用户名: 密码: 验证码:
胆红素水溶性分子吸附剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子吸附再循环系统(Molecular Adsorbents Recycling System, MARS)是目前临床治疗重症肝病效果优良的非生物型人工肝支持系统。在以人血清白蛋白(Human serum albumin, HSA)为分子吸附剂的吸附透析过程中,添加到透析液中的HSA与血液中的蛋白质竞争性结合疏水性毒素并被透析液带走,从而有效、广谱去除患者血液中的蛋白质结合毒素及水溶性毒素,实现改善患者体内环境、促进肝脏功能恢复和为肝移植争取时间的目的。MARS的治疗效果已经得到医生和患者的广泛认可,在国外被推荐作为各类肝衰竭的标准治疗方案。由于HSA是MARS实现解毒功能的关键分子吸附剂,用量较大,而作为注射制剂的HSA来源有限,价格昂贵。HSA来源受限及其再生设备复杂等问题导致MARS临床治疗费用高昂,其应用人群范围受限。鉴于此,本论文设计合成了一种水溶性胆红素分子吸附剂替代HSA用于对肝病病人血液的吸附透析,该吸附剂在实现对胆红素等毒素高效去除的同时,可以简化治疗设备,显著降低治疗成本。
     在本论文中,首先针对胆红素分子的结构特点,选择壳聚糖、右旋糖酐、聚乙烯亚胺(Polyethyleneimine, PEI)等水溶性高分子为载体,制备了带有不同吸附功能基的系列胆红素分子吸附剂。对其胆红素吸附能力评价的结果表明:以PEI为载体、以β-环糊精(β-cyclodextrin,β-CD)为功能基的水溶性吸附剂P-CD-PEI在相同条件下对胆红素的吸附透析能力最强。进一步以P-CD-PEI为研究对象,对其合成过程进行了优化。最终获得的β-CD-PEI的平均分子量约为157kD,平均每个β-CD-PEI分子上具有366个分枝点,偶联β-CD的数量约为51个。选择Nipro Sureflux-130G透析器,采用200mL含1%(w/v) p-CD-PEI的透析液对150mL含300mg/L胆红素的人血浆进行吸附透析,其对血浆中胆红素的1h吸附量达到3.55mg/g。
     采用分子模拟的方法研究了分子吸附剂功能基p—CD与胆红素的结合方式以及结合能,并与α-CD、γ-CD及HSA与胆红素的相互作用进行了比较。研究结果表明:在环糊精家族中,α-CD由于疏水内腔太小,不能与胆红素形成包合物;β-CD及Y-CD与胆红素形成的2:1包合物比1:1包合物更稳定,其中p—CD胆红素2:1包合物稳定性高于HSA与胆红素的复合物,意味着β-CD与胆红素的结合能力强于HSA,有能力与HSA竞争结合胆红素。偶联反应对β-CD分子结构的改变不会减弱其与胆红素的结合能力。进一步通过将α、β、γ-CD分别偶联到PEI载体上合成了三种分子吸附剂,吸附透析实验结果表明β-CD-PEI对胆红素的结合能力最强;使用Benesi-Hildebrand法分析β-CD与胆红素包合后胆红素紫外可见光谱变化,进一步确认了β-CD与胆红素以2:1的比例形成包合物,从而证实了分子模拟研究的结果。
     在吸附透析治疗中,对血浆胆红素的去除效果取决于透析膜的特性、血浆流速、透析液流速、血浆中的胆红素浓度、透析液中水溶性吸附剂的浓度以及吸附透析时间等因素。在吸附透析系统的参数优化中发现:当血浆及透析液流速分别为300和50mL/min时,β-CD-PEI吸附透析对血浆胆红素的去除效果最佳;超滤形成的跨膜液流产生的浓差极化现象增加了胆红素的传质阻力,降低了β-CD-PEI在透析膜内的分子扩散,不利于β-CD-PEI吸附透析对胆红素的去除;以聚醚砜为膜材质的Lengthen LST140透析器对于胆红素的传质效果强于以三醋酸纤维素为膜材质的Nipro Sureflux-130G透析器;透析膜表面及孔道中吸附的白蛋白能够对胆红素进行协助传递,进而提高透析膜对胆红素的传质效果。
     在吸附透析过程中,β-CD-PEI的吸附量随着血浆中胆红素浓度的升高而增加,采用1L浓度为1%的β-CD-PEI透析液对200mL胆红素初始浓度分别为80.3、140.4、214.8、267.3、305.2mg/L的肝病病人血浆进行吸附透析,6h的总胆红素去除率均能达到30-40%,适用于不同患病程度的肝病病人。增加分子吸附剂β-CD-PEI的用量可以提高吸附透析对胆红素的去除效果。使用1L4%的β-CD-PEI透析液可以去除血浆中44.8%的胆红素(初始浓度140.4mg/L),比相同情况下4L1%分子吸附剂的胆红素去除率提高9个百分点。β-CD-PEI对血浆胆红素的清除率比相同质量分数的牛血清白蛋白高9.5个百分点,同时β-CD-PEI对血浆中的总胆汁酸、芳香族氨基酸等疏水毒素也具有明显的去除能力,说明β-CD-PEI具有替代白蛋白进行吸附透析的潜力。
     通过基于物料衡算的数学模型描述了吸附透析过程中血浆胆红素浓度变化规律。通过实验数据回归,计算得到了Nipro Sureflux-130G血液透析膜对胆红素的总传质系数Dt为1.7L/min, p-CD-PEI与胆红素的吸附平衡常数Ka1为22.7L/μmoL。进一步使用该模型预测了同一体系中血浆胆红素初始浓度和吸附剂用量改变时胆红素的吸附透析效果,平均误差<5%。
     上述研究结果证明,胆红素水溶性分子吸附剂β-CD-PEI对肝病患者血浆中的胆红素及其它疏水性毒素具有较高的清除能力,同时具有价格低廉、治疗设备简单的优势。具有替代白蛋白应用于临床治疗的潜力。
Albumin dialysis, known as Molecular Adsorbents Recycling System (MARS), is an effective and widely studied detoxification treatment for liver failure. Albumin dialysis is derived by adding albumin to the dialysate of extracorporeal hemodialysis. Both water-soluble and protein-bound toxins can be simultaneously removed by this treatment. The effectiveness of MARS in eliminating toxins has been confirmed by many clinical studies. Human serum albumin (HSA) is the key to the removal of protein-bound toxins by MARS, but HSA is isolated from human serum, and is