用户名: 密码: 验证码:
盐节木耐盐的生理生化特性及BADH基因克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱地是一种广泛分布且影响植物正常生长发育的土壤。随着全球环境的不断恶化,土壤盐碱化已严重威胁着人类赖以生存的有限的土壤资源。土壤盐分是由多种离子组成的混合物,不同盐离子对植物种子萌发及生长发育的影响很大。目前关于植物耐盐性的研究,多数研究人员以单一的NaCl代替土壤中的盐分进行胁迫处理,以说明土壤盐分对植物的影响,这可能会限制研究结论的准确性。因此,本实验以典型耐盐性植物盐节木(Halocnermumstrobilaceum(Pall.)Bieb.)为材料,比较NaCl和土壤盐分胁迫时,盐节木种子萌发、幼苗生长及其生理生化特性反应的差异性,同时对盐节木耐盐的分子机制进行探讨。首先,采用双因素交叉设计,在三个昼-夜温度(5~15℃、15~25℃、25~35℃)和十个盐溶液浓度水平下(0%、0.3%、0.6%、0.9%、1.2%、1.5%、2.0%、2.5%、3.0%、3.5%)研究了复合盐和NaCl对其种子萌发及幼苗生长发育影响的差异性。其次,在0%、0.9%、2.7%和5.4%四种浓度下,研究了生长20d,60d时复合盐和NaCl对其整株幼苗生物量、Na~+、K~+离子含量、丙二醛(Malonaldehyde,MDA)、脯氨酸(Prolin,Pro)、甜菜碱(GlycineBetaine,GB)含量以及超氧化物歧化酶(SuperoxideDismutase,SOD)、过氧化物酶(Peroxidase,POD)、过氧化氢酶(Catalase,CAT)活性的影响。最后,根据辽宁碱蓬(Suaedaliaotungensis,AF359282)、菠菜(Spinaciaoleracea,AY156694)、中亚滨藜(Atriplexcentralasiatica,AY093682)、甜菜(Betavulgaris,X58463)的BADH基因完整读码框设计引物,以cDNA为模板,扩增盐节木BADH基因开放阅读框(openreadingframe,ORF),将目的DNA片段克隆到PMD182T测序载体上测序,得到盐节木BADH全序列,然后利用网上数据库(http://www.ncbi.Nlm.nih.gov/)进行BLAST分析,用在线工具SOPMA进行蛋白等电点及分子量相关分析,以DNAMAN软件对HsBADH基因进行蛋白序列聚类分析。获得主要研究结果如下:
     1.温度及盐浓度对盐节木种子萌发和幼苗生长的影响
     在15~25℃,盐节木种子萌发率、幼苗胚根长度及鲜重显著高于5~15℃和25~35℃两个处理(P<0.05)。15~25℃为种子萌发及幼苗生长的最适温度范围。在5~15℃范围内,当NaCl和复盐浓度分别低于0.6%和1.2%时盐节木种子萌发率、幼苗胚根和鲜重显著高于对照(P<0.05);在15~25℃范围内,NaCl与复盐浓度分别低于0.6%和1.5%时,种子萌发率、幼苗胚根长度和鲜重显著高于对照(P<0.05)。在25~35℃范围内,当NaCl和复盐分别低于0.6%和0.9%时盐节木种子萌发率、幼苗胚根长度和鲜重显著高于对照(P<0.05)。在试验的三个温度下,随着NaCl和复盐浓度的升高,盐节木种子萌发率、幼苗胚根长度和鲜重均呈先升后降的趋势,当NaCl和复盐浓度小于0.6%时,盐溶液对种子萌发和幼苗生长具有显著促进作用(P<0.05)。在15~25℃,复盐胁迫后的种子萌发、幼苗胚根长度和鲜重分别是NaCl胁迫的1.23、1.27和1.28倍。同一温度相同浓度下,NaCl胁迫的盐节木种子萌发率、幼苗胚根长度和鲜重均显著小于复盐胁迫,NaCl对种子萌发及幼苗生长的抑制作用显著高于复盐(P<0.05)。在试验的三个温度下,当NaCl和复盐浓度分别大于0.9%、1.2%时种子萌发均有延迟现象。随着盐浓度的增加种子萌发逐渐延迟,盐浓度是影响种子萌发的关键因素之一。以上结果表明,应用NaCl进行单盐胁迫不能完全反映自然状态下植物对土壤盐分的适应规律,复合盐含有的钾、钙、硅等复合离子可能有助于提高种子的萌发及幼苗生长能力。
     2.盐胁迫对盐节木生理生化特性的影响
     盐节木被处理20d和60d后随着NaCl和复盐浓度增加,其整株幼苗的K~+/Na~+、K~+含量、MDA和PRO含量以及SOD、POD、CAT活性均呈现先升后降的变化趋势,且显著高于对照,当NaCl和复盐浓度为2.7%,其K~+、渗透调节物质含量和酶活性达到最大值。当NaCl和复盐为同一浓度时,随处理时间的延长,Na~+、K~+、Pro、GB含量逐渐升高,但MDA含量、抗氧化酶活性显著降低(P<0.05);在同一盐浓度下,NaCl处理的幼苗K~+、PRO、GB含量及SOD、POD、CAT活性显著低于复盐处理,但MDA含量显著高于复盐处理(P<0.05)。上述结果表明,在盐节木处理20d时,膜质过氧化反应强烈,氧化伤害严重,抗氧化酶活性增强。随着盐胁迫时间的延长,植物表现出一定的适应性;在复盐不同浓度处理下,复盐所含的钾、硅、钙等复合离子,促进了盐节木对K~+的吸收速率,提高K~+/Na~+、PRO和GB含量,同时也增强了抗氧化酶活性,降低细胞膜过氧化程度,提高盐节木的耐盐能力。
     3.HsBADH基因的克隆、序列分析及同源性比较
