. Soil&Tillage Research,1998a,47:197-205
    131. Rasmussen P.E., Allmaras R.R., Rohde C.R., Roager N.C., Crop Residue Influences on SoilCarbon and Nitrogen in a Wheat-Fallow System. Soil Science Society of America Journal,1980,44:596-600
    132. Rasmussen P.E., Goulding K.W.T., Brown J.R., Grace P.R., Janzen H.H., Korschens M.,Agroecosystem-Long-term agroecosystem experiments: Assessing agricultural sustainabilityand global change. Science,1998b,282:893-896
    133. Raun W.R., Johnson G.V., Phillips S.B., Westerman R.L., Effect of long-term N fertilizationon soil organic C and total N in continuous wheat under conventional tillage in Oklahoma.Soil&Tillage Research,1998,47:323-330
    134. Reeves D.W., The role of soil organic matter in maintaining soil quality in continuouscropping systems. Soil&Tillage Research,1997,43:131-167
    135. Reicosky D.C., Dugas W.A., Torbert H.A., Tillage-induced soil carbon dioxide loss fromdifferent cropping systems. Soil&Tillage Research,1997,41:105-118
    136. Reicosky D.C., Gesch R.W., Wagner S.W., Gilbert R.A., Wente C.D., Morris D.R., Tillageand wind effects on soil CO2concentrations in muck soils. Soil&Tillage Research,2008,99:221-231
    137. Ren T.S., Du Z.L., Hu C.S., Tillage and Residue Removal Effects on Soil Carbon andNitrogen Storage in the North China Plain. Soil Science Society of America Journal,2010,74:196-202
    138. Rodrigo A., Recous S., Neel C., Mary B., Modelling temperature and moisture effects on C-Ntransformations in soils: comparison of nine models. Ecological Modelling,1997,102:325-339
    139. Rowe E.C., Evans C.D., Emmett B.A., Reynolds B., Helliwell R.C., et al, Vegetation typeaffects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Airand Soil Pollution,2006,177:335-347
    140. Rudrappa L., Purakayastha T.J., Singh D., Bhadraray S., Long-term manuring and fertilizationeffects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil&Tillage Research,2006,88:180-192
    141. Russell A.E., Cambardella C.A., Laird D.A., Jaynes D.B., Meek D.W., Nitrogen fertilizereffects on soil carbon balances in Midwestern US agricultural systems. EcologicalApplications,2009,19:1102-1113
    142. Russell A.E., Laird D.A., Parkin T.B., Mallarino A.P., Impact of nitrogen fertilization andcropping system on carbon sequestration in Midwestern Mollisols. Soil Science Society ofAmerica Journal,2005,69:413-422
    143. Saffih-Hdadi K., Mary B., Modeling consequences of straw residues export on soil organiccarbon. Soil Biology&Biochemistry,2008,40:594-607
    144. Sainju U.M., Senwo Z.N., Nyakatawa E.Z., Tazisong I.A., Reddy K.C., Tillage, croppingsystems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions.Journal of Environmental Quality,2008,37:880-888
    145. Sawada K., Funakawa S., Kosaki T., Simulating short-term dynamics of non-increasing soilrespiration rates by a model using Michaelis-Menten kinetics. Soil Science and Plant Nutrition,2010,56:874-882
    146. Schimel D.S., Emanuel W., Rizzo B., Smith T., Woodward F.I., et al, Continental scalevariability in ecosystem processes: Models, data, and the role of disturbance. EcologicalMonographs,1997,67:251-271
    147. Schipper L.A., Sparling G.P., Accumulation of soil organic C and change in C:N ratio afterestablishment of pastures on reverted scrubland in New Zealand. Biogeochemistry,2011,104:49-58
    148. Schlesinger W.H., Carbon and agriculture-Carbon sequestration in soils. Science,1999,284:2095-2095
    149. Schlesinger W.H., Carbon sequestration in soils: some cautions amidst optimism. AgricultureEcosystems&Environment,2000,82:121-127