therefore expensive as well as in short supply. To reduce the cost, limited dosage of HSA is used in MARS, and it has to be regenerated in situ. Due to the incomplete regeneration of HSA, the capacity and rates of MARS to remove protein-bound toxins decline over time. Furthermore, albumin regeneration system makes MARS very complicated and expensive, which has limited its clinical application, especially in developing countries. Thus developing an inexpensive water-soluble molecular adsorbent as an alternative to HSA is very attractive. This work represents the development of an efficient and inexpensive water-soluble molecular adsorbent for removing plasma bilirubin.
     Seven bilirubin adsorbents were synthesized by grafting different ligands (quaternary ammonium, hydrophobic chain, β-CD) onto water-soluble polymers (chitosan, dextran, polyethyleneimine). Among the seven adsorbents, β-CD-PEI exhibited the highest adsorption capacity for bilirubin. In a plasma dialysis system,150mL plasma (with300mg/L bilirubin) was dialyzed with200mL of1%(w/v) adsorbent-spiked dialysate, bilirubin adsorption capacity of2.84mg/g was achieved by β-CD-PEI in1h. By optimizing the synthesis of β-CD-PEI, its bilirubin adsorption capacity further increased to3.55mg/g. Therefore, β-CD-PEI was chosen for subsequent studies.13C NMR results indicated that each β-CD-PEI has366branching points and51β-CD functional groups. The average molecular weight of β-CD-PEI was-157kD.
     In order to understand the mechanism associated with the binding of bilirubin to β-CD at molecular level, dockings of bilirubin to α-, β-, γ-CD were carried out using AutoDock Vina1.1program. The results indicated that Bilirubin was too big to insert into α-CD, so its binding energy with bilirubin was the weakest among the CD family. Bilirubin-(β-CD)2complex was most favorable in term of binding energy. The structural change of β-CD caused by the grafting reaction did not hinder its binding with bilirubin. The best binding energy between bilirubin and HSA was higher than that of bilirubin-(β-CD)2complex. This result demonstrated that two β-CD molecules under the lowest binding energy could competitively bind bilirubin bound by HSA. The1:2binding model for bilirubin and β-CD was also confirmed by Benesi-Hildebrand experiments.
     The highest bilirubin clearance (35.8%) was achieved by adopting the optimal flow rate of300mL/min for plasma and50mL/min for dialysate. Cross-membrane ultrafiltration enhanced concentration polarization in plasma during the dialysis, and increased bilirubin transfer resistance. The bilirubin clearance of Lengthen LST140dialyzer was stronger than Nipro Sureflux-130G dialyzer. The albumin adsorbed on the surface and pores of membrane can improve the transfer of bilirubin during dialysis. Bilirubin removal was fast in β-CD-PEI-spiked dialysis, with90%of total bilirubin removed in first4h.
