用户名: 密码: 验证码:
小麦抗白粉病基因的分子作图及其与白粉菌互作的表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦白粉病是由Blumeria graminis (DC.) E. O. Speer f. sp. tritici引起的世界性小麦主要病害,在我国各小麦主产区常年发生。培育和推广抗病品种是减少白粉病损失最经济、有效的方法。发掘和利用小麦农家品种及其近缘种属中的抗病基因,可以丰富小麦的抗病基因资源;建立与其紧密连锁的分子标记,有助于抗病基因的转移、累加及抗病品种的选育;研究其抗病分子机理是实现作物抗病性改良的理论基础,对实现小麦持久抗病性具有重要的理论意义和实践价值。本论文以携带抗白粉病基因mlbhl的普通小麦农家品种白葫芦及携带来源于野生二粒小麦抗白粉病基因PmAS846的普通小麦新种质N9134和N9738为研究对象,开展抗谱分析、抗病基因定位、分子标记分析和比较基因组学研究;并利用小麦基因芯片,从转录组水平上分析N9134在白粉菌胁迫下的表达谱,筛选和克隆抗病相关基因,主要研究结果如下:
     1.白葫芦和感白粉病材料陕优225杂交组合的F2代301个单株及其F3家系的遗传分析表明,白葫芦对E09的抗性由一对显性基因控制。构建了抗白粉病基因mlbhl的分子标记连锁图谱,包含11个共显性SSR标记,其中标记Xgwm603(Xgwm789)和Xbarc229位于mlbhl两侧,遗传距离分别为1.5和1.0cM。基因两翼标记的缺失系定位将mlbhl定位在1DS染色体bin0.59-1.00物理区段。基因mlbhl与小麦农家品种齿牙糙携带的抗白粉病基因Pm24位于相同的染色体区段。抗谱分析显示白葫芦与齿牙糙对6个白粉菌生理小种的反应型不同;等位性测验表明,mlbhl与Pm24是等位或非常紧密连锁的一个新基因,已被正式命名为抗白粉病基因Pm24b。
     2.抗谱分析表明,N9134对来自我国不同生态区的21个已知毒性的白粉菌小种均表现免疫或高抗。N9738及其亲本N9134苗期和成株期对陕西关中地区流行白粉菌系同样表现高抗或免疫。N9738与感白粉病品种辉县红杂交组合以及N9134与陕优225杂交组合的F2代和F3家系的遗传分析证实N9134和N9738苗期抗性由1对显性抗白粉病基因控制,即来自于野生二粒小麦As846的白粉病抗性基因PmAS846。单(缺)体分析将该基因定位在小麦5B染色体上。构建了包含16个SSR标记在内的PmAS846基因的分子标记连锁图谱,其中Xgpw3191和XFCP1位于PmAS846基因的侧翼,用5B染色体缺失系将该基因定位于5BL14-0.75-0.76区域。
     3. PmAS846基因所在小麦染色体区域与水稻第9染色体及短柄草第4染色体有着良好的共线性关系。为进一步加密PmAS846基因的遗传连锁图谱,本研究利用比较基因组学开发并筛选到26个与PmAS846基因紧密连锁或共分离的基于EST序列的各种标记。利用这些连锁标记和比较基因组学信息,构建了PmAS846基因的高密度比较连锁图谱。标记BG904722和CJ840011为PmAS846的侧翼标记,遗传距离分别为0.5cM和0.3cM,标记BJ261635、AL819406、CJ694617、CJ540214和RG-37900与PmAS846共分离。标记BJ261635和CJ840011将PmAS846基因所在染色体区间分别缩小到短柄草第4染色体197kb (Bradi4g37680-Bradi4g37960)和水稻第9染色体112kb(Os09g38520-Os09g38755)的基因组区域内。与PmAS846基因紧密连锁或共分离的标记用于扩增该基因的载体材料、含有其他抗白粉病基因的材料及不含抗白粉病基因的材料,发现标记RG-36976、BJ261635、AL819406、RG-37900、FCP1和BI955376都能将含有PmAS846基因的载体材料与其他材料区分开,说明这6个标记都能够用于PmAS846基因的分子标记辅助选择。
     4.结合组织侵染学观察,利用Affymetrix小麦基因芯片分析小麦新种质N9134在白粉菌生理小种E09胁迫下的表达谱。共筛选出2,408个差异表达基因,在接种后24h、48h和72h分别筛选到1,771、995和575个,上调表达的基因数分别为1,271、762和537个,其余为下调表达基因。选取其中的21个基因进行qRT-PCR分析,证实了基因芯片筛选结果的可靠性。2,408个差异表达基因的SOM聚类分析表明,这些基因随时间共有9种变化趋势。差异表达基因的GO分类表明,除参与代谢过程和细胞过程外,具有响应外界刺激的探针数占到10%。差异表达基因主要涉及过氧化物酶、β-1-3-葡聚糖酶、细胞色素P450、病程相关蛋白、葡糖苷酶、丝氨酸/苏氨酸蛋白激酶、几丁质酶、奇异果甜蛋白、苯丙氨酸解氨酶、蛋白酶抑制剂以及抗病蛋白等,这些基因是参与抗白粉病代谢调控网络中的重要基因。
     5.利用小麦5B染色体上已定位的EST和比较基因组学,定位了部分差异表达的抗病相关基因。利用RACE技术克隆了一个定位于5BL14-0.75-0.76内的探针Ta.25929.1.A1_at,基因Ta.25929(RGA-36976)的cDNA全长为2543bp,编码721个氨基酸,具有NB-ARC和LRR抗病基因结构域,属抗病蛋白家族。DNA序列分析发现该基因包含两个外显子,利用该基因5’端内含子在抗感材料中的长短不同设计InDel引物RG-36976,发现该基因与PmAS846紧密连锁,但不是其候选基因。
Powdery mildew caused by Blumeria graminis (DC.) E. O. Speer f. sp. tritici (Bgt) is aserious fungal disease of wheat worldwide and perennial occurred in the wheat growing areasof China. Deployment of resistant cultivars provides an effective approach for disease controlto eliminate the use of fungicides and minimize crop losses. Resistance gene diversity can berealized by searching for largely untapped of the rich genetic resources in wheat landraces andtheir wild relatives. The closely linked molecular markers with resistance gene can be used toquickly introgress the desired genes into commercial varieties or pyramiding differentresistance genes into a single genotype/cultivar for broad-spectrum resistance in wheatbreeding programs. Elucidating the molecular basis of plant disease resistance offers furtherpossibilities for durable resistance.
     The resistant Chinese wheat landrace (Triticum aestivum L.) Baihulu carrying the mlbhlgene and the common wheat lines N9134and N9738carrying the gene PmAS846introgressedfrom wild emmer accession As846(Triticum turgidum var. dicoccoides) were used toresistance spectrum analysis, molecular marker and comparative genomics analysis, in orderto map the powdery mildew resistance genes and get the closely linked markers formarker-assisted selection (MAS). Meanwhile, wheat microarray was used to investigate thetranscriptome patterns of N9134and possible defense processes regulated by PmAS846afterinoculation with Bgt isolate E09. The main results are included as follows:
     1. Chinese wheat landrace Baihulu confers a high level of resistance against a wide rangeof Bgt races, especially those currently prevailing physiological races in Shaanxi. Toinvestigate the inheritance of powdery mildew resistance and detect adjacent molecularmarkers, we constructed a segregating population of301F2plants and corresponding F3families derived from Baihulu/Shaanyou225. Genetic analysis revealed that a singledominant gene was responsible for seedling stage powdery mildew resistance in Baihulu. A genetic map comprising of Xgwm106, Xgwm337, Xgwm1675, Xgwm603, Xgwm789,Xbarc229, Xgpw4503, Xcfd72, Xcfd83, Xcfd59, Xcfd19and mlbhl spanned28.2cM onchromosome1D. All markers were inherited co-dominantly. Xgwm603/Xgwm789andXbarc229were flanking markers tightly linked to mlbhl at genetic distances of1.5and1.0cM,respectively. The mlbhl locus was located in chromosome bin1DS0.59-1.00delimited by theSSR markers Xgwm337and Xbarc229.
     Gene mlbhl was located in the same or a similar chromosomal region to Pm24. Whentested with a differential array of23Bgt isolates, Baihulu displayed a response pattern thatwas clearly distinguishable from that of Chiyacao and the varieties or lines possessingdocumented Pm genes. Allelism analysis indicated that it represented a new gene, eitherallelic or closely linked with Pm24or resided at a tightly linked locus in a gene cluster. Thenew gene was designated Pm24b.