     采用race技术克隆了盐节木的甜菜碱醛脱氢酶基因,命名为HsBADH。该基因读码框序列全长为1848bp,编码559个氨基酸,预测HsBADH蛋白分子量为6.46KD,等电点为9.26。氨基酸分析表明,该蛋白富含丙氨酸(Alanine,3.75%)、谷氨酸(Glutamic,3.03%)、甘氨酸(Glycine,5.89%)、亮氨酸(Leucine,7.14%)和缬氨酸(Valine,4.82%);对HsBADH蛋白二级结构的分析结果表明,推测的HsBADH蛋白多肽含有26.12%的α-螺旋结构、27.01%的延伸链、36.14%的无规则卷曲。同源性分析表明,HsBADH与藜科植物BADH同源性高达90%以上,与水稻BADH的同源性达到53%。
     本研究对盐节木在复盐条件下的耐盐机理进行了初步的探讨,为能够克服自然条件下的盐害,寻找提高植物耐盐性的途径和方法提供理论依据。同时丰富了植物的耐盐基因库,为进一步利用盐节木BADH基因资源开展作物和林木的遗传改良,提高非耐盐生物的耐盐性奠定了基础。
Soil salinity is the one of the main limitation factors affecting plants growth in the word, and it becomes more and more serious as pollution mounts up, which effect the growth and development of plants. Study on mechanism of salinity tolerance in plants is very important. There are different types of ions in soil. It is different for the effects of ions in soil on seed germination and seedling growth of plants. Most studies concerning effects of salts on seed germination and seedling growth were carried out by using NaCl, which may limit the accuracy of the conclusions, especially under natural conditions. In this work, we have studied the effect of NaCl or mixed salt from the soil on Halocnermum strobilaceum. Firstly, we analyzed the seed germination and early growth of H. strobilaceum, and measured seed accumulated germination rate, seedling length and seedling fresh weight under different temperature and concentrations of salts. Three night-day temperature regimes5~15℃,15~25℃25~35℃, and NaCl and mixed salt solutions at nine concentrations were applied and distilled water was used as the controled solution. Secondly, the effect of salt stress on physiological characteristics of H. strobilaceum were studied using four different salt concentrations,0%,0.9%,2.7%,5.4%of NaCl and mixed salt. The contents of Na+, K+, Glycine Betaine (GB), Proline (Pro), Malonaldehyde (MDA) and activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) were measured. Thirdly, we designed primers according to BADH completed reading frame of Suaeda liaotungensis (AF359282), Spinacia oleracea (AY156694), Atriplex centralasiatic (AY093682), Beta vulgaris(X58463). In order to clone HsBADH, we make objective cDNA to pMD18-T and got the BADH sequence.We blast analyzed HsBADH of cDNA using online database (http://www.ncbi.Nlm.Nih.Gov/) and analyzed the protein isoelectric point and the molecular weight with online tools SOPMA. HsBADH gene sequence of protein cluster was analyzed using DNAMAN.
