用户名: 密码: 验证码:
黄土高原坡面养分径流流失模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是我国乃至世界上土壤侵蚀最严重的地区,在水蚀严重的黄土高原开展黄土坡地土壤养分迁移机理及模拟模型研究,有利于揭示坡面物质迁移的内在机理,为调控坡面物质迁移过程提供理论基础。本论文采取理论分析与试验研究相结合的方法开展深入研究,取得主要结论如下:
     (1)初始土壤含水量通过影响水分入渗来影响养分流失,初始土壤含水量降低,养分流失将会减少。随着降雨强度的增加,径流含沙量增大,产流时间缩短。进而增加了产流时刻土壤表层养分含量,增加了径流养分流失量。坡度对径流泥沙和养分流失有重大影响,在0o到25o之间随坡度增加而增加。研究结果表明PAM对径流的影响不显著,但PAM增加了土壤抗雨滴击溅和径流冲刷的能力,显著减少径流泥沙含量,进而减少了径流中溶质的流失。对于杨凌塿土而言,PAM适宜用量为3g/m2。产流时刻径流溶质浓度和径流平均溶质浓度与产流时刻土壤表层溶质含量呈正的线性相关关系。
     (2)植被是通过改变径流的水动力学特性,进而影响径流侵蚀能力的。相同盖度下植被类型不同,其水土保持效果存在差异,对坡面养分流失影响也不同。对试验区而言,长芒草的水土保持效果优于紫花苜蓿。植被覆盖增加了地面的粗糙度,使汇流速度减慢,增加了入渗时间,植被覆盖通过影响水流动力特征和土壤粘聚力来影响径流泥沙含量,平均单宽输沙率与植被盖度之间呈负的线性函数关系。植被通过减少土壤侵蚀量和径流量,从而减少土壤养分向地表径流的传递而造成的流失。密函数能够很好的反映平均径流养分流失浓度与植被覆盖度之间的关系。试验区紫花苜蓿覆盖度在30%-60%之间每增加15%,平均单宽径流输沙率减少36.7%,平均径流溶质含量减少33.2%。碎石覆盖只是增加了坡面糟率,减小径流流速,增加入渗时间,从而增加入渗,减小径流量,进而减小径流泥沙含量,减少可溶性溶质随径流流失量。平均单宽输沙率与碎石盖度之间呈密函数关系。平均径流溶质浓度与碎石覆盖度之间关系可以用线性函数来表示。试验区碎石覆盖度在10%和30%之间每增加10%,平均单宽径流输沙率减少27.2%,平均径流溶质含量减少14.3%。
     (3)建立了黄土高原超渗产流机制下用径流剪切力来表示的径流平均单宽养分流失率模型,模型表达式为Drs=a·k·(τ-τ0),式中,Drs为平均单宽养分流失率,mg/(min·m);a为待定参数,对于不同的土壤养分初始含量和不同养分参数a是变化的。其他符号意义与单宽输沙率相同。模型简化了坡面养分流失模拟的复杂性,对于黄土高原水土流失和面源污染的控制有重要意义。
     (4)提出用交换系数er来代替对流质量传递模型中的传递系数km的模型改进方法,使得对流质量传递模型的物理意义更加明确,同时避免了对流质量传递模型传递系数km的推求,使其更加实用于黄土高原降雨径流养分流失的模拟。并利用试验进行了验证,模型模拟结果与试验结果吻合良好。得出当坡面坡度大于等于15o时常参数ρ等于1,当坡面坡度小于15o时常参数ρ等于2。
     (5)建立了适合黄土高原产流机制的物理意义明确的径流养分流失模拟模型,并利用壤土和砂壤土室内人工模拟降雨试验对模型进行了验证。模型模拟结果与实验实测数据吻合良好,模型能够很好的模拟水分和养分在土壤中的运动以及径流量和径流溶质含量虽时间的变化情况。建立的模型对于土壤侵蚀严重情况下的应用存在一定的局限性。对于其他土壤类型的适用性需要进一步的验证。
The Loess Plateau is the most serious region in soil and water loss in China and evenin the world. By increasingly drier climate and human activities, the region Loess Plateauwhere is also one of the important regions requiring ecological restoration for severeecological degradation. Soil erosion and solute transport on loess slope is a complicatedlyphysicochemical process. It is affected by many factors and mutually intersected withmulti-discipline, such as soil science, ecology, hydrology, hydraulics, environmentalscience and so on. The mechanisms and predictions of water and nutrient transport in soilson a slope during rainfall have played important roles in the research on the degradation ofsoil quality and the expansion of non-point source pollutions in recent years, which alsohave been an interdisciplinary field focused in soil erosion, hillslope hydrology, drylandagriculture and related environmental sciences.
     Investigating the mechanism and model of soil water and nutrient transport couldpredict and prevent effectively soil nutrient loss at intensively-eroded area on the loesssection. And it’s good for understand and master the nature and mechanism of erosion andinternal law of solute transport during the process of erosion on loess slope. This is veryimportant in ecological environment management of the Loess plateau. The main worksand detailed results of this study are as following:
     (1) The initial soil moisture content influences solute loss by virtue of its impact oninfiltration, which suggests that if infiltration could be facilitated, the loss of solutes couldbe reduced. Rainfall intensity increases the mass of sediment carried away by the runoffand decreases the time required for runoff formation; the latter in turn increases the soluteconcentration in the surface layer. The slope gradient also has a significant influence on themasses of solute and sediment in the runoff; both increase as the slope gets steeper between0to25gradient. Treatment with PAM effectively increased the soil’s resistance toraindrops and water flow-induced detachment. For the soil examined in this work, theoptimal PAM loading was3g/m2. Solute concentration in the runoff at the first minute when runoff take place and the average solute concentration in the runoff were positivelinear correlation with solute concentration in the soil surface when runoff take place.