     2. Gene PmAS846provides a potent resistance that is effective against21Chinese Bgtisolates with different virulence patterns. The common wheat line N9134and N9738arehighly resistant to Shaanxi prevailing races at both seedling and adult stages. Genetic analysisof two F2population and their F3families, developed from the cross of N9738/Huixianhongand N9134/Shaanyou225, indicated that N9134and N9738carrying one dominant resistancegene. A set of common wheat nullisomic (monosomic) lines were used to analyze thechromosomal location of PmAS846. The result revealed that PmAS846was located on wheatchromosome5B. Microsatellite markers on wheat chromosome5B were screened forpolymorphisms between parents and bulks. Genetic linkage map of PmAS846was constructedwith sixteen microsatellite markers. The two flanking markers Xgpw3191and XFCP1mappedPmAS846in chromosome bin5BL-0.75-0.76.
     3. The high level of collinearity exists between wheat chromosome5BL, Brachypodiumchromosome4and rice chromosome9. To develop additional markers, synteny betweenwheat, Brachypodium and rice was used to develop closely linked molecular markers toreduce the genetic interval around PmAS846. Twenty-six expressed sequence tag(EST)-derived markers were mapped to the PmAS846locus. A high resolution genetic mapfor PmAS846locus was constructed. The PmAS846locus was delineated to a0.8cM intervalflanked by the EST marker BG904722on the proximal side and the EST marker CJ840011onthe distal side. Five markers co-segregated with PmAS846in the F2population ofN9134/Shaanyou225. The markers order is conserved between wheat and Brachypodium, butrearrangements are present in rice. Two markers, BJ261635and CJ840011flanked PmAS846 and narrowed PmAS846to a region that is collinear with197kb and112kb genomic regionson Brachypodium chromosome4and rice chromosome9, respectively. The genes located onthe corresponding homologous regions in Brachypodium, rice and barley could be consideredfor further marker saturation and identification of potential candidate genes for PmAS846. Themarkers co-segregating with PmAS846provide a potential target site for positional cloning ofPmAS846.
     In order to evaluate the potential use of markers linked with PmAS846in MAS, theco-segregating or closely linked markers were validated on a number of resistant andsusceptible wheat genotypes. Specific resistant band types amplified by markers RG-36976,BJ261635, AL819406, RG-37900, FCP1and BI955376were only present in genotypescarrying PmAS846, but absent in other cultivars and lines without PmAS846, indicating thatthese markers particularly useful for MAS of PmAS846in wheat breeding programs.
     4. To ascertain the global framework of N9134gene expression during Bgt invasion, weanalyzed of55,052host genes interactions between wheat and Bgt. Combined histopathologyanalysis, Affymetrix wheat genome array was used to identify Bgt-induced genes, expressionpatterns and possible defense processes regulated by PmAS846in N9134. The significanceanalysis of microarrays (SAM) was used to identify transcripts that showed a differentiallyexpressed between Bgt inoculated and mock-inoculated. A total of2,408probe sets werefound to be more than2fold change expressed in at least one time point. To verify themicroarray data, quantitative RT-PCR time course analyses was carried out on21randomlyselected differentially expressed transcripts. The results of quantitative RT-PCR analysisconfirmed the reliability of the microarray data. To identify groups of genes with similarexpression patterns, a SOM analysis was carried out and the2,408probe sets were clusteredinto9groups. N9134exhibits both induction and repression of large sets of gene transcriptsduring Bgt infection. Among the2,408genes, there were homology of many genes linked topathogenesis-related genes, defense and stress response genes, signal transduction andtranscription factor genes involved in phenylpropanoid pathway, and resistance geneanalogues (RGAs). Genes encoding the pathogenesis related (PR) proteins, including theBeta-1,-3-glucanase, chitinases, protease inhibitor and thaumatin-like proteins were induced.
     5. Use of chromosome bin map of16,000ESTs loci and comparative genomics, a part ofdifferentially expressed genes related to disease resistant were mapped to wheat chromosomal5BL and the PmAS846interval. The probe set Ta.25929.1.A1_at, which was considered as acandidate disease resistant gene was located in the physical bin5BL14-0.75-0.76. The cDNA sequence of gene RGA-36976(Ta.25929) is2,543bp encoding a protein with721amino acids,and has a functional domain of NB-ACR and LRR. To characterize the relationship betweenRGA-36976and PmAS846, marker RG-36976was developed from introne sequencesinsertions/deletions (InDels) between resistant and susceptible parents. RG-36976was locatedon the proximal side of PmAS846in the genetic linkage map of the PmAS846. ThereforeRGA-36976was not the candidate genes but closely linked with PmAS846.
引文
曹爱忠,李巧,陈雅平,邹晓文,王秀娥,陈佩度.2006.利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究.作物学报,32:1444-1452
    董金皋.2001.农业植物病理学(北方本).北京:中国农业出版社
    董玉琛,郑殿升.2000.中国小麦遗传资源.北京:中国农业出版社
    董玉琛.2000.小麦的基因源.麦类作物学报,20:78-81
    高安礼,何华纲,陈全战,张守忠,陈佩度.2005.分子标记辅助选择小麦抗白粉病基因Pm2, Pm4a和Pm21的聚合体.作物学报,31:1400-1405
    何家泌,宋玉立.1998.小麦白粉病及其防治.河南农业科学,1:17-18
    何家泌.1994.植物抗病遗传学.北京:中国农业出版社
    李强,张卫东,田纪春.2009.小麦抗白粉病基因Pm21抗病差异的蛋白质组学研究.中国农业科学,42:2778-2783
    李振岐,商鸿生,魏宁生.1994.小麦病害防治北京:金盾出版社
    李振岐,商鸿生.2005.中国农作物抗病性及其利用.北京:农业出版社
    刘景芳,张增艳,陈孝,刘曼西,谢皓,辛志勇.2002.小麦抗白粉病基因Pm13及Pm4累加体的分子标记辅助选择.植物病理学报,32:296-300
    骆蒙,孔秀英,刘越,周荣华,贾继增.2002.小麦抗病基因表达谱中的文库构建与筛选方法研究.遗传学报,29:814-819
    马成,徐世昌,徐琴,张朝晖,潘映红.2009.抗条锈病小麦品系Taichuang29*6/Yr5接种条锈菌CY32后的蛋白质组学分析.中国农业科学,42:1616-1623
    牛吉山.2007.小麦抗白粉病遗传育种研究.北京:中国农业科学技术出版社
    盛宝钦,段霞瑜,周益林,王剑雄.1992.部分抗白粉病小麦农家品种的归类初探.作物品种资源,4:33-34
    盛宝钦,段霞瑜.1991.对记载小麦成株白粉病“0—9级法”的改进.北京农业科学,9:38-39
    盛宝钦,周益林.1990.关于小麦种质资源抗白粉病研究战略的商榷.植物保护,16:33-34
    盛宝钦.1988.用反应型记载小麦苗期白粉病.植物保护,1:49
    王长有,吉万全,张改生,王秋英,蔡东明,薛秀庄.2007.小麦种质N9134抗白粉病基因的SSR标记和染色体初步定位.作物学报,33:163-166
    王俊美,刘红彦,徐红明,王飞,高素霞,康振生.2009.应用基因芯片分析红蚰麦白粉菌胁迫条件下的基因表达谱.作物学报,35:1188-1193
    王亚娟,赵喜特,陈雪燕,李博,王长有,吉万全.2005.陕西省小麦农家种主要农艺性状及其自粉病抗性评价.农艺科学,21:182-184
    吴金华,胡银岗,王新茹,张宏,王长有,王秋英,吉万全.2008.小麦抗白粉病SSH-cDNA文库中差异基因的表达模式.作物学报,34:2121-2125
    薛飞,段霞瑜,周益林,吉万全.2009.部分小麦农家品种抗白粉病基因推导与遗传多样性分析.麦类作物学报,29:228-235
    薛秀庄.1993.小麦染色体工程与育种.石家庄:河北科学技术出版社
    杨文雄,杨芳萍,梁丹,何中虎,尚勋武,夏先春.2008.中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测.作物学报,34:1109-1113
    张增艳,张超.2002.分子标记选择小麦抗白粉病基因Pm4b, Pm13和Pm21聚合体.中国农业科学,35:789-793
    赵宁娟,薛飞,王长有,韩静然,吉万全,郑蕾.2010.小麦农家品种白葫芦抗白粉病基因的SSR分析.麦类作物学报,30:411-414
    周江鸿,赵素珍,漆小泉.2011.短柄草与麦类作物的比较基因组学研究进展.植物生理学报,47:421-426
    周益林,段霞瑜,陈刚,盛宝钦,张莹.2002.40个小麦优良品种资源的抗白粉病基因推导.植物病理学报,32:301-305
    庄巧生.2003.中国小麦品种改良及系谱分析.北京:中国农业出版社
    Admassu B, Perovic D, Friedt W, Ordon F.2011. Genetic mapping of the stem rust (Puccinia graminis f. sptritici Eriks.&E. Henn) resistance gene Sr13in wheat (Triticum aestivum L.). Theor Appl Genet,122:643-648
    Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, ChaoS, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen HT,Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA,Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO,Dvorak J.2003. The organization and rate of evolution of wheat genomes are correlated withrecombination rates along chromosome arms. Genome Res,13:753-763
    Alfares W, Bouguennec A, Balfourier F, Gay G, Berges H, Vautrin S, Sourdille P, Bernard M, Feuillet C.2009. Fine mapping and marker development for the crossability gene SKr on chromosome5BS ofhexaploid wheat (Triticum aestivum L.). Genetics,183:469-481
    Andersen JR, Lubberstedt T.2003. Functional markers in plants. Trends Plant Sci,8:554-560
    Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L,Giuliano G, Cattivelli L.2009. Transcriptional profiling in response to terminal drought stress revealsdifferential responses along the wheat genome. BMC Genomics,10:279
    Azhaguvel P, Rudd JC, Ma Y, Luo MC, Weng Y.2012. Fine genetic mapping of greenbug aphid-resistancegene Gb3in Aegilops tauschii. Theor Appl Genet,124:555-564
    Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T,Diergaarde P, Groenendijk J.1997. The barley Mlo gene: a novel control element of plant pathogenresistance. Cell,88:695-705
    Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson CT, Caig V, Huttner E, Kilian A, Laroche A.2011. Development and assessment of DArT markers in triticale. Theor Appl Genet,122:1547-1560
    Bahrini I, Ogawa T, Kobayashi F, Kawahigashi H, Handa H.2011. Overexpression of thepathogen-inducible wheat TaWRKY45gene confers disease resistance to multiple fungi in transgenicwheat plants. Breeding Science,61:319-326
    Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T.2010. Identification and mapping of PmG16,a powdery mildew resistance gene derived from wild emmer wheat. Theor Appl Genet,121:499-510
    Bennypaul HS, Mutti JS, Rustgi S, Kumar N, Okubara PA, Gill KS.2012. Virus-induced gene silencing(VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct Integr Genomics,12:143-156
    Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EY, Stiller J, Smits L, Imelfort M, ManoliS, McKenzie M, Kubalakova M, Simkova H, Batley J, Fleury D, Dolezel J, Edwards D.2011.Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosomearm7DS. Plant Biotechnol J,9:768-775
    Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubalakova M,Simkova H, Batley J, Dolezel J, Hernandez P, Edwards D.2012. Sequencing wheat chromosome arm7BS delimits the7BS/4AL translocation and reveals homoeologous gene conservation. Theor ApplGenet,124:423-432
    Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler ES, Bai G.2009. Discovery and mapping ofsingle feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics,10:251
    Berzonsky WA, Francki MG.1999. Biochemical, molecular, and cytogenetic technologies forcharacterizing1RS in wheat: A review. Euphytica,108:1-19
    Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B.2009. Unlocking wheat genetic resources for themolecular identification of previously undescribed functional alleles at the Pm3resistance locus. ProcNatl Acad Sci USA,106:9519-9524
    Bischof M, Eichmann R, Huckelhoven R.2011. Pathogenesis-associated transcriptional patterns inTriticeae. J Plant Physiol,168:9-19
    Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R.2008. Molecular mapping ofthe novel powdery mildew resistance gene Pm36introgressed from Triticum turgidum var. dicoccoidesin durum wheat. Theor Appl Genet,117:135-142
    Bolton MD, Kolmer JA, Xu WW, Garvin DF.2008. Lr34-mediated leaf rust resistance in wheat: transcriptprofiling reveals a high energetic demand supported by transient recruitment of multiple metabolicpathways. Mol Plant Microbe Interact,21:1515-1527
    Bossolini E, Wicker T, Knobel PA, Keller B.2007. Comparison of orthologous loci from small grassgenomes Brachypodium and rice: implications for wheat genomics and grass genome annotation.Plant J,49:704-717
    Briggle LW, Sears ER.1966. Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairyglume (Hg) on chromosome1A of wheat. Crop Sci,6:559-561
    Bruggmann R, Abderhalden O, Reymond P, Dudler R.2005. Analysis of epidermis-and mesophyll-specifictranscript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol Biol,58:247-267
    Brunner S, Stirnweis D, Diaz Quijano C, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C,Winzeler M, Keller B.2012. Transgenic Pm3multilines of wheat show increased powdery mildewresistance in the field. Plant Biotechnol J,10:398-409
    Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP.2004. Applications and advantages ofvirus-induced gene silencing for gene function studies in plants. Plant J,39:734-746
    Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P.2011.Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, conferspowdery mildew resistance in wheat. Proc Natl Acad Sci USA,108:7727-7732
    Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E.1999. Identification of molecular markerslinked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. TheorAppl Genet,98:448-454
    Chain F, Cote-Beaulieu C, Belzile F, Menzies JG, Belanger RR.2009. A comprehensive transcriptomicanalysis of the effect of silicon on wheat plants under control and pathogen stress conditions. MolPlant Microbe Interact,22:1323-1330
    Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S,Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D,Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA,Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C,Dean RA, Wing RA.2002. An integrated physical and genetic map of the rice genome. Plant Cell,14:537-545
    Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ.1995. Development and molecular cytogenetic analysis ofwheat-Haynaldia villosa6VS/6AL translocation lines specifying resistance to powdery mildew. TheorAppl Genet,91:1125-1128
    Chen X, Luo Y, Xia X, Xia L, Chen X, Ren Z, He Z, Jia J.2005. Chromosomal location of powderymildew resistance gene Pm16in wheat using SSR marker analysis. Plant Breeding,124:225-228
    Chisholm ST, Coaker G, Day B, Staskawicz BJ.2006. Host-microbe interactions: shaping the evolution ofthe plant immune response. Cell,124:803-814
    Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC.2007. Leafrust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the largepsr567gene family. Plant Mol Biol,65:93-106
    Coram TE, Settles ML, Chen X.2008a. Transcriptome analysis of high-temperature adult-plant resistanceconditioned by Yr39during the wheat-Puccinia striiformis f. sp.tritici interaction. Molecular PlantPathology,9:479-493
    Coram TE, Wang M, Chen X.2008b. Transcriptome analysis of the wheat-Puccinia striiformis f. sp. triticiinteraction. Molecular Plant Pathology,9:157-169
    Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able J.2006.Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMCGenomics,7:267
    Dempsey D, Shah J, Klessig DF.1999. Salicylic acid and disease resistance in plants. Critical Reviews inPlant Sciences,18:547-575
    Desmond OJ, Manners JM, Schenk PM, Maclean DJ, Kazan K.2008. Gene expression analysis of thewheat response to infection by Fusarium pseudograminearum. Physiological and Molecular PlantPathology,73:40-47
    Devos KM, Ma J, Pontaroli AC, Pratt LH, Bennetzen JL.2005. Analysis and mapping of randomly chosenbacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA,102:19243-19248
    Dhariwal R, Vyas S, Bhaganagare GR, Jha SK, Khurana JP, Tyagi AK, Prabhu KV, Balyan HS, Gupta PK.2011. Analysis of differentially expressed genes in leaf rust infected bread wheat involving seedlingresistance gene Lr28. Funct Plant Biol,38:479-492
    Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K,Gurskaya N, Sverdlov ED, Siebert PD.1996. Suppression subtractive hybridization: a method forgenerating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of theNational Academy of Sciences,93:6025-6030
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS.2004. Identification of wheat chromosomal regionscontaining expressed resistance genes. Genetics,166:461-481
    Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J.2008. Genetic and molecular characterization of theVrn2loci in tetraploid wheat. Plant Physiology,149:245-257
    Dong X.2004. NPR1, all things considered. Current Opinion in Plant Biology,7:547-552
    Drader T, Kleinhofs A.2010. A synteny map and disease resistance gene comparison between barley andthe model monocot Brachypodium distachyon. Genome53:406-417
    Draper J, Mur L, Jenkins G, Ghosh-Biswas G, Bablak P, Hasterok R, Routledge A.2001. Brachypodiumdistachyon. A new model system for functional genomics in grasses. Plant Physiology,127:1539-1555
    Driscoll C, Jensen N.1965. Release of a wheat-rye translocation stock involving leaf rust and powderymildew resistances. Crop Sci,5:279-280
    Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S,Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J,Grabherr MG, Kodira CD, Kohler A, Kues U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E,Murat C, Pangilinan JL, Park R, Pearson M, Quesneville H, Rouhier N, Sakthikumar S, Salamov AA,Schmutz J, Selles B, Shapiro H, Tanguay P, Tuskan GA, Henrissat B, Van de Peer Y, Rouze P, Ellis JG,Dodds PN, Schein JE, Zhong S, Hamelin RC, Grigoriev IV, Szabo LJ, Martin F.2011. Obligatebiotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA,108:9166-9171
    Durrant WE, Dong X.2004. Systemic acquired resistance. Annu Rev Phytopathol,42:185-209
    Dvorak J, Luo MC, Yang ZL, Zhang HB.1998. The structure of the Aegilops tauschii genepool and theevolution of hexaploid wheat. Theor Appl Genet,97:657-670
    Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A.2002."Perfect" markers for the Rht-B1b andRht-D1b dwarfing genes in wheat. Theor Appl Genet,105:1038-1042
    Endo TR.2007. The gametocidal chromosome as a tool for chromosome manipulation in wheat.Chromosome research: an international journal on the molecular, supramolecular and evolutionaryaspects of chromosome biology,15:67-75
    Endo TR, Gill BS.1996. The deletion stocks of common wheat. J Hered,87:295-307
    Erayman M.2004. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research,32:3546-3565
    Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W.2002. Isolation of EST-derived microsatellitemarkers for genotyping the A and B genomes of wheat. Theor Appl Genet,104:399-407
    Faris JD, Haen KM, Gill BS.2000. Saturation mapping of a gene-rich recombination hot spot region inwheat. Genetics,154:823-835
    Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS,Oliver RP, Simons KJ, Friesen TL.2010. A unique wheat disease resistance-like gene governseffector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA,107:13544-13549
    Feuillet C, Langridge P, Waugh R.2008. Cereal breeding takes a walk on the wild side. Trends in Genetics,24:24-32
    Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K.2011. Crop genome sequencing: lessons andrationales. Trends in Plant Science,16:77-88
    Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B.2003. Map-based isolation of the leaf rustdisease resistance gene Lr10from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl AcadSci USA,100:15253-15258
    Flor HH.1955. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology,45:680-685
    Flor HH.1971. Current status of the gene for gene concept. Annu Rev Phytopathol,9:275-296
    Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS.1994. Cytogenetically monitored transfer of powderymildew resistance from rye into wheat. Crop Sci,34:621-625
    Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J.2005. Largedeletions within the first intron in VRN-1are associated with spring growth habit in barley and wheat.Mol Genet Genomics,273:54-65
    Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J.2009. Akinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science,323:1357-1360
    Gadaleta A, Giancaspro A, Giove S, Zacheo S, Mangini G, Simeone R, Signorile A, Blanco A.2009.Genetic and physical mapping of new EST-derived SSRs on the A and B genome chromosomes ofwheat. Theor Appl Genet,118:1015-1025
    Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ.2004. One hundredand one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet,108:1392-1400
    Gill BS, Friebe BR, White FF.2011. Alien introgressions represent a rich source of genes for cropimprovement. Proc Natl Acad Sci USA,108:7657-7658
    Gill K, Gill B, Endo T, Boyko E.1996a. Identification and high-density mapping of gene-rich regions inchromosome group5of wheat. Genetics,143:1001-1011
    Gill KS, Gill BS, Endo TR, Taylor T.1996b. Identification and high-density mapping of gene-rich regionsin chromosome group1of wheat. Genetics,144:1883-1891
    Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H,Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J,Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L,Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, GutinA, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N,Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S.2002. A draftsequence of the rice genome (Oryza sativa L. ssp. japonica). Science,296:92-100
    Golkari S, Gilbert J, Prashar S, Procunier JD.2007. Microarray analysis of Fusarium graminearum-inducedwheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J,5:38-49
    Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G.2006. Molecularcharacterization of Ph1as a major chromosome pairing locus in polyploid wheat. Nature,439:749-752
    Guo Y-L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D.2011. Genome-wide comparison ofnucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol,157:757-769
    Gupta PK, Langridge P, Mir RR.2010. Marker-assisted wheat breeding: present status and futurepossibilities. Mol Breeding,26:145-161
    Gupta PK, Mir RR, Mohan A, Kumar J.2008. Wheat genomics: present status and future prospects. Int JPlant Genomics,2008:1-36
    Guyomarc'h H, Sourdille, Sourdille P, Charmet, Charmet G, Edwards, Edwards K, Bernard, Bernard M.2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii andtransferability to the D-genome of bread wheat. Theor Appl Genet,104:1164-1172
    Hajjar R, Hodgkin T.2007. The use of wild relatives in crop improvement: a survey of developments overthe last20years. Euphytica,156:1-13
    Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H.2008. Pm23: a new allele of Pm4located onchromosome2AL in wheat. Theor Appl Genet,117:1205-1212
    He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J.2009. Inheritance and mapping of powderymildew resistance gene Pm43introgressed from Thinopyrum intermedium into wheat. Theor ApplGenet,118:1173-1180
    Heath MC.2000. Hypersensitive response-related death. Plant Molecular Biology,44:321-334
    Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S,Jarmolowski A, Shirasu K, Lacomme C.2005. Virus-induced gene silencing-based functionalcharacterization of genes associated with powdery mildew resistance in barley. Plant Physiol,138:2155-2164
    Heun M, Fischbeck G.1987. Genes for powdery mildew resistance in cultivars of spring wheat. PlantBreeding,99:282-288
    Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, German S, Fletcher S, Park RF, Singh D, Pereyra S,Franckowiak J.2011. Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei inbarley. Theor Appl Genet,123:55-68
    Hiriart JB, Aro EM, Lehto K.2003. Dynamics of the VIGS-mediated chimeric silencing of the Nicotianabenthamiana ChlH gene and of the tobacco mosaic virus vector. Mol Plant Microbe Interact,16:99-106
    Holzberg S, Brosio P, Gross C, Pogue GP.2002. Barley stripe mosaic virus-induced gene silencing in amonocot plant. Plant J,30:315-327
    Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ.1998. Chromosomal location of genes for resistance topowdery mildew in common wheat (Triticum aestivum L. em Thell.).5. Alleles at the Pm1locus.Theor Appl Genet,96:1129-1134
    Hsam SLK, Huang XQ, Zeller FJ.2001a. Chromosomal location of genes for resistance to powderymildew in common wheat (Triticum aestivum L. em Thell.)6. Alleles at the Pm5locus. Theor ApplGenet,102:127-133
    Hsam SLK, Huang XQ, Zeller FJ.2001b. Chromosomal location of genes for resistance to powderymildew in common wheat (Triticum aestivum L. em Thell.)6. Alleles at the Pm5locus. Theor ApplGenet,102:127–133
    Hsam SLK, Lapochkina IF, Zeller FJ.2003. Chromosomal location of genes for resistance to powderymildew in common wheat (Triticum aestivum L. em Thell.).8. Gene Pm32in a wheat-Aegilopsspeltoides translocation line. Euphytica133:367–370
    Hsam SLK, Zeller FJ.1997a. Evidence of allelism between genes Pm8and Pm17and chromosomallocation of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'.Plant Breeding,116:119-122
    Hsam SLK, Zeller FJ.1997b. Evidence of allelism between genes Pm8and Pm17and chromosomallocation of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo'.Plant Breeding,116:119-122
    Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q.2009. Identification and genetic mapping ofpm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticumturgidum var. dicoccoides). Theor Appl Genet,119:223-230
    Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS.2003a. Map-based cloning of leaf rust resistancegene Lr21from the large and polyploid genome of bread wheat. Genetics,164:655-664
    Huang L, Gill BS.2001. An RGA-like marker detects all known Lr21leaf rust resistance gene familymembers in Aegilops tauschii and wheat. Theor Appl Genet,103:1007-1013
    Huang X-Q, R der MS.2011. High-density genetic and physical bin mapping of wheat chromosome1Dreveals that the powdery mildew resistance gene Pm24is located in a highly recombinogenic region.Genetica,139:1179-1187
    Huang X, Hsam S, Zeller F.1997a. Chromosomal location of genes for resistance to powdery mildew incommon wheat (Triticum aestivum L. em. Thell.)4. Gene Pm24in Chinese landrace Chiyacao. TheorAppl Genet,95:950-953
    Huang XQ, Hsam SLK, Mohler V, R der MS, Zeller FJ.2004. Genetic mapping of three alleles at the Pm3locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome,47:1130-1136
    Huang XQ, Hsam SLK, Zeller FJ.1997b. Identification of powdery mildew resistance genes in commonwheat (Triticum aestivum L. em Thell.). IX. Cultivars, land races and breeding lines grown in China.Plant Breeding,116:233-238
    Huang XQ, Hsam SLK, Zeller FJ.2000a. Chromosomal location of powdery mildew resistance genes inChinese wheat (Triticum aestivum L. em. Thell.) landraces Xiaobaidong and Fuzhuang30. Genetics&Breeding,54:311-317
    Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V.2000b. Molecular mapping of the wheat powderymildew resistance gene Pm24and marker validation for molecular breeding. Theor Appl Genet,101:407-414
    Huang XQ, Wang LX, Xu MX, R der MS.2003b. Microsatellite mapping of the powdery mildewresistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet,106:858-865
    Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL.2007. Gene expression patterns in near isogeniclines for wheat rust resistance gene Lr34/Yr18. Phytopathology,97:1083-1093
    Jia H, Cho S, Muehlbauer GJ.2009. Transcriptome analysis of a wheat near-isogenic line pair carryingFusarium head blight-resistant and-susceptible alleles. Mol Plant Microbe Interact,22:1366-1378
    Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD.1996. RFLP-based maps of the homoeologousgroup6chromosomes of wheat and their application in the tagging of Pm12, a powdery mildewresistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet,92:559-565
    Johnson R.1978. Practical breeding for durable resistance to rust diseases in self-pollinating cereals.Euphytica,27:529-540
    Jones JDG, Dangl JL.2006. The plant immune system. Nature,444:323-329
    Jorgensen J, Jensen C.1973. Gene Pm6for resistance to powdery mildew in wheat. Euphytica,22:423
    Kawaura K, Mochida K, Ogihara Y.2008. Genome-wide analysis for identification of salt-responsive genesin common wheat. Funct Integr Genomics,8:277-286
    Kota R, Spielmeyer W, McIntosh RA, Lagudah ES.2006. Fine genetic mapping fails to dissociate durablestem rust resistance gene Sr2from pseudo-black chaff in common wheat (Triticum aestivum L.). TheorAppl Genet,112:492-499