     The results showed that the night-day temperature range of15~25℃was optimum for seed germination, seedling length and seedling fresh weight. In the three night-day temperatures conditions, seed germination, seedling length and seedling fresh weight were increased firstly and then decreased as the concentration of NaCl and mixed salt increased. Low-concentration of NaCl or mixed salt could promote germination of seeds and growth of seedings. In5~15℃, seed germination, seedling length and seedling fresh weight were much higher than those of control when concentration NaCl or mixed salt was below0.9%or1.5%(P<0.05). Under15~25℃, seed germination, seedling length and seedling fresh weight were much higher than those of control when concentration of NaCl or mixed salt was below0.6%or1.2%(P<0.05). At25~35℃, seed germination, seedling length and seedling fresh weight were much higher than those of control when concentration NaCl or mixed salt was below0.6%or0.9%(P<0.05). Seed germination rate, seedling length and seedling fresh weight were higher in mixed salt than in NaCl (P<0.05). At15~25℃, seed germination, seedling length and seedling fresh weight in mixed salt were23%,27%and28%higher than those in NaCl. This experiment showed that NaCl was more harmful than mixed salt solution to accumulated germination, seedling length and seedling fresh weight of H.Strobilaceum. The accumulated seed germination rates, height and fresh weight of seedlings under NaCl treatment were higher than under mixed salt treatment. As salt concentration increased, seed germination was delayed under5~15℃,15~25℃,25~35℃conditions. So concentration of NaCl and mixed salt was one of key factors to seed germination. All that may lead to different results of salt-tolerant behaviors of plants between natural environments and laboratories. Potassium ion, calcium ion and silicon ion in mixed salt solutions may improve seed germination and promoted early growth of H. strobilaceum seedlings.
     Under NaCl and mixed salt stress, after treatment of20d and60d, K+/Na+and the content of K+, MDA, Pro and antioxidant enzyme activities (SOD, POD, CAT) of H. Strobilaceum first rose and then declined with increased concentration, which were highest when salt concentration was2.7%and then decreased. The content of Na+, K+MDA, Pro all gradually increased, but contents of MDA and antioxidant enzyme activities gradually decreased as prolonged growth time. At the concentration of NaCl and mixed salt, the content of K+, Pro and antioxidant enzyme activities were higher in mixed salt than in NaCl, however, content of MDA was lower in mixed salt than in NaCl. Potassium ion, calcium ion and silicon ion (mixed-irons) from mixed salt may decrease the content of MDA, and enhanced K+, K+/Na+, Pro, GB and antioxidant enzyme activities. The effect potassium ion, calcium ion and silicon ionalleviates salt deficit of H. strobilaceum by preventing the oxidative membrance damge and may be associated with plant osmotic adjustment.