     β-CD-PEI-spiked dialysis could achieve high bilirubin clearance in plasma with different initial concentrations of bilirubin. Bilirubin clearance increased with increases in β-CD-PEI dosage, and high β-CD-PEI concentration was more favorable for bilirubin removal. About44.8%of bilirubin (140.4mg/L) was removed from200mL plasma by1L dialysate spiked with4%β-CD-PEI in6h. β-CD-PEI exhibited a significantly higher bilirubin clearance than BSA (P<0.05), which is an analogue of HSA, therefore demonstrating its strong bilirubin-binding ability. Both TBA and the three aromatic amino acids could be removed by β-CD-PEI-spiked dialysis without influencing the concentrations of plasma proteins and ions.
     A quantitative description of bilirubin removal during β-CD-PEI-spiked dialysis was established by means of a mathematical model. Model development and validation are based on in vitro data of bilirubin concentration acquired in five sessions at different times during each session. The accuracy of the model in reproducing real data is high, and error of concentration of plasma bilirubin is less than5%. This model could be used to predict treatment outcomes in experiments with different initial concentrations of bilirubin and different dosages of β-CD-PEI.
     To summarize, the water-soluble molecular adsorbent β-CD-PEI described in this study offers an efficient alternative to albumin for removing bilirubin from plasma. Since β-CD-PEI is much cheaper than HSA, it can reduce the economic burden for the patients. Almost unlimited ability to remove toxins could be achieved by continuously replacing the saturated adsorbent with new ones. No additional adsorbent regeneration devices are needed. Therefore, the equipment for the set up of β-CD-PEI-spiked dialysis can be greatly simplified compared with that of MARS. The results presented in this study demonstrate that β-CD-PEI, a water-soluble adsorbent, can effectively remove plasma bilirubin, and therefore may have potential application in a dialysis system.
引文
[1]李兰娟,黄建荣,王宇明.肝功能衰竭诊疗指南[J].中华传染病杂志,2006,24:422-425.
    [2]O'Grady JG, Schalm SW, Williams R. Acute liver failure:redefining the syndromes [J]. Lancet,1993, 342:273-275.
    [3]Tandon BN. Bernauau J, O'Grady J, et al. Recommendations of the International Association for the Study of the Liver Subcommittee on nomenclature of acute and subacute liver failure [J]. J Gastroenterol Hepatol,1999,14:403-404.
    [4]Sen S, Williams R, Jalan R. The pathophysiological basis of acute-on-chronic liver failure [J]. Liver, 2002,22:5-13.
    [5]王宇明,陈耀凯.重型肝炎命名与诊断分型的再认识:附477例临床分析[J].中华肝脏病杂志,2000,8:261-263.
    [6]Bennet J, Plum F. Cecil textbook of medicine [M]. Philadelphia:WB Saunders,2000.
    [7]Bismuth H, Samuel D, Castaing D, et al. Liver transplantation in Europe for patients with acute liver failure [J]. Semin Liver Dis,1996,16:415-425.
    [8]许家璋.重型肝炎诊断分型和治疗研究的进展[J].江苏医药,2000,26:927-928.
    [9]郑树森,徐骁.积极推进中国肝移植的发展[J].中华肝胆外科杂志,2005,11:437—439.
    [10]李兰娟.人工肝脏[M].杭州:浙江大学出版杜,2007.
    [11]陈滟珊,李兰娟.生物人工肝研究进展[J].国际流行病学传染病学杂志,2006,33:243—246.
    [12]Bonnett R, Davies JE, Hursthouse MB. Structure of bilirubin [J]. Nature,1976,262:327-328.
    [13]龚兴国,曾冬云.胆红素的研究进展[J].吉首大学学报,1994,15:97—101.
    [14]Gourley G. Bilirubin metabolism and kernicterus [J]. Adv pediatr,1997,44:173-229.
    [15]Baranano DE, Rao M, Ferris CD, et al. Biliverdin reductase:a major physiologic cytoprotectant [J]. P Natl Acad Sci USA,2002,99:16093-16098.
    [16]Liu Y, Li P, Lu J, et al. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis [J]. J Immunol,2008,181:1887-1897.
    [17]Katoh-Semba R. Studies on cellular toxicity of bilirubin:effect on brain glycolysis in the young rat [J]. Brain Res,1976,113:339-348.
