用户名: 密码: 验证码:
全髋关节置换术假体位置的生物力学研究及临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全髋关节置换术中,髋臼与股骨柄假体的定位对术后假体使用寿命和关节功能具有重要影响。目前,国内外学者对不同髋臼杯前倾角、外展角和股骨柄前倾角下,髋关节的生物力学情况和临床疗效进行了一些研究。随着研究的进展,学术界提出了联合前倾技术,即兼顾髋臼杯与股骨柄假体的前倾角,使二者之和维持在25°-50°之间,其中以35°的临床效果最为优良。尽管此种技术已经有了一定的临床报导,但联合前倾技术的生物力学特性目前还鲜有报道。本研究旨在探讨利用不同的联合前倾技术进行全髋关节置换术后,髋关节周围骨性结构及植入假体的应力和应变特点,并通过临床研究对其进行验证,为此项技术提供生物力学基础理论,便于此技术在临床的进一步应用。本研究共分为计算机有限元分析、尸体生物力学实验和临床研究三部分。
     第一部分:全髋关节置换术联合前倾角技术的有限元分析。本研究的主要目的是探讨不同联合前倾角技术对髋关节假体的生物力学特性的影响。利用志愿者CT建立骨盆有限元模型,根据联合前倾角技术的基础理论,利用不同六种联合前倾技术进行全髋关节置换术,即股骨柄前倾0°、5°、10°、15°、20°和25°,分别联合髋臼杯前倾35°、30°、25°、20°、15°和10°。在以上所有模型中,髋臼杯的外展角均为40°。给予一定的力学加载。从理论上分析不同的联合前倾状态下骨盆位移、髋臼、髋臼杯、臼杯内衬、陶瓷头、股骨柄假体及股骨的峰值Von Mises应力。结果表明股骨柄前倾20°联合臼杯前倾15°技术最为理想,因为这种技术可以在最大限度上避免髋臼周缘、髋臼杯、内衬、陶瓷头、股骨柄、股骨中段皮质的应力集中的出现,降低了假体或骨骼发生疲劳断裂的概率,减少了摩擦界面的摩擦力和人工关节固定界面的机械性失败的可能性。此外,这种技术能在最大层面上减少骨盆在矢状面或冠状面上的分离移动,使骨盆最为接近其生理状态下的力学分布状态。
     第二部分:全髋关节置换术中联合前倾角技术的尸体生物力学研究:本研究的目的研究比较联合前倾技术对全髋关节术后骨性结构的应变影响,并与有限元模拟结果进行相互验证。应用三种联合前倾角技术对尸体进行全髋关节置换术,即股骨柄前倾0°-10°、11°-20°和21°-25°,分别联合臼杯前倾35-25°、24°-15°和14°-10°。髋臼杯外展角设计范围为35°-45°。在600N载荷下,通过电阻应变片技术测量股骨柄周缘骨皮质和髋臼前后壁的应变情况,并与正常加载模式下的应变进行比较。结果表明与其他两种联合前倾技术相比,股骨柄前倾11-20°联合臼杯前倾24°-15°是一种合理的联合前倾技术,因为其股骨表面应变与自然状态下最为接近,而在髋臼周缘体现出了最小的应变率。这个结果与有限元分析的结果比较,具有一定的相似性。两个实验达到了彼此验证,互为补充的目的。
     第三部分:全髋关节置换术中联合前倾角技术的临床研究:结合前两项实验的研究结果,进行临床研究设计。利用三种联合前倾技术进行全髋关节置换术,即股骨柄前倾0°-10°、11°-20°和21°-25°,分别联合臼杯前倾35-25°、24°-15°和14°-10°。髋臼杯外展角为40°左右。术前、术后分别对其影像学疗效进行评估,评价指标主要包括术后患肢重力臂、偏心距、旋转中心高度和沈通线的连续性进行评估;同时应用电话随访确定患者术后半年内出现的并发症及生存情况,利用Harris评分对关节术后功能进行评价分析。我们发现股骨柄前倾0-10°联合髋臼杯前倾35°-25°技术、股骨柄前倾11°-20°联合髋臼杯前倾24°-15°技术和股骨柄前倾21°-25°联合髋臼杯前倾14°-10°三种联合前倾技术可以用于治疗股骨颈骨折、股骨头缺血坏死、发育性髋臼发育不良和骨性关节炎,主要体现在患肢术后的重力臂、股骨偏心距和旋转高度和沈通线的连续性得到了纠正。术后半年关节功能的Harris评分为良。三种联合前倾技术的短期临床疗效未见显著差异。
     通过上述研究我们认为,在联合前倾角为35°的技术中,股骨柄前倾20°联合臼杯前倾15°技术是一种理想的全髋关节置换技术。它不仅可以避免关节假体周围出现显著的应力集中情况,降低假体断裂的风险,减少摩擦界面的摩擦力,预防关节过度磨损,在髋臼周缘和股骨中上段产生较小的应变,使骨盆接近生理状态的力学分布情况;同时可以用于治疗股骨颈骨折、股骨头缺血坏死等疾病,并在临床影像、术后并发症和术后短期的关节功能方面取得了满意的效果。
The positioning of acetabular component and femoral stem is playing an important rolein total hip arthroplasty (THA) for recovery of hip function or releasing of pain. Many studieson the hip biomechanics and clinical outcome of THA have been published, in which variablestem or acetabular anteversion and inclination were still controversial. A combinedanteversion technique (CAT) is a new concept, which was proposed by Professor ChristopherAmuwa from Nigeria in2008. Combined anteversion technique considered35°as an optimalsum of stem and cup, which ranging from25°-50°. Although some clinical trials ofcombined anteversion technique have been reported, the biomechanical properties of this skillare still unknown. The main purpose of the present research is to explore the strain and stressof hip bone or prosthesis after total hip arthroplasty with different combined anteversiontechnique. Clinical trials were designed and performed according to the basic researchoutcome. The present research consists of three major parts, finite element analysis, cadaver tests andclinical trials, aiming to provide biomechanical basic theories and evidence for further clinicalapplications.