     In this work we isolated cDNAs of betaine aldehyde dehydrogenase from H. Strobilaceum. We named the betaine aldehyde dehydrogenase of H. strobilaceum was HsBADH. The HsBADH DNA contained a completed open reading frame of1848bp, coding for a polypepitde of549amino acids. GenBank landing number is EF4382. we would forecast that HsBADH molecular weight of protein was6.46KD, isoelectric point of9.26. It included Alanine3.75%, Glutamic3.03%, Glycine5.89%, Leucine7.14%and Valine4.82%. HsBADH protein peptide contains26.12%of the alpha helix structure,27.01%of the extension,36.14%of no rules of chain curly. The homology of H. Strobilaceum are90%of Halostachys Caspica, and53%of Rice Latin. So the equivalent of plant evolution degree is similar in the plants evolving process.
     The study could provide primary reference for mixed salt tolerance of H. strobilaceum. We are looking forword to getting new way and method to salt resistance of plant. The HsBADH gene would enrich the resources of salt resistance of plant. It is very important to improve salt tolerance in plants by making good use of gene resoureces of the species.
引文
[1]白杰英,陆一鸣,庞晓斌,李彦舫.盐胁迫短芒大麦甜菜碱醛脱氢酶基因片段的克隆与序列分析[J].内蒙古民族大学学报(自然科学版),2003,15(l):38-41
    [2]蔡蕾,丁同楼,王宝山.施加GA3,ABA,Ca2+对小麦种子萌发在盐胁迫下的影响
    [J].西北植物学报,2004,24(4):583-587
    [3]陈德明.盐渍环境中的植物耐盐性极其影响因素[J].土壤学进展,2008,22(5):22-29
    [4]陈杰.大规模平行测序技术(MPSS)研究进展[J].生物化学与生物物理进展,2004,31(8):761-766
    [5]陈武,陈珈.盐胁迫对玉米根尖质膜上受钙激活的蛋白激酶的影响[J].植物生理学报,1998,4(13):29-42
    [6]陈贻竹.低温对植物叶片中超氧物歧化酶,过氧化氢酶和过氧化物酶水平的影响[J].植物生理学报,2008,14(4):323-328
    [7]陈月艳,孙国荣,李景信.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学,1997,14(2):27-30
    [8]崔杰,李滨胜,史淑芝,等.植物甜菜碱醛脱氢酶基因工程研究进展[J].中国甜菜糖业,2006(1):40-44
    [9]高瑞如.四种藜科植物生物生态学特性初步研究[D].新疆大学,2004:15-19
    [10]高瑞如,赵瑞华,张双风,邸丽珍,黄培祐.盐分和温度对盐节木种子萌发的影响[J].西北植物学报,2007,27(11):2281-2285
    [11]谷江华.盐胁迫下大叶白麻和盐节木种子萌发特性的研究[D].新疆大学,2003:35-39
    [12]关军峰.Ca2+对苹果果实膜透性保护酶活性和保护物质含量的影响[J].植物学通报,1999,16(1):72-74
    [13]郭继娜,张富春.表达谱芯片对灰绿藜和水稻NHX1在转基因拟南芥中表达差异研究[J].新疆农业科学2010,5(7):44-49
    [14]郭艳波,冯浩,吴普特.水分亏缺对番茄生理特性及水分生产效率的影响[J].灌溉排水学报,2008,27(3):52-55