    [18]Ives NK, Bolas NM, Gardiner RM. The effects of bilirubin on brain energy metabolism during hyperosmolar opening of the blood-brain barrier:an in vivo study using 3IP nuclear magnetic resonance spectroscopy [J]. Pediatr Res,1989,26:356-361.
    [19]吴刚.胆红素的神经毒性作用[J].中国临床神经科学,2002,10:420-423.
    [20]Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation [J]. Pediatr Res,1996,39:1072-1077.
    [21]Hansen TW, Bratlid D, Walaas SI. Bilirubin decreases phosphorylation of synapsin I, a synaptic vesicle-associated neuronal phosphoprotein, in intact synaptosomes from rat cerebral cortex [J]. Pediatr Res,1988,23:219-223.
    [22]Amit Y, Cashore W, Schiff D. Studies of bilirubin toxicity at the synaptosome and cellular levels [J]. Semin Perinatol,1992,16:186-190.
    [23]Ohno T. Kernicterus:effect on choline acetyltransferase, glutamic acid decarboxylase and tyrosine hydroxylase activities in the brain of the Gunn rat [J]. Brain Res,1980,196:282-285.
    [24]Silva R, Mata LR, Gulbenkian S, et al. Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes:role of concentration and pH [J]. Biochem Biophys Res Commun, 1999,265:67-72.
    [25]Grojean S, Koziel V, Vert P, et al. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons [J]. Exp Neurol,2000,166:334-341.
    [26]Hoffman DJ, Zanelli SA, Kubin J, et al. The in vivo effect of bilirubin on the N-methyl-D-aspartate receptor/ion channel complex in the brains of newborn piglets [J]. Pediatr Res,1996,40:804-808.
    [27]Otsubo O, Horiuchi T, Uchima T, et al. Direct hemoperfusion with noncoated charcoal of high adsorption capacity derived from thermosetting resin [J]. Trans Am Soc Artif Intern Organs,1980,26: 124-128.
    [28]何炳林,马建标.血液净化高分子吸附材料[J].高等学校化学学报,1997,18:1212—1218.
    [29]Morimoto T, Matsushima M, Sowa N, et al. Plasma adsorption using bilirubin-adsorbent materials as a treatment for patients with hepatic failure [J]. Artif Organs,1989,13:447-452.
    [30]Geiger H, Klepper J, Lux P, et al. Biochemical assessment and clinical evaluation of a bilirubin adsorbent column (BR-350) in critically ill patients with intractable jaundice [J]. Int J Artif Organs, 1992,15:35-39.
    [31]段钟平.人工肝脏治疗学[M].北京:中国医药科技出版社,2002.
    [32]陈文峰,陈友安.HA型大孔吸附树脂及活性炭对胆红素吸附性能的研究[J].离子交换与吸附,2001.17:230-235.
    [33]邹春毅,孙志红,李益文.HA大孔吸附树脂血浆灌流治疗病毒性肝炎,高胆红素血症的临床观察[J].生物医学工程与临床,2004,8:167—168.
    [34]侯春林,顾其胜.几丁质与医学[M].上海:上海科学技术出版社,2001.
    [35]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    [36]徐国风,何树初.一种用于人工肝的新型吸附解毒剂一甲壳糖[J].生物医学工程学杂志,1990,7:131—136.
    [37]Chandy T, Sharma CP. Polylysine-immobilized chitosan beads as adsorbents for bilirubin [J]. Artif Organs,1992,16:568-576.
    [38]徐慧,肖玲,李洁,等.新型胺基壳聚糖树脂的合成及其对胆红素吸附性能的研究[J].离子交换与吸附,2003,19:489-495.
    [39]李庭红,张静,陆伟,等.新型壳聚糖对血浆胆红素和细胞因子吸附性能的体外筛选初步研究[J].生物医学工程与临床,2006,10:131-134.
    [40]Moreau MF, Chappard D, Lesourd M, et al. Free radicals and side products released during methylmethacrylate polymerization are cytotoxic for osteoblastic cells [J]. J Biomed Mater Res,1998, 40:124-131.
    [41]魏斌,顾汉卿.含氨基,羟基吸附剂对胆红素的吸附[J].离子交换与吸附,1997,13:373—377.
    [42]卢玲,袁直.聚甲基丙烯酸羟乙酯树脂对胆红素的吸附研究[J].离子交换与吸附,2002,18:105—110.
    [43]卢玲,刘斌.含氨基聚甲基丙烯酸羟乙酯树脂对胆红素的吸附性能研究[J].高等学校化学学报,2003.24:454-458.