     The first section is the finite element analysis of combined anteversion technique in THA.The objective of the study is to explore the biomechanical traits of hip prosthesis after totalhip replacement with combined anteversion technique. A pelvic three-dimensional model wasestablished based on computer-tomography scanning data. Six virtual total hip arthroplastywere performed by this advanced surgery. The stem anteversions were settled as0°,5°,10°,15°,20°and25°, which combined with the cup anteversion of35°,30°,25°,20°,15°and10°,respectively. The inclination of acetabular component is designed for40°in all the six models.The pelvic movement and peak Von Mises stress of acetabular component, prosthetic cup,ceramic liner, femoral head, femoral stem or cortical bone were evaluated after virtualsurgeries. The results showed that stem anteverted20°combined with cup anteverted15°skillis an optimal technique, because it could protect against stress concentration on hip bone, cup, liner, femoral head, prosthetic stem and cortical bone maximatily. It could decrease thepossibility of prosthetic fatigue break and friction between cup liner and femoral head. Inaddition, a slight pelvic internal movement could ensure the physiological status utmost whenthe hip is loaded.
     The second section is the cadaver tests of combined anteversion technique in THA. Theaim of the study is to explore the strain of hip or femoral bone after THA with CAT andprovide a mutual verification with the above computer simulation. Three techniques wereused in the present study. The stem were anteverted0°-10°,11°-20°and21°-25°, combiningwith cup antervsersion of35°-25°,24°-15°and14°-10°, respectively. The cup inclinationranged from35°to45°. The strain of posterior or anterior wall of acetabula and femoralperipheric cortical bone was compared with normal hip after loading by600N forces.Compared with the other two skills, stem anteverted11°-20°combined with cup24°-15°is areasonable technique, due to its slight change strain of femoral cortical bone and acetabularelative to normal hip. The present result is similar to the results of finite element analysis tosome extent, by which a mutual verification was addressed.
     The final section of the present research is the clinical trial of combined anteversiontechnique in THA. According to the results of the above two investigations, three combinedanteversion techniques were used in the clinical trial, in which stem anteverted0°-10°,11°-20°and21°-25°, combining with cup antervsersion of35°-25°,24°-15°and14°-10°,respectively. The cup inclination was addressed at40°in THA procedure. The radiographicresults were estimated pre-or postoperatively, including moment arm of gravity, femoraloffset, height of rotation center and continuity of shenton’s line. All the patients werefollowed up for postoperative complications by telephone communication. In addition, Harrisscoring system was performed to estimate the hip function. We found that femoral neckfracture, avascular necrosis of femoral head, developmental dysplasia or hip arthritis could betreated by these three kinds of surgical skills. The poor moment arm of gravity, femoral offset,height of rotation center and shenton’s continuity were improved after THA. All the hips showed a good function after six months postoperatively, whereas there was no significantdifference between all the three combined anteversion techniques.
     According to the three investigations, stem anteverted20°combined with cup anteverted15°is considered as a suitable CAT in the research of combined anteversion of35°. It couldavoid excess stress concentration on prosthesis or bone, which could decrease the prostheticfatigue break and friction. In addition, this technique could not only certify the similarphysiological situation paralleled to normal pelvis, but also provided a good outcome ofradiology, postoperative complications and hip function.
引文
[1] WILES P. The surgery of the osteoarthritic hip[J]. Br J Surg,1958,45(193):488-97.
    [2] MCKEE G K, WATSON-FARRAR J. Replacement of arthritic hips by theMcKee-Farrar prosthesis[J]. J Bone Joint Surg Br,1966,48(2):245-59.
    [3] CHARNLEY J. Total hip replacement[J]. JAMA,1974,230(7):1025-8.