     (2) Plant cover effect the runoff erosion ability by controlling the hydrauliccharacteristics of flow. It’s different both the soil and water conservation effects and theinfluence of the nutrient loss from slope from different vegetation types under the samevegetation coverage. For the experimental area, the Stipa bungeana was better than alfalfafor soil and water conservation. The vegetation coverage increased the soil surfaceroughness, slower down the flow velocity and increase the time of water infiltration. Thevegetation coverage influenced the soil sediment in the runoff by controlling the hydrauliccharacteristics of flow and the soil cohesion. The relationship between the averagesediments in the unite width of runoff and vegetation coverage could be expressed bynegative linear equations. The relationship between the average solute concentration in theunite width of runoff and the vegetation coverage could be described by density function.The average sediments in the unite width of runoff decreased36.7percentage and theaverage solute concentration in the unite width of runoff decreased with33.2percentagewith the coverage of alfalfa increased15percentage between30and60percentage. Thestone cover decreased the runoff volume, soil sediment in the runoff, the solute loss withrunoff by increasing the surface roughness of soil surface, decreasing the flow velocity ofoverland flow, increasing the time of water infiltration and the volume of infiltration. Therelationship between the average sediments in the unite width of runoff and the stonecoverage could be expressed by density function. The relationship between the averagesolute concentration in the runoff and stone coverage could be expressed by linear equation.For the experimental area, the average sediments in the unite width of runoff decreased27.2percentage and the average solute concentration in the unite width of runoff decreasedwith14.3percentage with the coverage of stone increased10percentage between10and30percentage.
     (3) We developed the average solute concentration in the unite width of runoff modelwhich expressed by the runoff shear stress under the infiltration excess condition on theLoess plateau. The model expressed as Drs=a·k·(τ-τ0), where Drswas average soluteconcentration in the unite width of runoff; a was empirical parameter and which changedwith solute types and the solute concentrated in the soil. The other parameter the same with the average sediments in the unite width of runoff. The model made the modeling solutetransport with runoff easier. The developed model to control the soil and water loss,non-point pollution has a very important role.
     (4) The method we used to refine power functions solute transport model developedby Wang Quanjiu et al was change the exchange rate kmwith the raindrop-induced watertransfer rate er, which make the model physically-based and without the kmcalculation.The refined model was more suitable for modeling the solute loess with runoff on theLoess plateu. Test the model with experimental date. The model fitted the experimentaldata very well. Our results also showed that when the slope gradient was15°or larger than15°, the constant parameter, ρ was equal to2, ρ was equal to1while when the slopegradient was less than15°.
     (5) We have developed a physically-based solute transport model for estimating thesolute concentration in runoff originating from the soil surface under the infiltration excesscondition on the Loess plateau. To test the model, we carried out laboratory experimentsthat used two soil types (loam and sandy loam) and exposed them to simulated rainfall.The results simulated by the model were highly correlated with the experimental data. Thesimulated data showed a high level of correlation with the measured data for soil water,solute transport in the soil profile and runoff volume, solute concentration in the runoff.This demonstrates that the model captured the temporal behavior of the runoff and solutetransport in the runoff. The model could not predict the solute concentrations in the runoffunder severe soil erosion conditions accurately.
引文
[1]石辉,邵明安.土壤中农用化学物的迁移.见:邵明安主编.农田生态系统中物质迁移研究[C].西安:陕西人民出版社,2001,343~349.
    [2]李勉,李占斌,崔灵周.论黄土高原水土流失与水土资源的可持续利用.见:邵明安主编.土壤物理与生态环境建设研究文集[C].西安:陕西科学技术出版社,2001,323~328.
    [3]党维勤.黄土高原坡耕地水土流失综合治理中循环利用及模式分析[J].水土保持.2011,51-53.
    [4]高军侠,党宏斌,程积民.黄土高原坡耕地泥沙输移特征分析[J].水土保持通报,2007.27(2):39-42.
    [5]王全九,王文焰,沈冰,邵明安.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998,4(2):41~46.
    [6] Frere M H, Onstad C A, Holtan N H. ACTMO, An Agricultural Chemical TransportModel[R].U.S. Dep. of Agric. Pub.ARS-H-3. U.S. Government Printing Office,Washington, D.C.1975,56.
    [7] Knisel W G. CREAMS:A Field Scale Model for Chemicals, Runoff, and Erosionfrom Agricultural Management System[R]. U.S. Dep. of Agr. Conser.Reot.1980,26:640.
    [8] Frere M H. The nutrient submodel.CREAMS: A field scale model for chemical,runoff, and erosion from agricultural management system[R]. USDA. Cons. ResReport26.US Gov. Print Office, Washington, D. C.1980:65~67.
    [9] Li H E, Joseph H W L, Koenig A. Nutrient load estimation in nonpoint sourcepollution of Hong Kong region[J].Water Science and Technology,2005,51(3-4),209~216.
    [10] Wallach, R., William, A.J., William, F.S.,. Transfer of chemical from soil solution tosurface runoff: a diffusion-based soil model[J]. Soil Sci. Soc. Am. J.1988,52,612–617.
    [11] Ahuja, L.R., Sharpley, A.N., Yamamoto, M., Menzel, R.G.,.The depth ofrainfall-runoff-soil interaction as determined by32P[J]. Water Resour. Res.1981,17(4),969–974.
    [12] Ahuja, L.R., Lehman, O.R.,. The extent and nature of rainfall-soil interaction in therelease of soluble chemicals to runoff[J]. J. Environ. Qual.1983,12(1),34–40.