    Kou Y, Wang S.2010. Broad-spectrum and durability: understanding of quantitative disease resistance.Curr Opin Plant Biol,13:181-185
    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, SelterLL, Keller B.2009. A putative ABC transporter confers durable resistance to multiple fungalpathogens in wheat. Science,323:1360-1363
    Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B.2011. Lr34multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologousgenes in hexaploid wheat and other grass species. Plant J,65:392-403
    Krugman T, Chague V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B, Fahima T.2010. Multilevel regulation and signalling processes associated with adaptation to terminal drought inwild emmer wheat. Funct Integr Genomics,10:167-186
    Kumar S, Mohan A, Balyan HS, Gupta PK.2009. Orthology between genomes of Brachypodium, wheatand rice. BMC Research Notes,2:93
    López MA, Bannenberg G, Castresana C.2008. Controlling hormone signaling is a plant and pathogenchallenge for growth and survival. Current Opinion in Plant Biology,11:420-427
    La Rota M, Sorrells ME.2004. Comparative DNA sequence analysis of mapped wheat ESTs reveals thecomplexity of genome relationships between rice and wheat. Funct Integr Genomics,4:34-46
    Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D.2012.WheatGenome.info: an integrated database and portal for wheat genome information. Plant&cellphysiology,53:e2
    Lan CX, Ni XW, Yan J, Zhang Y, Xia XC, Chen XM, He ZH.2010. Quantitative trait loci mapping ofadult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai21. Molecular Breeding,25:615-622
    Landjeva S, Korzun V, B rner A.2007. Molecular markers: actual and potential contributions to wheatgenome characterization and breeding. Euphytica156:271-296
    Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC, Lui N, Matthews DE, Carollo VL, Hane DL,You FM, Butler GE, Miller RE, Close TJ, Peng JH, Lapitan NL, Gustafson JP, Qi LL, Echalier B, GillBS, Dilbirligi M, Randhawa HS, Gill KS, Greene RA, Sorrells ME, Akhunov ED, Dvorak J,Linkiewicz AM, Dubcovsky J, Hossain KG, Kalavacharla V, Kianian SF, Mahmoud AA, Miftahudin,Ma XF, Conley EJ, Anderson JA, Pathan MS, Nguyen HT, McGuire PE, Qualset CO, Anderson OD.2004. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.):EST generation, unigene analysis, probe selection and bioinformatics for a16,000-locusbin-delineated map. Genetics,168:585-593
    Leister D.2004. Tandem and segmental gene duplication and recombination in the evolution of plantdisease resistance genes. Trends in Genetics,20:116-122
    Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z.2009. Molecularidentification of a new powdery mildew resistance gene Pm41on chromosome3BL derived from wildemmer(Triticum turgidum var. dicoccoides). Theor Appl Genet,119:531-539
    Li J, Brader G, Palva ET.2004. The WRKY70transcription factor: a node of convergence forjasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell,16:319-331
    Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bj rnstad.2008. The adult plant rustresistance loci Lr34/Yr18and Lr46/Yr29are important determinants of partial resistance to powderymildew in bread wheat line Saar. Theor Appl Genet,116:1155-1166
    Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao S, Lazo GR, Hummel DD, Anderson OD,Akhunov ED, Dvorak J, Pathan MS, Nguyen HT, Peng JH, Lapitan NLV, Miftahudin, Gustafson JP,La Rota CM, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Bondareva SN, GillKS, Conley EJ, Anderson JA, Fenton RD, Close TJ, McGuire PE, Qualset CO, Dubcovsky J.2004. A2500-locus bin map of wheat homoeologous group5provides insights on gene distribution andcolinearity with rice. Genetics,168:665-676
    Liu J, Liu X, Dai L, Wang G.2007a. Recent progress in elucidating the structure, function and evolution ofdisease resistance genes in plants. Journal of Genetics and Genomics,34:765-776
    Liu R, Meng J.2003. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on givengenetic linkage data. Hereditas,25:317-321
    Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO.2011a. Development and characterization ofwheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance tostem rust. Theor Appl Genet,122:1537-1545
    Liu W, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO.2011b. Discovery and molecular mapping of anew gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata andcharacterization of spontaneous translocation stocks with reduced alien chromatin. Chromosomeresearch: an international journal on the molecular, supramolecular and evolutionary aspects ofchromosome biology,19:669-682
    Liu X, Bai J, Huang L, Zhu L, Weng N, Reese J, Harris M, Stuart J, Chen M.2007b. Gene expression ofdifferent wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor)larvae. Journal of chemical ecology,33:2171-2194
    Liu Y, He Z, Appels R, Xia X.2012a. Functional markers in wheat: current status and future prospects.Theor Appl Genet, DOI10.1007/s00122-012-1829-3
    Liu Z, Sun Q, Ni Z, Nevo E, Yang T.2002. Molecular characterization of a novel powdery mildewresistance gene Pm30in wheat originating from wild emmer. Euphytica,123:21-29
    Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z.2012b. Identification andcomparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticumturgidum var. dicoccoides) on chromosome2BS. Theor Appl Genet,124:1041-1049
    Lodha TD, Basak J.2012. Plant-pathogen interactions: what microarray tells about it? Molecularbiotechnology,50:87-97
    Loegering WQ, Berton CH.1974. Computer-generated hypothetical genotypes for reaction andpathogenicity of wheat cultivars and cultures of Puccinia graminis tritici. Phytopathology,64:1380-1384
    Lowe I, Cantu D, Dubcovsky J.2011. Durable resistance to the wheat rusts: integrating systems biologyand traditional phenotype-based research methods to guide the deployment of resistance genes.Euphytica,179:69-79
    Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC.2003. Virus-induced gene silencing inplants. Methods,30:296-303
    Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL.2009. Characterization and chromosomallocation of Pm40in common wheat: a new gene for resistance to powdery mildew derived fromElytrigia intermedium. Theor Appl Genet,118:1059-1064
    Lutz J, Hsam S, Limpert E, Zeller F.1995. Chromosomal location of powdery mildew resistance genes inTriticum aestivum L.(common wheat).2. Genes Pm2and Pm19from Aegilops squarrosa L. Heredity,74:152-152
    Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z.2011. Identification and mapping of a new powderymildew resistance gene on chromosome6D of common wheat. Theor Appl Genet,123:1099-1106
    Ma L, Yi S, Aizhong C, Zengjun Q, Liping X, Peidu C, Dajun L, Xiu EW.2010. Molecular cloning andcharacterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticumaestivum L. cv. Wangshuibai. Mol Biol Rep,37:785-795
    Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG.2005. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26and Yr9on the short arm of rye chromosome1. Theor Appl Genet,112:41-50
    Mago R, Spielmeyer W, Lawrence J, Lagudah S, Ellis G, Pryor A.2002. Identification and mapping ofmolecular markers linked to rust resistance genes located on chromosome1RS of rye using wheat-ryetranslocation lines. Theor Appl Genet,104:1317-1324
    Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG,Spielmeyer W.2011. A multiple resistance locus on chromosome arm3BS in wheat confers resistanceto stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet,123:615-623
    Malamy J, Carr JP, Klessig DF, Raskin I.1990. Salicylic Acid: a likely endogenous signal in the resistanceresponse of tobacco to viral infection. Science,250:1002-1004
    Mao P, Duan M, Wei C, Li Y.2007. WRKY62transcription factor acts downstream of cytosolic NPR1andnegatively regulates jasmonatere-sponsive gene expression. Plant&cell physiology,48:833-842
    Marais G, Wessels W, Horn M, Du Toit F.1998. Association of a stem rust resistance gene (Sr45) and twoRussian wheat aphid resistance genes (Dn5and Dn7) with mapped structural loci in common wheat. SAfr J Plant Soil,15:67-71
    Mateos-Hernandez M, Singh RP, Hulbert SH, Bowden RL, Huerta-Espino J, Gill BS, Brown-Guedira G.2006. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46in wheat using syntenywith rice. Funct Integr Genomics,6:122-131
    Maxwell J, Lyerly J, Cowger C, Marshall D, Brown-Guedira G, Murphy J.2009. MlAG12: a Triticumtimopheevii-derived powdery mildew resistance gene in common wheat on chromosome7AL. TheorAppl Genet,119:1489-1495
    Mayer KFX, Martis M, Hedley PE, imková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S,Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J,Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dole el J, Waugh R,Stein N.2011. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell,23:1249-1263
    McFadden HG, Lehmensiek A, Lagudah ES.2006. Resistance gene analogues of wheat: molecular geneticanalysis of ESTs. Theor Appl Genet,113:987-1002