    [4] JOHN CHARNLEY. Low Friction arthroplasty of the hip: theory and practice [M].Berlin: New York, Springer-Verlag,1979.
    [5] RAO J, ZHOU Y X, VILLAR R N. Injury to the ligamentum teres. Mechanism,findings, and results of treatment[J]. Clin Sports Med,2001,20(4):791-9.
    [6] PONSETI I V. Growth and development of the acetabulum in the normal child.Anatomical, histological, and roentgenographic studies[J]. J Bone Joint Surg Am,1978,60(5):575-85.
    [7] MORRISSY RT, WEINSTEIN SL. Lovell&Winters’Pediatric Orthopaedics.6th ed
    [M]. Philadelphia: Lippincott Williams&Wilkins,2006.
    [8] CLOHISY J C, CARLISLE J C, BEAULE P E, et al. A systematic approach to theplain radiographic evaluation of the young adult hip[J]. J Bone Joint Surg Am,2008,90Suppl4:47-66.
    [9] GANZ R, PARVIZI J, BECK M, et al. Femoroacetabular impingement: a cause forosteoarthritis of the hip[J]. Clin Orthop Relat Res,2003,(417):112-20.
    [10] FAGERSON TL. The Hip Handbook [M]. Boston, MA: Butterworth-Heinemann,1998.
    [11] HAMILL J, KNUTZEN K. Biomechanical Basis of Human Movement.3rd ed [M].Baltimore: Lippincott Williams&Wilkins,2009.
    [12] RADIN E L. Biomechanics of the human hip[J]. Clin Orthop Relat Res,1980,(152):28-34.
    [13] NICHOLAS JA, HERSHMAN EB. The Lower Extremity&Spine in Sports Med.2nded [M]. Saint Louis, MO: Mosby,1995.
    [14]宋朝晖,张英泽,潘进社,等.髋臼唇的形态学研究及其意义[J].中国临床解剖学杂志,2006,(04):378-380.
    [15] FERGUSON SJ, BRYANT JT, GANZ R, et al. The influence of the acetabular labrumon hip joint cartilage consolidation: a poroelastic finite element model [J]. J Biomech,2000,33:953í960.
    [16] TAKECHI H, NAGASHIMA H, ITO S. Intra-articular pressure of the hip joint outsideand inside the limbus[J]. Nihon Seikeigeka Gakkai Zasshi,1982,56(6):529-36.
    [17] KAPANDJI IA. The Physiology of the Joints, v2[M]. Edinburgh: ChurchillLivingstone,1970.
    [18] CALLAGHAN J, ROSENBERG A, RUBASH H. The Adult Hip.2nd ed [M].Philadelphia: Lippincott Williams&Wilkins,2007.
    [19] RALPHS J R, BENJAMIN M. The joint capsule: structure, composition, ageing anddisease[J]. J Anat,1994,184(Pt3):503-9.
    [20]原林.髋关节的解剖和生物力学[J].中国创伤骨科杂志,2001,(02):71-72+56.
    [21] FUSS F K, BACHER A. New aspects of the morphology and function of the humanhip joint ligaments[J]. Am J Anat,1991,192(1):1-13.
    [22] MARTIN H D, SAVAGE A, BRALY B A, et al. The function of the hip capsularligaments: a quantitative report[J]. Arthroscopy,2008,24(2):188-95.
    [23]李永奖,张力成,杨国敬.髋关节囊韧带解剖学及生物力学特性研究进展[J].中国骨与关节损伤杂志,2006,(08):678-680.
    [24] SHATSILLO O I, ARIEL' B M.[The anatomicofunctional characteristics of the hipjoint][J]. Morfologiia,1996,110(6):112-5.
    [25] CHEN H H, LI A F, LI K C, et al. Adaptations of ligamentum teres in ischemicnecrosis of human femoral head[J]. Clin Orthop Relat Res,1996,(328):268-75.
    [26] STEWART K J, EDMONDS-WILSON R H, BRAND R A, et al. Spatial distributionof hip capsule structural and material properties[J]. J Biomech,2002,35(11):1491-8.
    [27] TRUETA J, HARRISON M H. The normal vascular anatomy of the femoral head inadult man[J]. J Bone Joint Surg Br,1953,35-B(3):442-61.
    [28] MORREY B. Reconstructive Surgery of the Joints.2nd ed [M]. New York: ChurchillLivingsone,1996.
    [29] SELDES R M, TAN V, HUNT J, et al. Anatomy, histologic features, and vascularity ofthe adult acetabular labrum[J]. Clin Orthop Relat Res,2001,(382):232-40.
    [30] DEWBERRY MJ, BOHANNON RW, TIBERIO D, et al. Pelvic and femoralcontributions to bilateral hip flexion by subjects suspended from a bar [J]. ClinBiomech,2003,18:494í499.
    [31] NORDIN M, FRANKEL VH. Basic Biomechanics of the Musculoskeletal System.3rd ed [M]. Baltimore: Lippincott Williams&Wilkins,2001.