    [13] Green, T., and D.F. Houke. The mixing of rain with near surface water[J]. FluidMech.1979,90:569-588.
    [14] Ingram JJ, Woolhiser DA. Chemical transfer into overland flow[R].p.40-53.InProc.Symp. Watershed Management, Boise, ID,1980,July21-23. Am. Soc. Civ.Eng., New York.
    [15] Ahuja LR, Sharpley AN, Lehman OR. Effect of soil slope and rainfallcharacteristics on phosphorus in runoff[J]. J. Environ. Qual.1982,11,9–13.
    [16] Havis RN. Transport from overland flow[D]. Ph.D. dissertation, Colorado StateUniv., Fort Collins.1986(Dissertation Abstract87–05453).
    [17] Sharpley AN, Ahuja LR, Yamamoto M, and Menzel RG. The release of soilphosphorus to runoff in relation to the kinetics of desorption[J]. J. Environ. Qual.1981,10:386-391.
    [18] Zhang XC, Norton D, Nearing MA. Chemical transfer from soil solution to surfacerunoff[J]. Water Resources Res.1997,33(4),809–815.
    [19] Gao B et al. Investigating raindrop effects on transport of sediment and non-sorbedchemicals from soil to surface runoff[J]. Journal of Hydrology,2005,308:313-320.
    [20] Gao B, Walter MT, Steenhuis TS, Hogarth WL, Parlange JY. Rain inducedchemical transport from soil to runoff: theory and experiments[J]. J. Hydrol.2004,295,291-304.
    [21] Walter MT, Gao B, Parlange JY. Modeling soil solute release into runoff withinfiltration[J]. J. Hydrol.2007,347,430-437.
    [22]田坤,Huang Chihua,张广军.土壤溶质迁移至地表径流过程的室内模拟试验[J].农业工程学报.2009,25(11):97-102.
    [23]田坤,Huang Chihua,张广军,郑粉莉.土壤溶质迁移过程的试验研究[J].农业工程学报.2009,23(3):1-5.
    [24]田坤,Huang Chihua,王光谦,田鹏,傅旭东,郭海丹.降雨-径流条件下土壤溶质迁移过程模拟[J].农业工程学报.2011,27(4):81-87.
    [25]田坤,Huang Chihua,王光谦,田鹏,傅旭东.降雨-径流条件下混合层深度模拟试验[J].农业工程学报.2011,27(11):188-192.
    [26]王辉,汤佳浩,李志明,裴毅.上方来水流量对坡面土壤溶质迁移特征的影响[J].灌溉排水学报.2011,30(4)56-59.
    [27] Snyder, I.K.,and D.A. Woolhiser. Effect of infiltration on chemical transport intooverland flow[J]. Trans. ASAE.1985.28:1450-1457.
    [28]王万忠,焦菊英.黄土高原坡面降雨产流产沙过程变化的统计分析[J].水土保持通报,1996,16(5):21-28.
    [29]黄满湘等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58:147-154.
    [30] Walton R S et al. Solute transport by surface runoff from low-angle slopes: theoryand application[J]. Hydrological processes,2000,14(6):1139-1158.
    [31] Flanagan D C, Foster G R. Storm pattern effect on nitrogen and phosphorus lossesin surface runoff[J]. Trans ASAE,1989,32(2):535-544.
    [32] Zhang X C, Norton L D, Hickman M. Rain pattern and soil moisture content effectson Atrazine and Metolachlor losses in runoff[J]. J Environ Qual.1997,26:1539-1547.
    [33] Wallach, R., Galina Grigorin, Judith Rivlin. A comprehensive mathematical modelfor transport of soil-dissolved chemicals by overland flow[J]. Journal of Hydrology.2001,247:85-99.
    [34]王辉,王全九,邵明安.降雨条件下黄土坡面养分随径流迁移试验研究[J].农业工程学报,2006,22(6):39-44.
    [35] Walton R S et al. Experimental examination of solute transport by surface runofffrom low-angle slopes[J].Journal of Hydrology,2000,233:19-36.
    [36]张亚丽,李怀恩,杨素勤,孟庆香,黄珺嫦.模拟降雨条件下黄土坡地土壤溶质迁移特征试验研究[J].水土保持学报.2009,23(4):113-117.
    [37]刘秉正等.黄土高原南部土壤养分流失规律[J].水土保持学报,1995,9(2):77-86.
    [38]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,2002,5(2):18-22.
    [39] Lentz, R.D., I. Shainberg, R.E. Sojka, and D.L. Carter. Preventing irrigation rillerosion with small applications of polymers[J]. Soil Sci. Soc. Am. J.1992,56:1926-1932.
    [40] Shainberg, I., D. Warrington, and P. Rengasamy. Effect of soil conditioner andgypsumapplication on rain infiltration and erosion[J]. J. Soil. Sci.1990,149:301–307.
    [41] Sirjacobs, D. I. Shainberg, I. Rapp, and G. J. Levy. Polyacrylamide, Sediments, andInterrupted Flow Effects on Rill Erosion and Intake Rate[J]. Soil Sci. Soc. Am. J.2000,64:1487–1495.
    [42] Sojka, R.E., R.D Lentz, and D.T. Westerman. Water and erosion management withmultiple application of polyacrylamide in furrow irrigation[J]. Soil Sci. Soc. Am. J.1998a,62:1672–1680.
    [43]王辉,王全九,邵明安. PAM对黄土坡地水分养分迁移特性影响的室内模拟试验[J].农业工程学报.2008,24(6):85-88.
    [44] Amer F, et al. Characterization of soil phosphorus by anion exchange resin and32Pequilibration[J]. Plant Soil, VI,1955,4:391-408.