    [44]Alvarez C, Strumia M, Bertorello H. Synthesis and characterization of a biospecific adsorbent containing bovine serum albumin as a ligand and its use for bilirubin retention [J]. J Biochem Biophys Methods,2001,49:649-656.
    [45]Arica M, Yalcin E, Bayramoglu G. Polyethylenimine-grafted and HSA-immobilized polyGMA-MMA affinity adsorbents for bilirubin removal [J]. Polym Int,2005,54:153-160.
    [46]Uzun L, Denizli A. Bilirubin removal performance of immobilized albumin in a magnetically stabilized fluidized bed [J]. J Biomater Sci Polym Ed,2006,17:791-806.
    [47]Denizli A, Kocakulak M, Piskin E. Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads [J]. J Chromatogr B,1998,707:25-31.
    [48]Denizli A, Kocakulak M, scedil E. Specific sorbents for bilirubin removal from human plasma:Congo red-modified poly (EGDMA/HEMA) microbeads [J]. J Appl Polym Sci,1998,68:373-380.
    [49]袁直,魏斌,杭德华,等。固载β-环糊精吸附剂对胆红素吸附机理的探讨[J].高等学校化学学报,2000,21:731-733.
    [50]郑朝俊,黄晓冬,孔亮,等.β-环糊精交联聚合物对胆红素吸附性能的研究[J].色谱,2004,22:128—130.
    [51]Kinan R, Thomas E, Ulrich K, et al. Prometheus(?)-a new extracorporeal system for the treatment of liver failure [J]. J Hepatol,2003,39:984-990.
    [52]Evenepoel P, Laleman W, Wilmer A, et al. Detoxifying capacity and kinetics of prometheus--a new extracorporeal system for the treatment of liver failure [J]. Blood Purif,2005,23:349-358.
    [53]Skwarek A, Grodzicki M, Nyckowski P, et al. The Use Prometheus FPSA System in the Treatment of Acute Liver Failure:Preliminary Results [J]. Transpl P,2006,38:209-211.
    [54]Ash SR, Blake DE, Carr DJ, et al. Clinical effects of a sorbent suspension dialysis system in treatment of hepatic coma (the BioLogic-DT) [J]. Int J Artif Organs,1992,15:151-161.
    [55]Ash SR, Blake DE, Carr DJ, et al. Neurologic improvement of patients with hepatic failure and coma during sorbent suspension dialysis [J]. ASAIO J,1991,37:332-334.
    [56]Ash S. Powdered sorbent liver dialysis and pheresis in treatment of hepatic failure [J]. Ther Apher, 2001,5:404-416.
    [57]Ash SR. Hemodiabsorption in treatment of acute hepatic failure and chronic cirrhosis with ascites [J]. Artif Organs,1994,18:355-362.
    [58]Steczko J, Ash SR, Blake DE, et al. Cytokines and endotoxin removal by sorbents and its application in push-pull sorbent-based pheresis:the BioLogic-DTPF System [J]. Artif Organs,1999,23:310-318.
    [59]Ash SR, Steczko J, Levy H, et al. Treatment of systemic inflammatory response syndrome by push-pull powdered sorbent pheresis:a Phase 1 clinical trial [J]. Ther Apher,2001,5:497-505.
    [60]Mitzner SR, Stange J, Klammt S, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS:results of a prospective, randomized, controlled clinical trial [J]. Liver Transpl,2000,6:277-286.
    [61]Mitzner SR, Stange J, Klammt S, et al. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure [J]. J Am Soc Nephrol,2001,12:75-82.
    [62]李兰娟,黄建荣人工肝支持系统治疗重型病毒性肝炎的研究[J].中华肝脏病杂志,1997,5:202—203.
    [63]Kapoor D, Williams R, Jalan R. MARS:a new treatment for hepatorenal failure. Molecular adsorbent and recirculating system [J]. Gastroenterology,2000,119:1799-1800.
    [64]Stange J, Mitzner S, Ramlow W, et al. A new procedure for the removal of protein bound drugs and toxins [J]. ASAIO J,1993,39:621-625.
    [65]Stange J, Hassanein T, Mehta R, et al. The molecular adsorbents recycling system as a liver support system based on albumin dialysis:a summary of preclinical investigations, prospective, randomized, controlled clinical trial, and clinical experience from 19 centers [J]. Artif Organs,2002,26:103-110.