    150. Shirato Y., Yokozawa M., Applying the Rothamsted Carbon Model for long-term experimentson Japanese paddy soils and modifying it by simple mining of the decomposition rate. SoilScience and Plant Nutrition,2005,51:405-415
    151. Singh S., Mishra R., Singh A., Ghoshal N., Singh K.P., Soil Physicochemical Properties in aGrassland and Agroecosystem Receiving Varying Organic Inputs. Soil Science Society ofAmerica Journal,2009,73:1530-1538
    152. Six J., Conant R.T., Paul E.A., Paustian K., Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,2002,241:155-176
    153. Smith J.U., Bradbury N.J., Addiscott T.M., SUNDIAL: A PC-based system for simulatingnitrogen dynamics in arable land. Agronomy Journal,1996a,88:38-43
    154. Smith J.U., Smith P. Environmental modelling. An introduction.2007. pp. Oxford: OxfordUniversity Press
    155. Smith J.U., Smith P., Addiscott T.M. Quantitative methods to evaluate and compare soilorganic matter(SOM)models. In Evaluation of Soil Organic Matter Models Using Existing,Long-term Datasets, ed. D.S. Powlson, P. Smith, J.U. Smith1996b.38:181-200. Heidelberg:Springer-Verlag. Number of181-200pp.
    156. Smith P., Carbon sequestration in croplands: the potential in Europe and the global context.European Journal of Agronomy,2004,20:229-236
    157. Smith P., Andren O., Brussaard L., Dangerfield M., Ekschmitt K., et al, Soil biota and globalchange at the ecosystem level: describing soil biota in mathematical models. Global ChangeBiology,1998,4:773-784
    158. Smith P., Falloon P., Coleman K., Smith J.U., Piccolo M., et al. Modelling soil carbondynamics in tropical ecosystems. In Global climate change and tropical ecosystems(Advancein soil science), ed. R. Lal, J.M. Kimble, R.F. Follett, B.A. Stewart1999.341-364. Boca Raton,FL: CRC Press. Number of341-364pp.
    159. Smith P., Smith J.U., Powlson D.S. Soil Organic Matter Network(SOMNET):1996Modeland Experimental Metadata. GCTE Report71996c. pp. Wallingford, Oxon: GCTE Focus3Office
    160. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., et al, A comparison of theperformance of nine soil organic matter models using datasets from seven long-termexperiments. Geoderma,1997,81:153-225
    161. Sommer R., de Pauw E., Organic carbon in soils of Central Asia-status quo and potentials forsequestration. Plant and Soil,2011,338:273-288
    162. Sun B.H., Hallett P.D., Caul S., Daniell T.J., Hopkins D.W., Distribution of soil carbon andmicrobial biomass in arable soils under different tillage regimes. Plant and Soil,2011,338:17-25
    163. Tang H.J., Qiu J.J., Van Ranst E., Li C.S., Estimations of soil organic carbon storage incropland of China based on DNDC model. Geoderma,2006,134:200-206
    164. Thomas R.L., Sheard R.W., Moyer J.R., Comparison of conventional and automatedprocedures for nitrogen, phosphorus, and potassium analysis of plant material using a singledigestion. Agronomy journal1967,59:240-243
    165. Thomsen I.K., Christensen B.T., Yields of wheat and soil carbon and nitrogen contentsfollowing long-term incorporation of barley straw and ryegrass catch crops. Soil Use andManagement,2004,20:432-438
    166. Tian G., Kang B.T., Brussaard L., Biological effects of plant residues with contrastingchemical compositions under humid tropical conditions—Decomposition and nutrient release.Soil Biology and Biochemistry,1992,24:1051-1060
    167. Tiscare o-López M., Velásquez-Valle M., Salinas-Garcia J., Báez-González A.D., Nitrogenand organic matter losses in no-till corn cropping systems. Journal of the American WaterResources Association,2004,40:401-408
    168. Tonitto C., David M.B., Drinkwater L.E., Li C.S., Application of the DNDC model totile-drained Illinois agroecosystems: model calibration, validation, and uncertainty analysis.Nutrient Cycling in Agroecosystems,2007,78:51-63