    [45] Kuo S, Lotse E G. Kinetics of phosphate adsorption by hematite and gibbsite[J].Soil Sci.,1974,116:297-284.
    [46] Barrow, N.J. the description of desorption of phosphate from soil[J]. J. Soil Sci.1979,30:259-270.
    [47] Chien S H, Clayton W R. Application of Elovich equation to the kinetics ofphosphate release and adsorption in soils[J]. Soil Sci. Soc. Am. J.1980,44:265-268.
    [48] Sharpley A N et al. The Kinetics of Phosphorus Desorption from Soil[J]. Soil SciAm J,1981,45:493-496.
    [49] Ahuja L R et al. Effect of soil slope and rainfall characteristics on phosphorus inrunoff[J].J Environ Qual,1982,11:9-13.
    [50] Vadas P A, Kleinman PJA, Sharpley A N. A simple method to predict dissolvedphosphorus in runoff from surface-applied manures[J]. J Environ Qual,2004,33:749-756.
    [51] Bruce R R et al. A model for runoff of pesticides from small upland water sheds[J].J.Environ.Qual.1974,4:541-548.
    [52] Huff D D and Kruger P. The chemical and physical parameters in a hydrologictransport model for radioactive aerosols[J], Proc. Int. Hydrol. Symp.1967,1,128-135.
    [53] Frere M H,Ross J D, Lane L J. The nutrient submodel. In CREAMS: A field scalemodel for chemicals, runoff, and erosion from agricultural management systems[R].1980,65-87. W.G Kniesel, ed. USDA Conservation Research Report26.Washington, D C.
    [54] Donigian A S et al. Agricultural runoff management (ARM) model, version II,refinement and testing[R]. Rep.1977, EPA/600/3-77-098, pp294. U.S.Environmental Protection Agency, Athens, GA.
    [55] Haith D A. A mathematical model for estimating pesticide losses in runoff[J].Journal Environ Qual,1980,9(3):428-433.
    [56]王全九,邵明安,李占斌,雷廷武,吕殿青.黄土区农田溶质径流过程模拟方法分析[J].水土保持研究,1999,6(2):67-71,104.
    [57] Havis, R.N. Solute transport from soil to overland flow[D]. Ph.D. diss. Dep. of Civ.Eng., Colorado State Univ., Fort Collins,1986.(Diss. Abstr.8705453).
    [58] Havis, R.N., R.E. Smith, and D.D. Adrian. Partitioning solute transport between iniltration and overland flow under rainfall[J]. Water Resour. Res.1992,28:2569–2580. doi:10.1029/92WR01366.
    [59] Govindaraju, R.S. Modeling overland flow contamination by chemicals mixed inshallow soil horizons under variable source area hydrology[J]. Water Resour. Res.1996,32:753–758. doi:10.1029/95WR03639
    [60] Wallach R et al. Modeling solute transfer from soil to surface runoff: the concept ofeffective depth of transfer[J]. J of Hydrology,1989,109:307-317.
    [61] Wallach R, Shabtai R. Modeling surface runoff contamination by soil chemicalsunder transient water infiltration[J]. Journal of Hydrology.1992,132(1-4):263-281.
    [62] Ahuja L R. Modeling soluble chemical transfer to runoff with rainfall impact as adiffusion process. Soil Science Society of America Journal[J],1990,54(2):312-321.
    [63] Rose C W. Developments in soil erosion and deposition models[J]. Adv Soil Sci,1985,2:1-16.
    [64] Rose C W et al. Modeling processes of soil erosion by water[J]. Trans of Hydrol,1994,1:443-451.
    [65] Wallach R, Van Genuchten M T. A physically based model for predicting solutetransfer from soil solution to rainfall-induced runoff water[J]. Water ResourcesResearch.1990,26(9):2119-2126.
    [66] Wallach R, Rina Shabtai. Surface runoff contamination by soil chemicals:simulations for equilibrium and first-order kinetics[J]. Water Resources Research,1992,28(1):167-173.
    [67] Judith Rivlin(Byk). An analytical solution for the lateral transport of dissolvedchemicals in overland flow[J]. Water Resources Research,1995,31(4):1031-1040.
    [68] Judith Rivlin, Wallach R, and Grigorin Galina. An analytical solution for the lateraltransport of dissolved chemicals in overland flow-varying soil surfaceconcentration[J]. Journal of contaminant hydrology,1997,28:21-38.
    [69] Wallach, R., Runoff contamination by soil chemicals-time scales approach[J]. WaterResour. Res.1991,27,215–223.
    [70]李长兴,范荣生,李占斌.流域产流理论研究进展[J].西北水资源与水工程,1994,5(4):l~6.
    [71]王辉.降雨条件下黄土坡地养分迁移机理及模拟模型:[博士学位论文][D].2006.杨凌:西北农林科技大学.
    [72]李裕元.坡地土壤磷素与水分迁移试验研究:[博士学位论文][D].2002.杨凌:西北农林科技大学.
    [73]王全九,张江辉,丁新利,邱胜彬.黄土区土壤溶质径流迁移过程影响因素浅析[J]西北水资源与水工程.1999,10(1):9-13.
    [74]王全九,叶海燕,史晓南,苏莹.土壤前期含水量对微咸水入渗特征影响[J].水土保持学报.2004,18(1):51-53.
    [75] Shiu-hung Luk. Effect of antecedent soil moisture content on rainwash erosion[J].Catena,1985,12(2-3):129-139.
    [76] Shiu-Hung Luk and Hugh Hamilton.Experimental effects of antecedent moistureand soil strength on rain wash erosion of two luvisols, Ontario[J]. Catena,1986,37(1):29-43.
    [77] Truman, C.C. and Bradford, J.M. Effect of antecedent soil moisture on splashdetachment under simulated rainfall [J]. Soil Sci.,1990,150:787-798.