    [66]Detry O, Arkadopoulos N, Ting P, et al. Clinical use of a bioartificial liver in the treatment of acetaminophen-induced fulminant hepatic failure [J]. Am Surg,1999,65:934-938.
    [67]Seige M, Kreymann B, Jeschke B, et al. Long-term treatment of patients with acute exacerbation of chronic liver failure by albumin dialysis [J]. Transplant Proc,1999,31:1371-1375.
    [68]Kreymann B, Seige M, Schweigart U, et al. Albumin dialysis:effective removal of copper in a patient with fulminant Wilson disease and successful bridging to liver transplantation:a new possibility for the elimination of protein-bound toxins [J]. J Hepatol,1999,31:1080-1085.
    [69]Ponikvar R, Buturovic J, Cizman M, et al. Hyperbaric oxygenation, plasma exchange, and hemodialysis for treatment of acute liver failure in a 3-year-old child [J]. Artif Organs,1998,22: 952-957.
    [70]Awad SS, Swaniker F, Magee J, et al. Results of a phase I trial evaluating a liver support device utilizing albumin dialysis [J]. Surgery,2001,130:354-362.
    [71]Stange J, Mitzner SR, Risler T, et al. Molecular adsorbent recycling system (MARS):clinical results of a new membrane-based blood purification system for bioartificial liver support [J]. Artif Organs,1999, 23:319-330.
    [72]Stange J, Mitzner SR, Klammt S, et al. Liver support by extracorporeal blood purification:a clinical observation [J]. Liver Transpl,2000,6:603-613.
    [73]Gaspari R, Pennisi MA, Mignani V, et al. Artificial liver support as a bridge to orthotopic liver transplantation in a case of acute liver dysfunction on non-alcoholic steatohepatitis (NASH) [J]. Z Gastroenterol,2001,39:15-17.
    [74]Jalan R, Kapoor D, Steiner C, et al. Mars in decompensated alcoholic liver disease with multi-organ failure [J]. Z Gastroenterol,2001,39:12-12.
    [75]Hessel FP. Economic evaluation of the artificial liver support system MARS in patients with acute-on-chronic liver failure [J]. Cost Eff Resour Alloc,2006,4:16-24.
    [76]Sauer IM, Goetz M, Steffen I, et al. In vitro comparison of the molecular adsorbent recirculation system (MARS) and single-pass albumin dialysis (SPAD) [J]. Hepatology,2004,39:1408-1414.
    [77]Southern E. Detection of specific sequences among DNA fragments separated by gel electrophoresis [J]. J Mol Biol,1975,98:503-517.
    [78]Godbey WT, Wu KK, Mikos AG. Size matters:molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle [J]. J Biomed Mater Res,1999,45:268-275.
    [79]Forrest ML, Gabrielson N, Pack DW. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery [J]. Biotechnol Bioeng 2005,89:416-423.
    [80]黄金明,金鑫荣.天然高分子壳聚糖作为吸附剂的吸附特性研究[J].高等学校化学学报,1992,13:535-536.
    [81]易琼,叶菊招.壳聚糖吸附剂的制备及其性能[J].离子交换与吸附,1996,12:19-26.
    [82]孙昌梅,曲荣君,王春华,等.基于壳聚糖及其衍生物的金属离子吸附剂的研究进展[J].离子交换与吸附,2004,20:184—192.
    [83]Chiou M, Ho P, Li H. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads [J]. Dyes Pigments,2004,60:69-84.
    [84]Wan Ngah W, Endud C, Mayanar R. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads [J]. React Funct Polym,2002,50:181-190.
    [85]Chandy T, Sharma C. Polylysine-immobilized chitosan beads as adsorbents for bilirubin [J]. Artif Organs,2008,16:568-576.
    [86]Dubick M, Davis J, Myers T, et al. Dose response effects of hypertonic saline and dextran on cardiovascular responses and plasma volume expansion in sheep [J]. Shock,1995,3:137-144.
    [87]Svensen C, Hahn R. Volume kinetics of Ringer solution, dextran 70, and hypertonic saline in male volunteers [J]. Anesthesiology,1997,87:204-212.
    [88]Wang S, Yu Y, Cui T, et al. A novel amphiphilic adsorbent for the removal of low-density lipoprotein [J]. Biomaterials,2003,24:2799-2802.
    [89]Gao B, Lei H, Jiang L, et al. Studies on preparing and adsorption property of grafting terpolymer microbeads of PEI-GMA/AM/MBA for bilirubin [J]. J Chromatogr B,2007,853:62-69.