    [32] JOHNSTON R C, SMIDT G L. Hip motion measurements for selected activities ofdaily living[J]. Clin Orthop Relat Res,1970,72:205-15.
    [33] den BOGERT AJ V, READ L, NIGG B M. An analysis of hip joint loading duringwalking, running, and skiing[J]. Med Sci Sports Exerc,1999,31(1):131-42.
    [34] MCNITT-GRAY J L. Kinetics of the lower extremities during drop landings fromthree heights[J]. J Biomech,1993,26(9):1037-46.
    [35] ROSE R M, NUSBAUM H J, SCHNEIDER H, et al. On the true wear rate of ultrahigh-molecular-weight polyethylene in the total hip prosthesis[J]. J Bone Joint SurgAm,1980,62(4):537-49.
    [36] CHAPMAN MW. Operative Orthopaedics, Vol1[M]. Philadelphia: Pa, Lippincott,1988.
    [37] WHITE R E Jr, FORNESS T J, ALLMAN J K, et al. Effect of posterior capsular repairon early dislocation in primary total hip replacement[J]. Clin Orthop Relat Res,2001,(393):163-7.
    [38] GOLDSTEIN W M, GLEASON T F, KOPPLIN M, et al. Prevalence of dislocationafter total hip arthroplasty through a posterolateral approach with partial capsulotomyand capsulorrhaphy[J]. J Bone Joint Surg Am,2001,83-A Suppl2(Pt1):2-7.
    [39] CHARLES M N, BOURNE R B, DAVEY J R, et al. Soft-tissue balancing of the hip:the role of femoral offset restoration[J]. Instr Course Lect,2005,54:131-41.
    [40] BOURNE R B, RORABECK C H. Soft tissue balancing: the hip[J]. J Arthroplasty,2002,17(4Suppl1):17-22.
    [41] SIOEN W, SIMON J P, LABEY L, et al. Posterior transosseous capsulotendinousrepair in total hip arthroplasty: a cadaver study[J]. J Bone Joint Surg Am,2002,84-A(10):1793-8.
    [42] MIHALKO W M, WHITESIDE L A. Hip mechanics after posterior structure repair intotal hip arthroplasty[J]. Clin Orthop Relat Res,2004,(420):194-8.
    [43] PELLICCI P M, BOSTROM M, POSS R. Posterior approach to total hip replacementusing enhanced posterior soft tissue repair[J]. Clin Orthop Relat Res,1998,(355):224-8.
    [44] OSMANI O, MALKANI A. Posterior capsular repair following total hip arthroplasty:a modified technique[J]. Orthopedics,2004,27(6):553-5.
    [45]李永奖,张力成,杨国敬,等.后方关节囊修补预防全髋关节置换术后早期脱位[J].中国矫形外科杂志,2006,(12):891-894.
    [46] STROMSOE K, EIKVAR K. Fascia lata plasty in recurrent posterior dislocation aftertotal hip arthroplasty[J]. Arch Orthop Trauma Surg,1995,114(5):292-4.
    [47] CLOUGH T M, HODGKINSON J P. Two-stage revision with pseudocapsularresection for recurrent dislocation of total hip prostheses[J]. J Arthroplasty,2000,15(8):1017-9.
    [48] BARBOSA J K, KHAN A M, ANDREW J G. Treatment of recurrent dislocation oftotal hip arthroplasty using a ligament prosthesis[J]. J Arthroplasty,2004,19(3):318-21.
    [49] LAVIGNE M J, SANCHEZ A A, COUTTS R D. Recurrent dislocation after total hiparthroplasty: treatment with an Achilles tendon allograft[J]. J Arthroplasty,2001,16(8Suppl1):13-8.
    [50] MCCOLLUM D E, GRAY W J. Dislocation after total hip arthroplasty. Causes andprevention[J]. Clin Orthop Relat Res,1990,(261):159-70.
    [51] MULLER M E. Total hip prostheses[J]. Clin Orthop Relat Res,1970,72:46-68.
    [52] HARRIS W H. Advances in surgical technique for total hip replacement: without andwith osteotomy of the greater trochanter[J]. Clin Orthop Relat Res,1980,(146):188-204.
    [53]李永奖,张力成,杨国敬,等.人工髋关节假体三维有限元模型构建及其生物力学意义[J].中国骨与关节损伤杂志,2007,22(9):711-713.
    [54]马卫华,吴富源,曲广运,等.不同髋臼杯前倾位置和球头假体大小对全髋关节置换术后后方稳定性的影响[J].中华关节外科杂志(电子版),2009,3(5):53-56.
    [55]林谦,沙永新,毛坤祥.髋臼杯外展角对人工髋关节稳定性影响的研究[J].中国医师杂志,2005,7(6):836-836.
    [56]胡元斌,顾永强,严勋.髋臼方位与全髋置换术后脱位的关系[J].中华创伤骨科杂志,2004,6(6):608-611.