    [78] Truman, C.C., Bradford, J.M. and Ferris, J.E. Antecedent water content and rainfallenergy influence on soil aggregates breakdown [J]. Soil Sci. Soc. Am.J.,1990,54(5):1385-1392.
    [79] Andrea Rudolph, Katharina Helming,Heiko Diestel. Effect of antecedent soil watercontent and rainfall regime on microrelief changes[J]. Soiltechnology,1997,10:69-81.
    [80] Y.Le Bissonnais, B.Renaux, H.Delouche. Interactions between soil properties andmoisture content in crust formation, runoff and interrill erosion from tilled loesssoils [J]. Catena,1995,25:33-46.
    [81] Waucbope R D. Williams R G. Marti LR. Runoff of Sulfometuron-Methyl andCyanazine from Small Plots: Effects of Formulation and Grass Cover [J]. Journalof Environmental Quality.1990.19(1):119-125.
    [82] Granovsky A.V. McCoy E.L.. Dick W A., etc. Impacts of antecedant moisture andsoil surface mulch coverage on water and chemical transport through a no-till soil[J]. Soil and Tillage Research.1994.32:223-236.
    [83] McDowell R.W and Sbarpley A. N. The effect of antecedent moisture conditions onsediment and phosphorus loss during overland flow: Mabantango Creekcatcbment. Peimsylvanian. USA [J]. Hydrol. Process.2002,16,3037-3050.
    [84] Castillo V M, Gomez-Plaza A, Martinez-Mena M.2003.The role of antecedent soilwater content in the runoff response of semiarid catchments: a simulationapproach[J]. Journal of Hydrology,284:114-130.
    [86]唐克丽.黄土高原土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社.1990.
    [87]傅伯杰,邱杨,王军等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报.2002,57(6):717-722.
    [88]陈法扬.不同坡度对土壤冲刷量影响试验[J].中国水土保持,1985,(2):24-30.
    [89]刘青泉,陈力,李家春.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学,2001,22(5):449-57.
    [90]曹文洪.土壤侵蚀的坡度界限研究[J].水土保持通报,1993,13(4):l-5.
    [91] N ad ler A, Perfect E, K ay B D. Effect of polyacrylamide application on thestability of dry and w et aggregates[J]. Soil Sci Soc Am J,1996,60:555-561.
    [92] Beh-hur M, Letey J. Effect of polysaccharides, clay dispersion, and impact energyon water infiltration[J]. Soil Sci Soc Am J,1989,53:233-238.
    [93] Beh-hur M, Keren R. Polymer effects on water infiltration and soil aggregation[J].Soil Sci Soc Am J,1997,61:565-570.
    [94]唐泽军,雷廷武,张晴雯等.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究I.入渗[J].土壤学报,2003,40(2):178-185.
    [95]雷廷武,唐泽军,张晴雯等.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究.侵蚀[J].土壤学报,2003,40(3):401-406.
    [96] Helalia A.M.,Letey J. And Grhama,R.C.,Curst formation and clay migrationeffects on infiltration rate[J].5011Sci.Soc.Am.J.,1988,Vol.52:251-255.
    [97] Nadle, A. Perfect,E. and Kay, B.D.,Effect of polyacrylamide application onthe stability of dry and wet aggregates [J]. Soil Sci Soc. Am. J.,1996,Vol.6O:555-561.
    [98]冯浩,吴普特等.聚丙烯酰胺(PAM)对黄土坡地降雨产流产沙过程的影响[J].农业工程学报,2001,17(5):48-51.
    [99]张淑芬.坡耕地施用聚丙烯酰胺防止水土流失试验研究[J].水土保持科技情报,2001,No.2:18-19.
    [100]唐泽军,雷廷武等.降雨及聚丙烯酰胺(PAM)作用下土壤的封闭过程和结皮的形成[J].生态学报,2002,vol.22(5):674-681.
    [101]唐泽军,雷廷武等.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研1.入渗[J].土壤学报,2003,Vol.40(2):178-185.
    [102]刘纪根,雷廷武等.施加APM的坡地降雨入渗过程及其模型研究[J].水土保持学报,2001,Vol.15(3):51-54.
    [103]夏海江,杜尧东,孟维忠.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验[J].水土保持学报,2000,Vol.14(3):14-17.
    [104]肇普兴,夏海江等.聚丙烯酰胺防治田间水土流失剂型和浓度的优先试验[J].水土保持研究,1997,l.4(4):88-98.
    [105] Lentz R.D. Inhibiting water infiltration with polyacrylamide and surfactants:applications of irrigated agriculture [J]. Journal of Soil and Water Conservation,2003,58(5):290-300.
    [106] Bresler, E.,. Simultaneous transport of solutes and water under transientunsaturated fow conditions[J]. Water Resour. Res.,1973,9,975-986.
    [107] Bear, J., and Bachmat, Y. Introduction to Modelling Phenomena of Transport inPorous Media[R]. Kluwer Academic Publishers, Dordrecht, Netherlands. pp.1990,584.
    [108] Brooks, R. H., and Cory, A. J.“Hydraulic properties of porous media.”[M].1964.Fort Collins: Colo. State Univ.
    [109] Olsen, S. R., and Kemper, W. D. Movement of nutrients to plant roots[J]. Adv.Agron.,1968,30,91-151.
    [110] Bennett, C. O., and Myers, J. E. Momentum, heat, and mass transfer[M].3rd ed.McGraww-Hill,1982,New York.
    [111] CARROLL C, MERTON L, B URGER P. Impact of vegetative cover and s lope onrunoff, erosion, and water quality for field plots on a range of soil and spoilmaterial on central Queensland Coal Mines[J]. Journal of Soil Resource,2000,38(3):313-327.