    169. Veen J.A.V., Paul E.A., Organic carbon dynamics in grassland soils.1. backgroundinformation and computer simulation. Canadian Journal of Soil Science,1981,61:185-201
    170. Voroney R.P., Veen J.A.V., Paul E.A., Organic carbon dynamics in grassland soils.2. modelvalidation and simulation of the long-term effects of cultivation and rainfall erosion. CanadianJournal of Soil Science,1981,61:211-224
    171. Walkley A., Black I.A., An examination of the Degtjareff method for determining soil organicmatter and a proposed modification of the chromic acid titration method. Soil Sci.,1934,37:29-38
    172. Wang D.D., Shi X.Z., Wang H.J., Weindorf D., Yu D.S., et al, Scale effect of climate on soilorganic carbon in the Uplands of Northeast China. Journal of Soils and Sediments,2010,10:1007-1017
    173. Wang X.B., Cai D.X., Hoogmoed W.B., Oenema O., Perdok U.D., Scenario analysis of tillage,residue and fertilization management effects on soil organic carbon dynamics. Pedosphere,2005,15:473-483
    174. Wang X.K., Lu F., Han B., Ouyang Z.Y., Duan X.N., et al, Soil carbon sequestrations bynitrogen fertilizer application, straw return and no-tillage in China's cropland. Global ChangeBiology,2009,15:281-305
    175. Willmott C.J., Some comments on the evaluation of model performance. Bulletin of theAmerican Meteorological Society,1982,63:1309-1313
    176. Wu H., Guo Z., Peng C., Distribution and storage of soil organic carbon in China. GlobalBiogeochem. Cycles,2003,17:1048
    177. Xie Z.B., Zhu J.G., Liu G., Cadisch G., Hasegawa T., et al, Soil organic carbon stocks inChina and changes from1980s to2000s. Global Change Biology,2007,13:1989-2007
    178. Xu W., Chen X., Luo G., Lin Q., Using the CENTURY model to assess the impact of landreclamation and management practices in oasis agriculture on the dynamics of soil organiccarbon in the arid region of North-western China. Ecological Complexity,2011a,8:30-37
    179. Xu X., Liu W., Zhang C., Kiely G., Estimation of soil organic carbon stock and its spatialdistribution in the Republic of Ireland. Soil Use and Management,2011b,27:156-162
    180. Yan X.Y., Cai Z.C., Wang S.W., Smith P., Direct measurement of soil organic carbon contentchange in the croplands of China. Global Change Biology,2011,17:1487-1496
    181. Yang Z., Singh B.R., Sitaula B.K., Fractions of organic carbon in soils under different croprotations, cover crops and fertilization practices. Nutrient Cycling in Agroecosystems,2004,70:161-166
    182. Yao Z., Zhou Z., Zheng X., Xie B., Liu C., et al, Effects of tillage during the nonwaterloggedperiod on nitrous oxide and nitric oxide emissions in typical Chinese rice-wheat rotationecosystems. J. Geophys. Res.,2010,115:G01013
    183. Zhang H.M., Wang B.R., Xu M.G., Effects of inorganic fertilizer inputs on grain yields andsoil properties in a long-term wheat-corn cropping system in south China. Communications inSoil Science and Plant Analysis,2008,39:1583-1599
    184. Zhang W., Xu M., Wang X., Huang Q., Nie J., et al, Effects of organic amendments on soilcarbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments,2012:1-14
    185. Zhang W.J., Wang X.J., Xu M.G., Huang S.M., Liu H., Peng C., Soil organic carbon dynamicsunder long-term fertilizations in arable land of northern China. Biogeosciences,2010,7:409-425
    186. Zhang W.J., Xu M.G., Wang B.R., Wang X.J., Soil organic carbon, total nitrogen and grainyields under long-term fertilizations in the upland red soil of southern China. Nutrient Cyclingin Agroecosystems,2009,84:59-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700