    [57]裴国献、张元智.数字骨科学[M].北京:人民卫生出版社,2009.
    [58] GARCIA J M, MARTINEZ M A, DOBLARE M. An anisotropic internal-externalbone adaptation model based on a combination of CAO and continuum damagemechanics technologies[J]. Comput Methods Biomech Biomed Engin,2001,4(4):355-77.
    [59] SCHMITT J, LENGSFELD M, ALTER P, et al.[Use of voxel-oriented femur modelsfor stress analysis. Generation, calculation and validation of CT-based FEMmodels][J]. Biomed Tech (Berl),1995,40(6):175-81.
    [60] KORHONEN R K, KOISTINEN A, KONTTINEN Y T, et al. The effect of geometryand abduction angle on the stresses in cemented UHMWPE acetabular cups--finiteelement simulations and experimental tests[J]. Biomed Eng Online,2005,4(1):32.
    [61] OKI H, ANDO M, OMORI H, et al. Relation between vertical orientation and stabilityof acetabular component in the dysplastic hip simulated by nonlinearthree-dimensional finite element method[J]. Artif Organs,2004,28(11):1050-4.
    [62] D'LIMA D D, URQUHART A G, BUEHLER K O, et al. The effect of the orientationof the acetabular and femoral components on the range of motion of the hip atdifferent head-neck ratios[J]. J Bone Joint Surg Am,2000,82(3):315-21.
    [63] NADZADI M E, PEDERSEN D R, CALLAGHAN J J, et al. Effects of acetabularcomponent orientation on dislocation propensity for small-head-size total hiparthroplasty[J]. Clin Biomech (Bristol, Avon),2002,17(1):32-40.
    [64] KOWALCZYK P, KOWALCZEWSKI J, MALDYK P, et al.[Shape optimization ofthe femoral component of hip prosthesis using the finite element method][J]. ChirNarzadow Ruchu Ortop Pol,2000,65(5):511-7.
    [65] TAYLOR M, TANNER K E, FREEMAN M A, et al. Cancellous bone stressessurrounding the femoral component of a hip prosthesis: an elastic-plastic finiteelement analysis[J]. Med Eng Phys,1995,17(7):544-50.
    [66] MANN K A, AYERS D C, DAMRON T A. Effects of stem length on mechanics of thefemoral hip component after cemented revision[J]. J Orthop Res,1997,15(1):62-8.
    [67]王健,邱阳,彭磊.植入假体后的股骨建模及有限元分析[J].应用力学学报,2006,(01):41-43+170.
    [68]郑晓雯,封小建,张延宾.人工股骨柄形状和表面处理对置换术后假体和人体股骨应力分布影响的有限元分析[J].医用生物力学,2006,(04):322-327.
    [69] CHANG P B, WILLIAMS B J, BHALLA K S, et al. Design and analysis of robusttotal joint replacements: finite element model experiments with environmentalvariables[J]. J Biomech Eng,2001,123(3):239-46.
    [70]严世贵,吴浩波,陈维善,等.全髋关节置换后聚乙烯内衬应力的弹塑性有限元分析[J].中华骨科杂志,2004,24(4):211-215.
    [71]邹渊渊,王玉林,张铁良,等.组合式人工髋关节接合面微动及生物力学研究[J].中国临床解剖学杂志,2007,(01):81-84.
    [72] F LIU, I. J. UDOFIA, Z. M. JIN, et al. Comparison of Contact Mechanics between aTotal Hip Replacement and a Hip Resurfacing with a Metal-On-Metal Articulation.Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2005,219(7):727-732.
    [73] MURATOGLU O K, BRAGDON C R, O'CONNOR D, et al. Larger diameter femoralheads used in conjunction with a highly cross-linked ultra-high molecular weightpolyethylene: a new concept[J]. J Arthroplasty,2001,16(8Suppl1):24-30.
    [74] SULLIVAN P, KELLEY S, JOHNSTON R. Current concepts in hip jointreplacement[J]. Iowa Med,1990,80(10):468-9.
    [75] WELCH R B, MCGANN W A,3RD P G D. Charnley low-friction arthroplasty. Afifteen-to seventeen-year follow-up study[J]. Orthop Clin North Am,1988,19(3):551-5.
    [76] RUSSOTTI G M, COVENTRY M B, STAUFFER R N. Cemented total hiparthroplasty with contemporary techniques. A five-year minimum follow-up study[J].Clin Orthop Relat Res,1988,(235):141-7.
    [77] SEVERT R, WOOD R,3RD C A, et al. Long-term follow-up of cemented total hiparthroplasty in rheumatoid arthritis[J]. Clin Orthop Relat Res,1991,(265):137-45.
    [78] MALONEY W J, JASTY M, ROSENBERG A, et al. Bone lysis in well-fixedcemented femoral components[J]. J Bone Joint Surg Br,1990,72(6):966-70.