    [112] KOSMAS C, DANALATOS N C, CAMMERAAT L H, et al. The effect of land use on runoff and s oil erosion rates under Mediterranean conditions[J].Catena,1997,29(1):45-59.
    [113] VERSTRAETEN G, VAN ROMPAEY A, POESON J. Evaluating the impact ofwatershed management scenarios on changes in sediment delivery to rivers?[J].Hydrobiology,2003,494(2):153-158.
    [114] WALLING D E. Linking land use, erosion and sediment yield in river basins [J].Hydrobiology,1999,410(6):223-240.
    [115] FU B J, CHEN L, MA K, et al. The relationships between land use and soilconditions in the hilly area of the Loess Plateau in northern Shanxi, China [J].Catena,2000,39(1):69-78.
    [116] KUSUMANDARI A, MITCHELL B. Soil erosion and sediment yield in forestagro forestry areas in West Java, Indonesia [J]. Journal o f Soil and WaterConservation,1997,40(2):289-297.
    [117]卢金发,黄秀花.黄河中游土地利用变化对输沙的影响[J].地理研究,2003,22(5):571-578.
    [118] RAI S C, SHARMA E. Comparative assessment of runoff characteris t ics underdifferent land us e patterns within a Himalayan Watershed[J]. HydrologicalProcesses,1998,53(2):2235-2248.
    [119] SANCHEZ L A, ATAROFF M, LOPEZ R. Soil erosion under different vegetationcovers in the Venezuelan Andes [J].Environmentalist,2002,22(1):161-172.
    [120]黄志霖,陈利顶,傅伯杰等.半干旱黄土丘陵沟壑区不同植被类型减蚀效应及其时间变化[J].中国水利,2004,(20):38-40.
    [121]李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展[J].地球科学进展,2005(01):74-80.
    [122]詹小国,王平.基于RS和GIS的三峡库区水土流失动态监测研究[J].长江科学院院报,2001,18(2):41-44.
    [123]张兴昌,邵明安,黄占斌等.不同植被对土壤侵蚀和氮素流失的影响[J].生态学报,2000(06):1038-1044.
    [124] GILLY J E, RISSE L M. Runoff and soil loss as affected by the application ofmanure [J]. Transaction of the ASAE,2000,43(6):1583-1588.
    [125]张光辉,梁一民.植被盖度对水土保持功效影响的研究综述[J].水土保持研究,1996,3(2):104-110.
    [126] LASANTA T, GARCIARUIZ J, et al. Runoff and sediment yield in a semi-aridenvironment: the effect of land management after farmland abandonment[J].Catena,2000,38(4):265-278.
    [127]冯浩,吴淑芳,吴普特等.草地坡面径流调控放水试验研究[J].水土保持学报,2005(06):23-25.
    [128]吴卿,杨春霞,甄斌等.草被覆盖度对黄土坡面径流产沙影响的试验研究[J].中国水土保持,2010(09):56-58.
    [129]余新晓,张晓明,武思宏等.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006(01):19-26.
    [130] CASTILLO V, MARTINEZMENA M, ALBALADEJO J. Runoff and soil lossresponse to vegetation removal in a semiarid environment[J]. Soil Science Societyof America Journal,1997,61(4):1116-1121.
    [131] LEE K, ISENHART T, SCHULTZ R, et al. Nutrient and sediment removal byswitchgrass and cool-season grass filter strips in central iowa, USA[J]. AgroforestrySystems,1998,44(2):121-132.
    [132]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000(06):16-19.
    [133]肖强,张维理,王秋兵等.太湖流域麦田土壤氮素流失过程的模拟研究[J].植物营养与肥料学报,2005,11(6):731-738.
    [134]徐泰平,朱波,况福虹等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学学报,2006,25(4):1055-1059.
    [135]张亚丽,张兴昌,邵明安等.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报,2004,20(3):55-58.
    [136] Franklin D, Truman C, Potter T, et al. Ni trogen and phosphorus runoff losses fromvariable and constan t intensity rainfall simulations on loamy sand underconventional and strip tillage systems[J]. J. Environ. Qual.,2007,36:846-854.
    [137]黄满湘,章申,张国梁等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [138]郄瑞卿,孙彦君,王继红.自然降雨对黑土地表氮素养分流失的影响[J].水土保持学报,2005,19(5):69-72.
    [139] Lal R. Mulching effects on runoff, soil erosion, and crop response on alfisols inwestern niger ia[J]. J. Sustain. Agr.,1998,11:135-154.
    [140]张兴昌,邵明安.侵蚀泥沙、有机质、和全氮富集规律研究[J].应用生态学报,2001,12(4):541-544.
    [141]张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].草地学报,2000,8(3):198-203.
    [142]张兴昌,邵明安.黄土丘陵区小流域土壤氮素流失规律[J].地理学报,2000,55(5):617-626.
    [143]张兴昌.耕作和轮作对土壤氮素径流流失的影响[J].农业工程学报,2002,18(1):70-73.
    [144]刘保元,唐克丽,查轩,史瑞云.坡耕地不同地面覆盖的水土流失试验研究[J].水土保持学报,1990,4(1):25-29.
    [145]王春红,肖娟,王治国,魏忠义,张庆宝.秸秆覆盖对坡面径流及土壤流失影响的研究[J].山西农业大学学报,1998,18(2):149-152.
    [146]焦菊英,王万忠,李靖.黄土塬区不同降雨条件下水平梯田的减水减沙效益分析[J].水土保持学报,1999,5(3):59-63.
    [147] Abrahams A D, Parson A J. Hydraulics of inter rill overland flow on stone-covereddesert surfaces[J].Catena,1994,23:111-140.