    [90]李宏振,方桂珍,李俊业,等.聚乙烯亚胺-纤维素的合成及对胆红素吸附性能[J].林产化学与工业,2009,29:99—103.
    [91]雷海波.胆红素新型吸附材料的制备及吸附特性的研究[D].太原:中北大学化学学院2007.
    [92]Sideman S, Mor L, Mordohovich D, et al. In vivo hemoperfusion studies of unconjugated bilirubin removal by ion exchange resin [J]. ASAIO J,1981,27:434-438.
    [93]Idezuki Y, Hamaguchi M, Hamabe S, et al. Removal of bilirubin and bile acid with a new anion exchange resin:experimental background and clinical experiences [J]. ASAIO J,1981,27:428-433.
    [94]Sideman S, Mor L, Brandes J, et al. Preparation of a biocompatible albumin-coated ion exchange resin for bilirubin removal from the blood of jaundiced newborns [J]. J Biomed Mater Res,2004,17: 91-107.
    [95]Wu G, Brown G. Adsorption of bilirubin by amine-containing polyacrylamide resins [J]. React Polym, 1991,14:49-61.
    [96]Usami M, Nomura H, Nishimatsu S, et al. In vivo and in vitro evaluation of bilirubin removal in postoperative hyperbilirubinemia patients [J]. Artif Organs,2008,19:102-105.
    [97]Szejtli J. Introduction and general overview of cyclodextrin chemistry [J]. Chem Rev,1998,98: 1743-1754.
    [98]Yang Y, Long Y, Cao Q, et al. Molecularly imprinted polymer using (3-cyclodextrin as functional monomer for the efficient recognition of bilirubin [J]. Anal Chim Acta,2008,606:92-97.
    [99]Tang S, Kong L, Ou J, et al. Application of cross-linked β-cyclodextrin polymer for adsorption of aromatic amino acids [J]. J Mol Recognit,2006,19:39-48.
    [100]Zhu X, Brizard F, Wen C, et al. Binding of bile acids by polymerized cyclodextrin resins [J]. J Macromol Sci A,1997,34:335-347.
    [101]袁直,顾汉卿.血液灌流用胆红素吸附剂的吸附性能研究[J].高等学校化学学报,1999,20:903—905.
    [102]Tang GP, Guo HY, Alexis F, et al. Low molecular weight polyethylenimines linked by β-cyclodextrin for gene transfer into the nervous system [J]. J Gene Med,2006,8:736-744.
    [103]Pierre T, Geckle M. C NMR analysis of branched polyethyleneimine [J]. J Macromol Sci Chem,1985, 22:877-887.
    [104]Von Harpe A. Petersen H, Li Y. et al. Characterization of commercially available and synthesized polyethylenimines for gene delivery [J]. J Control Release,2000,69:309-322.
    [105]Forrest M, Gabrielson N, Pack D. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery [J]. Biotechnol Bioeng,2004,89:416-423.
    [106]Pun S, Bellocq N, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery [J]. Bioconjugate chem,2004,15:831-840.
    [107]Harata K. The Structure of the Cyclodextrin Complex. I. The Crystal and Molecular Structure of the a-Cyclodextrin-p-Iodoaniline Complex [J]. Bull Chem Soc Jpn,1975,48:2409-2413.
    [108]Lindner K, Saenger W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate [J]. Carbohydr Res,1982,99:103-115.
    [109]Harata K. The structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated gamma-cyclodextrin [J]. Bull Chem Soc Jpn,1987,60:2763-2767.
    [110]Bonnett R, Davies J, Hursthouse M, et al. The structure of bilirubin [J]. Proc R Soc Lond B,1978, 202:249-268.
    [111]Benesi H, Hildebrand J. A spectroscopic investigation of the interaction of iodine with aromatic hydrocarbons [J]. J Am Chem Soc,1949,71:2703-2707.
    [112]Lightner D, Gawronski J, Gawronska K. Conformational enantiomerism in bilirubin. Selection by cyclodextrins [J]. J Am Chem Soc,1985,107:2456-2461.
    [113]Mukerjee P, Ostrow J. Interactions of unconjugated bilirubin with vesicles, cyclodextrins and micelles:New modeling and the role of high pKa values [J]. BMC biochemistry,2010,11:16-16.
    [114]Hongjun W, Jianbiao M, Yuehua Z, et al. Adsorption of bilirubin on the polymeric beta-cyclodextrin supported by partially aminated polyacrylamide gel [J]. React Funct Polym,1997,32:1-7.