    [79] HADDAD R J Jr, COOK S D, THOMAS K A. Biological fixation of porous-coatedimplants[J]. J Bone Joint Surg Am,1987,69(9):1459-66.
    [80] COLLIER J P, MAYOR M B, CHAE J C, et al. Macroscopic and microscopicevidence of prosthetic fixation with porous-coated materials[J]. Clin Orthop Relat Res,1988,(235):173-80.
    [81] BRUNSKI J B. Biomaterials and biomechanics in dental implant design[J]. Int J OralMaxillofac Implants,1988,3(2):85-97.
    [82] HARRIS W H, MALONEY W J. Hybrid total hip arthroplasty[J]. Clin Orthop RelatRes,1989,(249):21-9.
    [83] BOOTH RE, BALDERSTON RA, ROTHMAN RH. Total Hip Arthroplasty [M].Philadelphia: Pa, WB Saunders,1988.
    [84] WOO R Y, MORREY B F. Dislocations after total hip arthroplasty[J]. J Bone JointSurg Am,1982,64(9):1295-306.
    [85] WEEDEN S H, PAPROSKY W G, BOWLING J W. The early dislocation rate inprimary total hip arthroplasty following the posterior approach with posteriorsoft-tissue repair[J]. J Arthroplasty,2003,18(6):709-13.
    [86] LEWINNEK G E, LEWIS J L, TARR R, et al. Dislocations after total hip-replacementarthroplasties[J]. J Bone Joint Surg Am,1978,60(2):217-20.
    [87] ALBERTON G M, HIGH W A, MORREY B F. Dislocation after revision total hiparthroplasty: an analysis of risk factors and treatment options[J]. J Bone Joint SurgAm,2002,84-A(10):1788-92.
    [88] HAAKE D A, BERKMAN S A. Venous thromboembolic disease after hip surgery.Risk factors, prophylaxis, and diagnosis[J]. Clin Orthop Relat Res,1989,(242):212-31.
    [89] FRANCIS C W, PELLEGRINI V D Jr, MARDER V J, et al. Prevention of venousthrombosis after total hip arthroplasty. Antithrombin III and low-dose heparincompared with dextran40[J]. J Bone Joint Surg Am,1989,71(3):327-35.
    [90] WILLE-JORGENSEN P, CHRISTENSEN S W, BJERG-NIELSEN A, et al.Prevention of thromboembolism following elective hip surgery. The value of regionalanesthesia and graded compression stockings[J]. Clin Orthop Relat Res,1989,(247):163-7.
    [91] WILSON P D Jr, SALVATI E A, AGLIETTI P, et al. The problem of infection inendoprosthetic surgery of the hip joint[J]. Clin Orthop Relat Res,1973,(96):213-21.
    [92] SCHUTZER S F, HARRIS W H. Deep-wound infection after total hip replacementunder contemporary aseptic conditions[J]. J Bone Joint Surg Am,1988,70(5):724-7.
    [93] DAI L Y, ZHOU W J.[Ectopic ossification following total hip replacement][J].Zhonghua Wai Ke Za Zhi,1992,30(10):599-602.
    [94] KAVANAGH B F, DEWITZ M A, ILSTRUP D M, et al. Charnley total hiparthroplasty with cement. Fifteen-year results[J]. J Bone Joint Surg Am,1989,71(10):1496-503.
    [95] WINES A P, MCNICOL D. Computed tomography measurement of the accuracy ofcomponent version in total hip arthroplasty[J]. J Arthroplasty,2006,21(5):696-701.
    [96] PIERCHON F, PASQUIER G, COTTEN A, et al. Causes of dislocation of total hiparthroplasty. CT study of component alignment[J]. J Bone Joint Surg Br,1994,76(1):45-8.
    [97] AMUWA C, DORR L D. The combined anteversion technique for acetabularcomponent anteversion[J]. J Arthroplasty,2008,23(7):1068-70.
    [98] DORR L D, MALIK A, WAN Z, et al. Precision and bias of imageless computernavigation and surgeon estimates for acetabular component position[J]. Clin OrthopRelat Res,2007,465:92-9.
    [99] VISSER J D, JONKERS A. A method for calculating acetabular anteversion, femuranteversion and the instability index of the hip joint[J]. Neth J Surg,1980,32(4):146-9.
    [100] KOMENO M, HASEGAWA M, SUDO A, et al. Computed tomographic evaluation ofcomponent position on dislocation after total hip arthroplasty[J]. Orthopedics,2006,29(12):1104-8.
    [101] WIDMER K H, ZURFLUH B. Compliant positioning of total hip components foroptimal range of motion[J]. J Orthop Res,2004,22(4):815-21.
    [102]罗毅.股骨-髋臼联合定位技术在生物型全髋置换术中的应用[J].河北医药,2010,(04):435-437.
    [103] CUNNINGHAM. Pelvis, cunningham’s textbook of anatomy [M]. London: HenryFrowde and Hodder&Stoughton,1922.