    [148] Zhang X C,Miller W P. Physical and Chemical Crusting Processes AffectingRunoff and Erosion in Furrows [J]. Soil Sci.Am.J.,1996,60:438-444.
    [149] Timothy J G,Adel Shirmohammadi,Raviraj Vyravipillai, Brian J. HerbicideLeaching under Tilled and No-Tillage Fields[J]. Soil Sci. Am. J.,1995,59:895-901.
    [150] Kevin D R,Bradford P W,David D B,Donald L M. Runoff and Erosion inPinion-Juniper Woodland: Influence of Vegetation Patches[J]. SoilSci.Am.J.,1999,63:1869-1879.
    [151] Daniels R B, Gilliam J W. Sediment and Chemical Load Reduction by Grass andRiparian Filters[J]. Soil Sci.Am.J.,1996,60:246-251.
    [152] Pole D H,Daniel T C,Sharpley A N,Moore P A,Edwards D R,Nichols D J.Relating Extractable Soil Phosphorus to Phosphorus Losses in Runoff[J].SoilSci.Am.J.,1996,60:855-859.
    [153] Yu B, Sombatpanit S, Rose C W, Ciesiolka C A, Coughlin KJ.Characteristics and Modeling of Runoff Hydrographs for Different TillageTreatments[J].Soil Sci.Am.J.,2000,64:1763-1770.
    [154] Huang C,Gascuel O C,Cayot S C.Hillslope topographic and hydrologiceffects on overland flow and erosion[J].Catena,2002,46(3):177-188.
    [155] Molina A,Govers G,Vanacker V,Poesen J, Zeelmaekers E,CisnerosF.Runoff generation in a degraded Andean ecosystem:Interaction of vegetationcover and land use[J].Catena,2007,71(2):357-370.
    [156]唐克丽,侯庆春,王斌科,张平仓.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].西北水土保持研究所刊集-神木水蚀风蚀交错带生态环境整治技术与试验示范研究论文集[J],1993,(18):2-15.
    [157]刘保元,唐克丽,查轩,史瑞云.坡耕地不同地面覆盖的水土流失试验研究[J].水土保持学报,1990,4(1):25-29.
    [158]顾新庆,于增彦,赵海玉,艾子万,郭万喜.不同治理措施对坡面径流和泥沙量的影响[J].河北林业科技,1994,3,21-23.
    [159]刘国彬,张光辉.原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析[J].水土保持通报,1996,16(2):32-37.
    [160]孟庆华,傅伯杰,邱扬.黄土丘陵沟壑区不同土地利用方式的径流及磷流失研究[J].自然科学进展,2002,12(4):393-397.
    [161]张建军,张宝颖,毕华兴,李笑吟.黄土区不同植被条件下的土壤抗冲性[J].水土保持通报,2004,26(6):25-29.
    [162]李勉,姚文艺,陈江南,丁文峰,杨剑锋,李莉,杨春霞.草被覆盖下坡沟系统坡面流能量变化特征试验研究[J].水土保持学报,2005,19(5):13-17.
    [163]黄志霖,傅伯杰,陈利顶.黄土丘陵区不同坡度、土地利用类型与降水变化的水土流失分异[J].中国水土保持科学,2005,3(4):11-18.
    [164]刘卉芳,朱清科,孙中峰,魏天兴.黄土坡面不同土地利用与覆盖方式的产流产沙效应[J].干旱地区农业研究,2005,23(2):137-141.
    [165]查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治理模式研究[J].自然资源学报,2000,15(1):97-100.
    [166]游珍,李占斌,蒋庆丰.坡面植被分布对降雨侵蚀的影响研究[J].泥沙研究,2005,6,40-43.
    [167]余新晓,张晓明,武思宏,魏天兴,张学培.黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J].山地学报,2006,24(1):19-26.
    [168]吴持恭.水力学[M].北京:高等教育出版社,1982.
    [169]姚文艺.坡面流流速计算的研究[J].中国水土保持,1993(3):21-25.
    [170]陈国祥,姚文艺.坡面流水力学[J].河海科技进展,1992,12(2):7-l3.
    [171]郑粉莉,江中善,高学田.水蚀过程与预报模型[M].北京:科学出版社,2008,1:166-170.
    [172] Foster G R,Huggins L F,Meyer L D.A Laboratory Study of Rill Hydraulics:Ⅱ. Shear Stress Relationships[J].Transactions of ASAE,1984,27(3):797-804.
    [173] Nearing M A,Foster G R,Lane L J. A process-based soil erosion model forUSDA-water erosion prediction project technology[J]. Transactions of ASAE,1989,32(5):1587-1593.
    [174] Abrahams A D, Parsons A J, Shiu-hung Luk. Field measurement of the velocity ofoverland flow using dye tracing[J]. Earth Surface Processes andLandforms,1986,11:653-657.
    [175]张光辉,卫海燕,刘宝元.坡面流水动力学特性研究[J].水土保持学报,2001,15(1)58-61.
    [176]郭太龙.黄土坡面土壤侵蚀及溶质迁移特征研究[D].2008.
    [177] Steenhuis, T.S., Walter, M.F., Closed form solution for pesticide loss in runoffwater[J]. Trans. ASAE.1980,23,615-628.
    [178] Steenhuis, T.S., Boll, J., Shalit, G., Selker, J.S., Merwin, I.A., A simple equation forpredicting preferential fow solute concentrations[J]. J. Environ. Qual.1994,23,1058-1064.
    [179] Steenhuis, T.S., Testing of a mechanistic soil erosion model with a simpleexperiment[J]. J. Hydrol.2001,244(1-2),9-16.