    [115]Kano K, Imaeda K, Ota K, et al. Reexamination of Cyclodextrin-Induced Conformational Enantiomerism of Bilirubin in Aqueous Solution [J]. Bull Chem Soc Jpn,2003,76:1035-1041.
    [116]Yang C, Mori T, Origane Y, et al. Highly stereoselective photocyclodimerization of a-cyclodextrin-appended anthracene mediated by y-cyclodextrin and cucurbit [8] uril:A dramatic steric effect operating outside the binding site [J]. J Am Chem Soc,2008,130:8574-8575.
    [1]7]续浩,陈亮.水溶液中环糊精包结物的包结常数的测定方法[J].分析测试技术与仪器,2002.8:72—80.
    [118]Sherman RA, Levy SS. Rate-related recirculation:the effect of altering blood flow on dialyzer recirculation [J]. Am J Kidney Dis,1991,17:170-173.
    [119]Noble RD. Membrane separations technology:principles and applications [M]. Amsterdam:Elsevier Science,1995.
    [120]Bonnardeaux A, Pichette V, Ouimet D, et al. Solute clearances with high dialysate flow rates and glucose absorption from the dialysate in continuous arteriovenous hemodialysis [J]. Am J Kidney Dis, 1992,19:31-38.
    [121]Relton S, Greenberg A, Palevsky PM. Dialysate and blood flow dependence of diffusive solute clearance during CVVHD [J]. ASAIO J,1992,38:691-696.
    [122]Henderson L. Peritoneal ultrafiltration dialysis:enhanced urea transfer using hypertonic peritoneal dialysis fluid [J]. J Clin Invest,1966,45:950-955.
    [123]Song JH, Park GH, Lee SY, et al. Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances [J]. J Am Soc Nephrol,2005,16:237-246.
    [124]Brautbar N, Shinaberger J, Miller J, et al. Hemodialysis hypoxemia:evaluation of mechanisms utilizing sequential ultrafiltration-dialysis [J]. Nephron,1980,26:96-99.
    [125]Ozkahya M, Toz H, Unsal A, et al. Treatment of hypertension in dialysis patients by ultrafiltration: role of cardiac dilatation and time factor [J]. Am J Kidney Dis,1999,34:218-221.
    [126]崔曼华,朱德春.影响血液透析中超滤的相关因素分析及对策[J].中国保健,2007,15:35—36.
    [127]Boyle M, Kurtovic J, Bihari D, et al. Equipment review:The molecular adsorbents recirculating system (MARS(?)) [J]. Crit Care,2004,8:280-285.
    [128]Sauer 1, Goetz M, Steffen I, et al. In vitro comparison of the molecular adsorbent recirculation system (MARS) and single-pass albumin dialysis (SPAD) [J]. Hepatology,2004,39:1408-1414.
    [129]Patzer JF, Bane SE. Bound solute dialysis [J]. ASAIO J,2003,49:271-281.
    [130]Stange J, Ramlow W, Mitzner S, et al. Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins [J]. Artif Organs,2008,17:809-813.
    [131]Gray RD, Stroupe SD. Kinetics and mechanism of bilirubin binding to human serum albumin [J]. J Biol Chem,1978,253:4370-4377.
    [132]Berde CB, Hudson BS, Simoni RD, et al. Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin [J]. J Biol Chem,1979,254:391-400.
    [133]Jacobsen J. Binding of bilirubin to human serum albumin-determination of the dissociation constants [J]. FEBS lett,1969,5:112-114.
    [134]Weisiger RA, Ostrow JD, Koehler RK, et al. Affinity of human serum albumin for bilirubin varies with albumin concentration and buffer composition [J]. J Biol Chem,2001,276:29953-29960.
    [135]Beaven GH, D'Albis A, Gratzer WB. The interaction of bilirubin with human serum albumin [J]. Eur J Biochem,1973,33:500-509.
    [136]Magosso E, Ursino M, Coli L, et al. A modeling study of bilirubin kinetics during molecular adsorbent recirculating system sessions [J]. Artif Organs,2006,30:285-300.
    [137]路萍萍,孟志云,王敏伟,等.表面等离子共振技术测定药物与人血清白蛋白的相互作用[J].中国药理学与毒理学杂志,2007,21:147—151.
    [138]丁里,张新祥,常文保,等.毛细管区带电泳法测定4种抗HIV-1活性的化合物与牛血清白蛋白的结合常数[J].色谱,2004,22:624-626.
    [139]连春霞,甘婷婷,等.鱼腥草素钠与血清白蛋白结合常数的电泳法测定[J].重庆大学学报,2004,27:59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700