    [104]李永奖,杨国敬,林利兴,等.计算机辅助的髋臼假体位相参数的测量及其在关节置换中的临床意义[J].中医正骨,2008,(01):6-8+79.
    [105]马文辉,张学敏,王继芳,等.半球形髋臼假体与带翼髋臼假体的有限元对比分析[J].中国组织工程研究与临床康复,2009,(48):9423-9428.
    [106] CHEGINI S, BECK M, FERGUSON S J. The effects of impingement and dysplasiaon stress distributions in the hip joint during sitting and walking: a finite elementanalysis[J]. J Orthop Res,2009,27(2):195-201.
    [107]张景僚,顾立强,张美超,等.骶髂关节脱位钉板内固定与关节拉力螺钉内固定两种置入方法的三维有限元分析[J].中国组织工程研究与临床康复,2010,(13):2329-2332.
    [108]苏佳灿,陈学强,吴建国.骨盆及髋臼三维有限元模型材料属性设定及其生物力学意义[J].中国临床康复,2005,(02):71-73.
    [109]赖震,费骏,魏威,等.应用三维有限元分析髋臼骨结核软骨下骨塌陷的风险[J].生物医学工程学进展,2010,(04):198-201.
    [110]汪光晔,张春才,许硕贵.正常步态下髋臼底接触面积与压力分布的三维有限元分析[J].中国组织工程研究与临床康复,2011,(22):3991-3994.
    [111]朱睿,程黎明.骶椎切除重建的三维有限元模型建立及其研究进展[J].医用生物力学,2008,(04):327-331.
    [112]赵诗奎.氧化锆基纳微米复合陶瓷模具材料及其摩擦磨损特性研究[D].山东:山东轻工业学院,2009.
    [113] HUO M H, ZURAUSKAS A, ZATORSKA L E, et al. Cementless total hipreplacement in patients with developmental dysplasia of the hip[J]. J South OrthopAssoc,1998,7(3):171-9.
    [114] HARTOFILAKIDIS G, KARACHALIOS T. Total hip arthroplasty for congenital hipdisease[J]. J Bone Joint Surg Am,2004,86-A(2):242-50.
    [115] BOLDER S B, MELENHORST J, GARDENIERS J W, et al. Cemented total hiparthroplasty with impacted morcellized bone-grafts to restore acetabular bonedefects in congenital hip dysplasia[J]. J Arthroplasty,2001,16(8Suppl1):164-9.
    [116]赖震.三维有限元分析在成人髋臼发育不良和全髋置换研究中的应用[D].江苏:苏州大学,2008.
    [117] STANS A A, PAGNANO M W, SHAUGHNESSY W J, et al. Results of total hiparthroplasty for Crowe Type III developmental hip dysplasia[J]. Clin Orthop Relat Res,1998,(348):149-57.
    [118] KEITH J E Jr, BRASHEAR H R Jr, GUILFORD W B. Stability of posteriorfracture-dislocations of the hip. Quantitative assessment using computedtomography[J]. J Bone Joint Surg Am,1988,70(5):711-4.
    [119] THOMAS K A, VRAHAS M S, NOBLE J W Jr, et al. Evaluation of hip stability aftersimulated transverse acetabular fractures[J]. Clin Orthop Relat Res,1997,(340):244-56.
    [120]程士欢,朱东,谷贵山,等.髋臼前倾和后倾的影像学及生物力学研究[J].实用骨科杂志,2010,(02):109-113.
    [121]匡光志,白波.全髋置换前后假体周围骨的应力变化[J].现代临床医学生物工程学杂志,2002,(04):266-267+271.
    [122] SUTHERLAND D H, GREENFIELD R. Double innominate osteotomy[J]. J BoneJoint Surg Am,1977,59(8):1082-91.
    [123] DIETRICH TONNIS. Treatment of residual dysplasia after developmental dysplasiaof the hip as a prevention of early coxarthrosis [M]. Journal of Pediatric OrthopaedicsPart B,1993.
    [124] WROBLEWSKI B M. Planar anteversion of the acetabular cup as determined fromplain anteroposterior radiographs[J]. J Bone Joint Surg Br,2000,82(1):153.
    [125]严亮,夏军,魏亦兵.髋臼前倾角研究进展[J].国际骨科学杂志,2010,(06):340-342.
    [126] ORANSKY M, DI G C, VALASSINA A. Fractures of the acetabulum: a retrospectivestudy[J]. Arch Putti Chir Organi Mov,1986,36:285-90.
    [127]花锋,张继宗.用中国汉族男性髋骨推断向往身高的研究[J].人类学学报,1994,13(2):138-142.
    [128]李思汉.我国北方地区成人各类体型不同身高的体重正常值的探讨[J].营养学报,1986,(02):98-109.
    [129]毛宾尧.人工髋关节外科学(第2版)[M].北京:人民卫生出版社,2001.52.
    [130]陈塑寰.材料力学[M].吉林:吉林科学技术出版社,2000.1.