    [180] Zhang, X.C., Norton, D., Lei, T., Nearing, M.A., Coupling mixing zone conceptwith convection–diffusion equation to predict chemical transfer to surface runoff[J].Tans. ASAE42(4),1999,987-994.
    [181] Deng, Z. Q., de Lima, J. L. M. P., and Singh, V. P. Transport rate-based model foroverland flow and solution transport: Parameter estimation and processsimulation[J]. J. Hydrol.,2005,315,220-235.
    [182] Wang Quanjiu, Horton Robert, Shao Mingan. Effective raindrop kinetic energyinfluence on soil potassium transport into runoff[J]. Soil Science,2002,167(6):369-376.
    [183]童菊秀,杨金忠,暴入超,非饱和土中溶质地表径流迁移模型及解析模拟[J].水科学进展,2009,20(1):10-17.
    [184]王全九,王辉,黄土坡面土壤溶质随径流迁移有效混合深度模型特征分析[J].水利学报.2010,41(6):671-676.
    [185] Wang, R.C. The mechanics of a drop after striking a stagnant water layer[D].Unpublished Ph.D. thesis, Dept. of Civil Eng., Univ. of Illinois.1970,131p.
    [186] Woolhiser, D. A., and Ligget,J.A.,. Unsteady, one dimensional flow over aplane-The rising hydrograph[J], Water Resour.Res.,1967,vol.3,NO.3,753-771.
    [187] Hairsine, P.B., Rose, C.W.,. Rainfall detachment and deposition: sediment transportin the absence of fow-driven processes[J]. Soil Sci. Soc. Am. J.1991,55(2),320-324.
    [188] Heilig, A., Debruyn, D., Walter, M.T., Rose, C.W., Parlange, J.Y., Sander, G.C.,Hairsine, P.B., Hogarth, W.L., Walker, L.P., Steenhuis, T.S.,2001. Testing of amechanistic soil erosion model with a simple experiment[J]. J. Hydrol.244(1-2),9-16.
    [189] Parr AD, Richardson C, Lane DD, Baughman D. Pore water uptake by agriculturalrunoff[J]. Journal of Environmental Division of American Society of CivilEngineers.1987,113(1):49-63.
    [190] Havis RN, Smith RE, Adrian DD). Partitioning solute transport between infltrationand overland fow under rainfall[J]. Water Resour. Res.1992,28(10):2569-2580.
    [191] Guo TL, Wang QJ, Li DQ, Wu LS. Sediment and solute transport on soil slopeunder simultaneous infuence of rainfall impact and scouring fow[J]. Hydrol. Proc.2010,24:1446-1454.
    [192] Gao B, Walter MT, Steenhuis TS, Parlange JY, Nakano K, Hogarth WL, Rose CW.Investigating ponding depth and soil detachability for a mechanistic erosion modelusing a simple experiment[J]. J. Hydrol.2003,277(1-2):116-124.
    [193] Sharma PP, Gupta SC, Foster GR. Predicting soil detachment by raindrops[J]. SoilSci. Soc. Am. J.1993,57:674-680.
    [194] Sharma PP, Gupta SC, Foster GR. Raindrop-induced soil detachment and sedimenttransport from interrill areas[J]. Soil Sci. Soc. Am. J.1995,59:727-734.
    [195] Jayawardena AW, Bhuiyan RR. Evaluation of an interrill soil erosion model usinglaboratory catchment data[J]. Hydrol. Proc.1999,13:89-100.
    [196] Meyer LD. Soil-erosion research leading to development of the universal soilerosion loss equation[J]. Sci. Education Adm. Pub. ARM NW.1982,26:1-16.
    [197] Foster GR. Modeling the erosion process. In: Haan CT(Ed.), HydrologicalModeling of Small Watersheds, Monograph[R] No.5, ASAE, St Joseph, MI, pp.1982,297-379.
    [198] Liebenow AM, Elliot WJ, Lafen JM, Kohl KD.Interrill erodibility-collection andanalysis of data from crop-land soils[J]. Trans ASAE.1990,33(6):1882-1888.
    [199] Lafen JM, Elliot WJ, Simanton JR, Holzhey CS, Khol KD, WEPP soil erodibilityexperiments for rangeland and cropland soils[J]. J. Soil Water Conserv.1991,49(1):39-44.
    [200] Willmott CJ. Some comments on the evaluation of model performance[J]. Bull.Am. Meteorol. Soc.1982,63(11):1309-1313.
    [201] Woolhiser, D. A. Simulation of unsteady overland fow[R]. In: Mahmood, K.,Yevjevich, Y.(Eds.), Unsteady Flow in Open Channels, vol.2. Water ResourcesPublications, Fort Collins, CO, pp.1975,485-508.
    [202] Singh, V. P.. Kinematic Wave Modeling in Water Resources: Surface-WaterHydrology[R].Wiley, New York pp.1996,897-940.
    [203] Woolhiser, D. A., and Ligget, J. A. Unsteady, one dimensional flow over aplane-The rising hydrograph[J]. Water Resour. Res.,1967,3(3),753-771.
    [204] Kiely, G..“Environmental Engineering[M].” McGraw-Hill International (UK)Limited, Singapore.1997.
    [205] Martin, J. L., and McCutcheon, S. C. Hydrodynamics and Transport for WaterQuality Modeling[R]. CRC Press, Inc., Boca Raton, FL pp.1999,7-220.
    [206] Deng, Z. Q. Theoretical investigation into longitudinal dispersion in naturalrivers[D]. PhD Dissertation Lund University, Lund, Sweden.2002.
    [207] Snyder, I.K., and Woolhiser, D. A. Effect of infiltration on chemical transport intooverland flow[J]. Trans. ASAE,1985.28,1450-1457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700