    McIntosh RA, Baker EP.1970. Cytogenetical studies in wheat iv. Chromosome location and linkage studiesinvolving the Pm2locus for powdery mildew resistance. Euphytica,19:71-77
    Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW.2003. Genome-wide analysis ofNBS-LRR-encoding genes in Arabidopsis. Plant Cell,15:809-834
    Michel K, Abderhalden O, Bruggmann R, Dudler R.2006. Transcriptional changes in powdery mildewinfected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death atinfection sites. Plant Molecular Biology,62:561-578
    Michelmore RW, Paran I, Kesseli RV.1991. Identification of markers linked to disease-resistance genes bybulked segregant analysis: a rapid method to detect markers in specific genomic regions by usingsegregating populations. Proc Natl Acad Sci USA,88:9828-9832
    Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S.2007. Chromosomal location of Pm35, a novelAegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticumaestivum L.). Theor Appl Genet,114:1451-1456
    Miranda LM, Murphy JP, Marshall D, Leath S.2006. Pm34: a new powdery mildew resistance genetransferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet,113:1497-1504
    Morgounov A, Tufan H, Sharma R, Akin B, Bagci A, Braun H-J, Kaya Y, Keser M, Payne T, Sonder K,McIntosh R.2012. Global incidence of wheat rusts and powdery mildew during1969–2010anddurability of resistance of winter wheat variety Bezostaya1. European Journal of Plant Pathology,132:323-340
    Nematollahi G, Mohler V, Wenzel G, Zeller FJ, Hsam SLK.2008. Microsatellite mapping of powderymildew resistance allele Pm5d from common wheat line IGV1-455. Euphytica,159:307-313
    Ng G, Seabolt S, Zhang C, Salimian S, Watkins TA, Lu H.2011. Genetic dissection of salicylicacid-mediated defense signaling networks in Arabidopsis. Genetics,189:851-859
    Nimchuk Z, Eulgem T, Holt B, Dangl J.2003. Recognition and response in the plant immune system. AnnuRev Genet,37:579-609
    Niu J-s, Jia H-y, Yin J, Wang B-q, Ma Z-q, Shen T-m.2010. Development of an STS marker linked topowdery mildew resistance genes PmLK906and Pm4a by gene chip hybridization. AgriculturalSciences in China,9:331-336
    Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U,Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J,Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, PenningBW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P,Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX,Messing J, Rokhsar DS.2009. The Sorghum bicolor genome and the diversification of grasses. Nature,457:551-556
    Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, SpielmeyerW, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J,Simkova H, Dolezel J, Bernard M, Feuillet C.2008. A physical map of the1-gigabase bread wheatchromosome3B. Science,322:101-104
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ,Pelica F.1999.'Green revolution' genes encode mutant gibberellin response modulators. Nature,400:256-260
    Peng JH, Lapitan NLV.2005. Characterization of EST-derived microsatellites in the wheat genome anddevelopment of eSSR markers. Funct Integr Genomics,5:80-96
    Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Dilbirligi M,Sandhu D, Gill KS, Greene RA, Sorrells ME, Akhunov ED, Dvorak J, Linkiewicz AM, Dubcovsky J,Hossain KG, Kalavacharla V, Kianian SF, Mahmoud AA, Miftahudin, Conley EJ, Anderson JA, PathanMS, Nguyen HT, McGuire PE, Qualset CO, Lapitan NLV.2004. Chromosome bin map of expressedsequence tags in homoeologous group1of hexaploid wheat and homoeology with rice andArabidopsis. Genetics,168:609-623
    Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Metraux JP, MannersJM, Broekaert WF.1996. Pathogen-induced systemic activation of a plant defensin gene inArabidopsis follows a salicylic acid-independent pathway. Plant Cell,8:2309-2323
    Periyannan SK, Bansal UK, Bariana HS, Pumphrey M, Lagudah ES.2011. A robust molecular marker forthe detection of shortened introgressed segment carrying the stem rust resistance gene Sr22incommon wheat. Theor Appl Genet,122:1-7
    Perugini LD, Murphy JP, Marshall D, Brown-Guedira G.2008. Pm37, a new broadly effective powderymildew resistance gene from Triticum timopheevii. Theor Appl Genet,116:417-425
    Pestsova E, Ganal M, Roder M.2000. Isolation and mapping of microsatellite markers specific for the Dgenome of bread wheat. Genome,43:689-697
    Peusha H, Enno T, Priilinn O.2000a. Chromosomal location of powdery mildew resistance genes andcytogenetic analysis of meiosis in common wheat cultivar Meri. Hereditas,132:29-34
    Peusha H, Hsam SLK, Zeller FJ.1996. Chromosomal location of powdery mildew resistance genes incommon wheat (Triticum aestivum L. em. Thell.)3. Gene Pm22in cultivar Virest. Euphytica,91:149-152
    Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM.2000b. Chromosomal location of a Triticumtimopheevii derived powdery mildew resistance gene transferred to common wheat. Genome,43:377-381
    Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC.1998.A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell,10:1571-1580
    Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM.2009. Networking by small-moleculehormones in plant immunity. Nat Chem Biol,5:308-316
    Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ.2009. Shades of gray: the world of quantitativedisease resistance. Trends Plant Sci,14:21-29
    Qi L, Friebe B, Zhang P, Gill BS.2007. Homoeologous recombination, chromosome engineering and cropimprovement. Chromosome research: an international journal on the molecular, supramolecular andevolutionary aspects of chromosome biology,15:3-19
    Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorak J, Linkiewicz AM,Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, MunkvoldJD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D,Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin, Gustafson JP, Conley EJ, Nduati V,Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, KianianSF, Pathan MS, Zhang DS, Nguyen HT, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO,Gill BS.2004. A chromosome bin map of16,000expressed sequence tag loci and distribution of genesamong the three genomes of polyploid wheat. Genetics,168:701-712
    Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS.2011. A novelRobertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effectiveagainst race Ug99from Dasypyrum villosum into bread wheat. Theor Appl Genet,123:159-167
    Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE.2011. Collinearity-basedmarker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor ApplGenet,123:207-218
    Qiu Y, Zhou R, Kong X, Zhang S, Jia J.2005. Microsatellite mapping of a Triticum urartu Tum. derivedpowdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor ApplGenet,111:1524-1531
    R der MS, Korzun V, Wendehake K, Plaschke J, Tixier M-Hln, Leroy P, Ganal MW.1998. A microsatellitemap of wheat. Genetics,149:2007-2023
    Rampitsch C, Bykova NV, McCallum B, Beimcik E, Ens W.2006. Analysis of the wheat and Pucciniatriticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics,6:1897-1907
    Risk JM, Selter LL, Krattinger SG, Viccars LA, Richardson TM, Buesing G, Herren G, Lagudah ES, KellerB.2012. Functional variability of the Lr34durable resistance gene in transgenic wheat. PlantBiotechnol J,10:477-487
    Roberts J, Caldwell R.1970. General resistance (slow mildewing) to Erysiphe graminis f. sp. tritici inKnox wheat. Molecular Genetics,60:1310
    Robertson D.2004. VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol,55:495-519
    Rong JK, Millet E, Manisterski J, Feldman M.2000. A new powdery mildew resistance gene: introgressionfrom wild emmer into common wheat and RFLP-based mapping. Euphytica,115:121-126
    Rushton PJ, Somssich IE, Ringler P, Shen QJ.2010. WRKY transcription factors. Trends Plant Sci,15:247-258
    Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW.1984. Ribosomal DNA spacer-lengthpolymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics.Proc Natl Acad Sci USA,81:8014-8018
    Sandhu D, Champoux JA, Bondareva SN, Gill KS.2001. Identification and physical localization of usefulgenes and markers to a major gene-rich region on wheat group1S chromosomes. Genetics,157:1735-1747
    Sandhu D, Gill KS.2002a. Gene-containing regions of wheat and the other grass genomes. Plant Physiol,128:803-811
    Sandhu D, Gill KS.2002b. Structural and functional organization of the '1S0.8gene-rich region' in theTriticeae. Plant Mol Biol,48:791-804
    Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK.2012. A new powdery mildew resistance allele atthe Pm4wheat locus transferred from einkorn (Triticum monococcum). Mol Breeding,29:449-456
    Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA,Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C,Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K,Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E,Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N,Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A,Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T,Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E,Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M,Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, RenL, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT,Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC,Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S,Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW,Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H,Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL,Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW,McCombie WR, Wing RA, Wilson RK.2009. The B73maize genome: complexity, diversity, anddynamics. Science,326:1112-1115
    Schneider DM, Heun M, Fischbeck G.1991. Inheritance of the powdery mildew resistance gene Pm9inrelation to Pm1and Pm2of wheat. Plant Breeding,107:161-164
    Schreiber AW, Sutton T, Caldo RA, Kalashyan E, Lovell B, Mayo G, Muehlbauer GJ, Druka A, Waugh R,Wise RP, Langridge P, Baumann U.2009. Comparative transcriptomics in the Triticeae. BMCGenomics,10:285
    Scofield SR, Huang L, Brandt AS, Gill BS.2005. Development of a virus-induced gene-silencing systemfor hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistancepathway. Plant Physiol,138:2165-2173
    Sears E.1954. The aneuploids of common wheat. Mo Agri Exp Stn Res Bull,572:1-58
    Sears E.1966. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R LKe (ed) Chromosomemanipulation and plant genetics. Oliver and Boyd, Edinburgh, pp29-45
    Sears ER, Sears LMS.1978. The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proc5th Int Wheat Genet Symp. Indian Society of Genetics and Plant Breeding, New Delhi, pp389-407
    Shi AN, Leath S, Murphy JP.1998. A major gene for powdery mildew resistance transferred to commonwheat from wild einkorn wheat. Phytopathology,88:144-147
    Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, JiangCJ, Kaku H, Inoue H, Takatsuji H.2012. Rice WRKY45plays important roles in fungal and bacterialdisease resistance. Mol Plant Pathol,13:83-94
    Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H.2007. Rice WRKY45plays acrucial role in benzothiadiazole-inducible blast resistance. Plant Cell,19:2064-2076
    Sidhu GK, Rustgi S, Shafqat MN, von Wettstein D, Gill KS.2008. Fine structure mapping of a gene-richregion of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes.Proc Natl Acad Sci USA,105:5815-5820
    Singrün C, Hsam SLK, Hartl L, Zeller FJ, Mohler V.2003. Powdery mildew resistance gene Pm22incultivar Virest is a member of the complex Pm1locus in common wheat (Triticum aestivum L. emThell.). Theor Appl Genet,106:1420-1424
    Smith KA, Ng A.2003. Web page clustering using a self-organizing map of user navigation patterns.Decision Support Systems,35:245-256
    Somers DJ, Isaac P, Edwards K.2004. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theor Appl Genet109:1105-1114
    Somyong S, Munkvold JD, Tanaka J, Benscher D, Sorrells ME.2011. Comparative genetic analysis of awheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perceptionand calcium signaling. Funct Integr Genomics,11:479-490
    Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB.2005.Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet,110:550-560
    Song W, Xie C, Du J, Xie H, Liu Q, Ni Z, Yang T, Sun Q, Liu Z.2009. A “one-marker-for-two-genes”approach for efficient molecular discrimination of Pm12and Pm21conferring resistance to powderymildew in wheat. Mol Breeding,23:357-363
    Sorrells M, La Rota M, Bermudez-Kandianis C, Greene R, Kantety R, Munkvold J.2003. ComparativeDNA sequence analysis of wheat and rice genomes. Genome research,13:1818-1827
    Sourdille P, Guyomarc’h H, Baron C, Gandon B, Chiquet V, Artiguenave F, Edwards K, Foissey N, DufourP.2001. Improvement of the genetic maps of wheat using new microsatellite markers. Plant andAnimal Genome IX, Abstract,425
    Sourdille P, Robe P, Tixier M-H, Doussinault G, Pavoine M-T, Bernard M.1999. Location of Pm3g, apowdery mildew resistance allele in wheat, by using a monosomic analysis and by identifyingassociated molecular markers. Euphytica,110:193-198
    Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A,Bernard M.2004. Microsatellite-based deletion bin system for the establishment of genetic-physicalmap relationships in wheat (Triticum aestivum L.). Funct Integr Genomics,4:12-25
    Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren van Themaat E, Brown JK,Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C,Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L,Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC,Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, Lopez-Ruiz FJ, Lu X, Maekawa T, Mahanil S,Micali C, Milgroom MG, Montana G, Noir S, O'Connell RJ, Oberhaensli S, Parlange F, Pedersen C,Quesneville H, Reinhardt R, Rott M, Sacristan S, Schmidt SM, Schon M, Skamnioti P, Sommer H,Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R.2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extremeparasitism. Science,330:1543-1546
    Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES.2005. Powdery mildew resistance and Lr34/Yr18genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm ofchromosome7D of wheat. Theor Appl Genet,111:731-735
    Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES.2008. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: adisease resistance locus effective against multiple pathogens in wheat Theor Appl Genet,116:481-490
    Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP,Brown R, Kazan K.2003. NPR1modulates cross-talk between salicylate-and jasmonate-dependentdefense pathways through a novel function in the cytosol. Plant Cell,15:760-770
    Sreenivasulu N, Graner A, Wobus U.2008. Barley genomics: An overview. Int J Plant Genomics,2008:486258
    Srichumpa P, Brunner S, Keller B, Yahiaoui N.2005. Allelic series of four powdery mildew resistancegenes at the Pm3locus in hexaploid bread wheat. Plant Physiol,139:885-895
    Stein N.2007. Triticeae genomics: advances in sequence analysis of large genome cereal crops.Chromosome research: an international journal on the molecular, supramolecular and evolutionaryaspects of chromosome biology,15:21-31
    Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B.2000. Subgenome chromosome walking in wheat:A450-kb physical contig in Triticum monococcum L. spans the Lr10resistance locus in hexaploidwheat (Triticum aestivum L.). Proc Natl Acad Sci USA,97:13436
    Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M.1998. Fifty new microsatellite locifor the wheat genetic map. Theor Appl Genet,97:946-949
    Su Z, Hao C, Wang L, Dong Y, Zhang X.2011. Identification and development of a functional marker ofTaGW2associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet,122:211-223
    Sun X, Bai G, Carver BF, Bowden R.2009. Molecular mapping of wheat leaf rust resistance gene Lr42.Crop Sci,50:59-66
    Sunnucks P, Wilson A, Beheregaray L, Zenger K, French J, Taylor A.2000. SSCP is not so difficult: theapplication and utility of single-stranded conformation polymorphism in evolutionary biology andmolecular ecology. Molecular Ecology,9:1699-1710
    Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, Wang S.2009. A pair of allelic WRKY genesplay opposite rolesin rice-bacteria interactions. Plant Physiology,151:936-948
    The International Brachypodium Initiative.2010. Genome sequencing and analysis of the model grassBrachypodium distachyon. Nature,463:763-768
    The International HapMap Consortium.2003. The international HapMap project. Nature,426:789-796
    The TT, Mcintosh R, Bennett F.1979. Cytogenetic studies in wheat IX. Monosomic analysis, telocentricmapping and linkage relationships of genes Sr21, Pm4, and Mle. Auistrilia Journal of biology science,32:115-125
    Tommasini L, Yahiaoui N, Srichumpa P, Keller B.2006. Development of functional markers specific forseven Pm3resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet,114:165-175
    Torres MA, Jones JDG, Dangl JL.2006. Reactive oxygen species signaling in response to pathogens. PlantPhysiology,141:373-378
    Tosa Y, Ogura H, Tsujimoto H.1987. A gene involved in the resistance of wheat to wheatgrass powderymildew fungus. Genome,29:850-852
    Tosa Y, Sakai K.1990. The genetics of resistance of hexaploid wheat to the wheatgrass powdery mildewfungus. Genome,33:225-230
    Tosa Y, Tokunaga H, OgurA H.1988. Identification of a gene for resistance to wheatgrass powdery mildewfungus in the common wheat cultivar Chinese Spring. Genome,30:612-614
    Trebbi D, Maccaferri M, de Heer P, Sorensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van derVossen EA, Tuberosa R.2011. High-throughput SNP discovery and genotyping in durum wheat(Triticum durum Desf.). Theor Appl Genet,123:555-569
    Tufan H, McGrann G, Magusin A, Morel J, Miche L, Boyd L.2009. Wheat blast: histopathology andtranscriptome reprogramming in response to adapted and nonadapted Magnaporthe isolates. NewPhytologist,184:473-484
    Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J.2005.High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36from Triticum turgidum sspdicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet,112:97-105
    Van Eck L, Schultz T, Leach JE, Scofield SR, Peairs FB, Botha AM, Lapitan NL.2010. Virus-induced genesilencing of WRKY53and an inducible phenylalanine ammonia-lyase in wheat reduces aphidresistance. Plant Biotechnol J,8:1023-1032
    Velculescu VE, Vogelstein B, Kinzler KW.2000. Analysing uncharted transcriptomes with SAGE. TrendsGenet,16:423-425
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW.1995. Serial analysis of gene expression. Science,270:484-487
    Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvd, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, ZabeauM.1995. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res,23:4407-4414
    Vuylsteke M, Peleman JD, van Eijk MJT.2007. AFLP-based transcript profiling (cDNA-AFLP) forgenome-wide expression analysis. Nat Protocols,2:1399-1413
    Wan J, Dunning FM, Bent AF.2002. Probing plant-pathogen interactions and downstream defensesignaling using DNA microarrays. Funct Integr Genomics,2:259-273
    Wan Y, Poole R, Huttly A, Toscano-Underwood C, Feeney K, Welham S, Gooding M, Mills C, Edwards K,Shewry P, Mitchell R.2008. Transcriptome analysis of grain development in hexaploid wheat. BMCGenomics,9:121
    Wang B, Xie C, Xin M, Song N, Ni Z, Sun Q.2012. Comparative proteomic analysis of wheat response topowdery mildew infection in wheat Pm30near-isogenic lines. J Phytopathol,160:229-236
    Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z.2010.Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealedby cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology,10:9
    Wang Z, Li L, He Z, Duan X, Zhou Y, Chen X, Lillemo M, Singh R, Wang H, Xia X.2005. Seedling andadult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Disease,89:457-463
    Wen W, Li G, He Z, Yang W, Xu M, Xia X.2008. Development of an STS marker tightly linked to Yr26against wheat stripe rust using the resistance gene-analog polymorphism (RGAP) technique. MolBreeding,22:507-515
    Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, imková H, Kubaláková M,Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dole el J, Keller B, Stein N.2011.Frequent gene movement and pseudogene evolution is common to the large and complex genomes ofwheat, barley, and their relatives. Plant Cell,23:1706-1718
    Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA.2007. Transcript profiling in host-pathogeninteractions. Annu Rev Phytopathol,45:329-369
    Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, R der MS, Fahoum A, Fahima T.2011. Suppressedrecombination rate in6VS/6AL translocation region carrying the Pm21locus introgressed fromHaynaldia villosa into hexaploid wheat. Mol Breeding,29:399-412
    Xie W, Nevo E.2008. Wild emmer: genetic resources, gene mapping and potential for wheat improvement.Euphytica,164:603-614
    Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z.2008. Identification andmapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticummonococcum L.) accession. Theor Appl Genet,117:471-477
    Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, ZhangG, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R,Wang J, Wang W.2012a. Resequencing50accessions of cultivated and wild rice yields markers foridentifying agronomically important genes. Nat Biotechnol,30:105-111
    Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM.2012b. Whole-genome strategies for marker-assisted plantbreeding. Molecular Breeding,29:833-854
    Xue F, Zhai W-W, Duan X-Y, Zhou Y-L, Ji W-Q.2009. Microsatellite mapping of a powdery mildewresistance gene in wheat landrace xiaobaidong. Acta Agronomica Sinica,35:1806-1811
    Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C,Ma Z.2008. A high-density intervarietal map of the wheat genome enriched with markers derivedfrom expressed sequence tags. Theor Appl Genet,117:181-189
    Yaeno T, Saito B, Katsuki T, Iba K.2006. Ozone-induced expression of the Arabidopsis FAD7generequires salicylic acid, but not NPR1and SID2. Plant&cell physiology,47:355-362
    Yahiaoui N, Kaur N, Keller B.2009. Independent evolution of functional Pm3resistance genes in wildtetraploid wheat and domesticated bread wheat. Plant J,57:846-856
    Yahiaoui N, Srichumpa P, Dudler R, Keller B.2004. Genome analysis at different ploidy levels allowscloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J,37:528-538
    Yan, Yan G, Chen, Chen X, Line, Line R, Wellings, Wellings C.2003a. Resistance gene-analogpolymorphism markers co-segregating with the Yr5gene for resistance to wheat stripe rust. TheorAppl Genet,106:636-643
    Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J.2006. The wheat and barley vernalization gene Vrn3is an orthologue of FT. Proc Natl Acad Sci USA,103:19581-19586
    Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V,Dubcovsky J.2004. The wheat Vrn2gene is a flowering repressor down-regulated by vernalization.Science,303:1640-1644
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J.2003b. Positional cloning of thewheat vernalization gene Vrn1. Proc Natl Acad Sci USA,100:6263-6268
    Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells M.2007. Geneticmapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions.Theor Appl Genet,114:351-358
    You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD.2009. ConservedPrimers2.0: Ahigh-throughput pipeline for comparative genome referenced intron-flanking PCR primer design andits application in wheat SNP discovery. BMC Bioinformatics,10:331
    Yu D, Chen C, Chen Z.2001. Evidence for an important role of WRKY DNA binding proteins in theregulation of NPR1gene expression. Plant Cell,13:1527-1540
    Yu GT, Cai X, Harris MO, Gu YQ, Luo MC, Xu SS.2009. Saturation and comparative mapping of thegenomic region harboring Hessian fly resistance gene H26in wheat. Theor Appl Genet,118:1589-1599
    Yu J, Dake T, Singh S, Benscher D, Li W, Gill B, Sorrells M.2004. Development and mapping ofEST-derived simple sequence repeat markers for hexaploid wheat. Genome,47:805-818
    Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J,Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, LiJ, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, RenX, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, ZhengX, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, LiG, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J,Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, LiuS, Tao M, Wang J, Zhu L, Yuan L, Yang H.2002. A draft sequence of the rice genome (Oryza sativa L.ssp. indica). Science,296:79-92
    Yu XM, Yu XD, Qu ZP, Han QM, Guo J, Huang LL, Kang ZS.2007. Construction of wheat SSH cDNAlibrary induced by Puccinia striiformis and analysis of expressed sequence tags. Acta PhytopatholSinica,37:50-55
    Zeller FJ, Kong L, Hartl L, Mohler V, Hsam SLK.2002. Chromosomal location of genes for resistance topowdery mildew in common wheat (Triticum aestivum L. em Thell.)7. Gene Pm29in line Pova.Euphytica,123:187-194
    Zeller FJ, Lutz J, Stephan U.1993. Chromosome location of genes for resistance to powdery mildew incommon wheat (Triticum aestivum L.)1. Mlk and other alleles at the Pm3locus. Euphytica,68:223-229
    Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z.2010. Genetic andcomparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232originatingfrom wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.).Theor Appl Genet,121:1613-1621
    Zhang Y, Fan W, Kinkema M, Li X, Dong X.1999. Interaction of NPR1with basic leucine zipper proteintranscription factors that bind sequences required for salicylic acid induction of the PR-1gene. ProcNatl Acad Sci USA,96:6523-6528
    Zhang Z, Friesen T, Simons K, Xu S, Faris J.2009. Development, identification, and validation of markersfor marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1and Snn2in wheat. Mol Breeding,23:35-49
    Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD.2011. Two putatively homoeologouswheat genes mediate recognition of SnTox3to confer effector-triggered susceptibility to Stagonosporanodorum. Plant J,65:27-38
    Zhao H, Liu X, Chen M.2006. H22, a major resistance gene to the Hessian fly (Mayetiola destructor), ismapped to the distal region of wheat chromosome1DS. Theor Appl Genet,113:1491-1496
    Zhou R, Zhu Z, Kong X, Huo N, Tian Q, Li P, Jin C, Dong Y, Jia J.2005. Development of wheatnear-isogenic lines for powdery mildew resistance. Theor Appl Genet,110:640-648
    Zhu Z, Zhou R, Kong X, Dong Y, Jia J.2005. Microsatellite markers linked to2powdery mildewresistance genes introgressed from Triticum carthlicum accession PS5into common wheat. Genome,48:585-590
    Zhu ZD, Zhou RH, Kong XY, Kong XY, Dong YC, Jia J.2006. Microsatellite marker identification of aTriticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica,150:149-153
    Zietkiewicz E, Labuda D, Rafalski A.1994. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700