    [131] EGAN K J, KUMMER F J, FRANKEL V H. Biomechanics of total hip arthroplasty[J].Semin Arthroplasty,1993,4(4):288-301.
    [132] LEE T Q, DANTO M I, KIM W C. Initial stability comparison of modular hipimplants in synthetic femurs[J]. Orthopedics,1998,21(8):885-8.
    [133] PAUWELS F. Biomechanics of the normal and diseased hip: Theoretical foundation,technique and results of treatment [M]. Berlin: Springer-Verlag,1976.
    [134] SEDEL L, CABANELA ME. Hip surgery: materials and developments [M]. UnitedKingdom: Martin Dunitz,1998.
    [135]韩长伶,张奉琪,崔春艳.髋臼生物力学实验中骨盆位置选择的体会[J].中国骨伤,2005,(02):25-27.
    [136] ADAMS M A, HUTTON W C. The effect of posture on the role of the apophysialjoints in resisting intervertebral compressive forces[J]. J Bone Joint Surg Br,1980,62(3):358-62.
    [137]黎小坚,朱绍舜.基础骨生物学新观[J].中国骨质疏松杂志,2001,(02):59-81.
    [138]齐向北,张英泽,张奉琪,等.新鲜与防腐标本椎体骨密度的相关研究[J].河北医药,2007,(02):109-110.
    [139]白玉龙,陈世盖,许胜文,袁旬华.压敏片在关节生物力学研究中的应用[J].中国运动医学杂志,1995,(02):84-86.
    [140]樊继宏,赵卫东,肖进,等.压敏片材料在关节生物力学中的应用[J].中国医学物理学杂志,2001,(02):105-107.
    [141] HEHNE H J. Biomechanics of the patellofemoral joint and its clinical relevance[J].Clin Orthop Relat Res,1990,(258):73-85.
    [142] LEWALLEN D G, RIEGGER C L, MYERS E R, et al. Effects of retinacular releaseand tibial tubercle elevation in patellofemoral degenerative joint disease[J]. J OrthopRes,1990,8(6):856-62.
    [143] FUKUBAYASHI T, KUROSAWA H. The contact area and pressure distributionpattern of the knee. A study of normal and osteoarthrotic knee joints[J]. Acta OrthopScand,1980,51(6):871-9.
    [144] MACKO V W, MATTHEWS L S, ZWIRKOSKI P, et al. The joint-contact area of theankle. The contribution of the posterior malleolus[J]. J Bone Joint Surg Am,1991,73(3):347-51.
    [145] SAWAGUCHI T, BROWN T D, RUBASH H E, et al. Stability of acetabular fracturesafter internal fixation. A cadaveric study[J]. Acta Orthop Scand,1984,55(6):601-5.
    [146] SHAZAR N, BRUMBACK R J, NOVAK V P, et al. Biomechanical evaluation oftransverse acetabular fracture fixation[J]. Clin Orthop Relat Res,1998,(352):215-22.
    [147] OLSON S A, BAY B K, CHAPMAN M W, et al. Biomechanical consequences offracture and repair of the posterior wall of the acetabulum[J]. J Bone Joint Surg Am,1995,77(8):1184-92.
    [148]宋朝晖,潘进社,王庆贤.髋臼后壁骨折对髋臼与股骨头之间应力的影响[J].中华创伤杂志,2002,(02):26-28.
    [149]黄庆森,单文钵,尚天裕,等.骨骼系统基本生物力学[M].天津:天津科学技术出版社,1983.
    [150]毛宾尧,王焕温,王继芳,等.骨关节外科学[M].北京:人民卫生出版社,1998.
    [151] MA R S, ZHANG Y, HUANG X, et al. Causes of death after hip fracture in senilepatients[J]. Chin J Traumatol,2012,15(1):42-9.
    [152]刘庆,张洪,周乙雄,等.髋关节表面置换术后生物力学参数的改变[J].中国组织工程研究与临床康复,2007,(27):5281-5284.
    [153] MALIK A, MAHESHWARI A, DORR L D. Impingement with total hipreplacement[J]. J Bone Joint Surg Am,2007,89(8):1832-42.
    [154]李永旺,孙俊英,骆园,等.大直径金属对金属与陶瓷对陶瓷全髋置换术的手术体会及近期疗效比较[J].中国矫形外科杂志,2011,(13):1067-1072.
    [155] SAKALKALE D P, SHARKEY P F, ENG K, et al. Effect of femoral component offseton polyethylene wear in total hip arthroplasty[J]. Clin Orthop Relat Res,2001,(388):125-34.
    [156] KELLEY T C, SWANK M L. Role of navigation in total hip arthroplasty[J]. J BoneJoint Surg Am,2009,91Suppl1:153-8.
    [157] PATEL P D, POTTS A, FROIMSON M I. The dislocating hip arthroplasty: preventionand treatment[J]. J Arthroplasty,2007,22(4Suppl1):86-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700