    [15]高玉凤,焦峰,沈巧梅.小麦硅营养与硅肥应用效果研究进展[J].中国农学通报,2009,25(16):48-54
    [16]韩冰,孙锦,郭世荣,金春燕.钙对盐胁迫下黄瓜幼苗抗氧化系统的影响[J].园艺学报,2010,37(12):1937-1943
    [17]胡玮,李京召,张淑香.钾对不同番茄线虫抗性品种生理指标的影响[J].中国农业生态学报,2011,19(1):98-102
    [18]黄艳胜.温度对玉米种子萌发能力的影响[J].牡丹江师范学院学报,2007,1(54):23-27
    [19]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23(1):5-9
    [20]贾恢先,赵曼容,慕勤国.甘肃河西走廊几种典型盐地植物的解剖学研究[J].甘肃农业大学学报,1983,4:64-67
    [21]柯玉琴,潘廷国,艾育芳.盐胁迫对发芽水稻种子质膜透性及物质转化的影响[J].中国农业生态学报,2002,10(4):l0-l2
    [22]孔令韶,马茂华.新疆呼图壁绿洲外缘的盐节木(Halocnemumstrobilaceum)及其群落的生物生态学特征[J].生态学报,1995(4):351-358
    [23]李金耀,张富春,马纪,等.植物分子水平的耐盐机制[J].植物生理学通讯,2003,24(39):715-719
    [24]李利,张希明.温度和盐分对两种盐爪爪属植物种子萌发的影响[J].应用与环境生物学报,2007,3:317-321
    [25]李琳琳,王凤茹,韩建民,董金皋.拟南芥干旱敏感突变体的筛选及其对干旱胁迫的响应[J].河北农业大学学报,2011,3(4):24-28
    [26]李青云,葛会波,胡淑明.盐胁迫下外源钙对草莓内源激素含量的影响[J].西北植物学报,2008,28(3):517-522
    [27]李合生,李晓燕,宋占午,董志贤.植物生理学实验指导[M].北京:高等教育出版社.2000
    [28]利容千,王建波.植物逆境细胞及生理学基础[M].武汉:武汉大学出版社,2002
    [29]梁峥,骆爱铃.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(1):1-8
    [30]刘国花.植物抗盐机理研究进展[J].安徽农业科学,2006,34(23):6111-6112
    [31]刘佳杰,林清芳,李连国,白薇,王茅雁.蒙古沙冬青冷冻胁迫SMARTcDNA文库的构建及序列分析[J].植物遗传资源学报,2011,5(12):48-56
    [32]刘晓麒,曹恩华.脂质过氧化引起的DNA损伤研究进展[J].生物化学与生物物理进展,1994,21(3):218-222
    [33]刘振林,戴思兰.植物甜菜碱醛脱氢酶基因研究进展[J].西北农林科技大学学报,2004,32:104-112
    [34]龙利群,李新荣.土壤微生物结皮对两种一年生植物幼苗存活和生长的影响[J].中国沙漠,2003,23(6):656-660
    [35]龙素霞,路文静,谷俊涛,郭程瑾,肖凯.富集小麦磷胁迫响应基因的cDNA差减文库构建和部分ESTs的功能鉴定[J].华北农学报,2009.2(14):23-27
    [36]卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志,2000,17(4):9-11
    [37]骆爱玲,刘家尧,马德钦.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高[J].科学通报,2000,45(18):1953-1956
    [38]吕湘芳.盐分胁迫下囊果碱蓬的幼苗耐盐能力的研究[D].新疆农业大学,2009:33-34
    [39]马焕成,蒋东明.木本植物耐盐性研究进展[J].西南林学院学报,1998,18(1):52-59
    [40]马淑英,赵明.短时盐胁迫对盐芥和拟南芥抗氧化物酶的影响[J].作物学报,2006,11(3):45-50
    [41]毛善国,王仁雷,周泉澄,周峰,华春,刘青,章琦.盐胁迫下亚精胺对不同耐盐性水稻叶片内游离态多胺含量的影响[J].江苏农业科学,2010,06:59-64
    [42]毛桂莲,郑国琪,郑红艳.外源钙对盐胁迫下枸杞愈伤组织抗氧化酶活性的影响[J].农业科学研,2007,28(2):19-25
    [43]邱栋梁,林鹏.植物耐盐的分子机理研究进展[J].热带亚热带植物学报,2002,10(3):281-292
    [44]翟凤林,曹鸣庆.植物耐盐性及其改良[M].北京:农业出版社,1989,278-288
    [45]任东涛,张承烈.河西走廊不同生态型芦苇可溶性蛋白质总氨基酸和游离氨基酸分析[J].植物学报,2002,34(9):698-704
    [46]沈禹颖.三种盐生境植物叶表的扫描电境观察[J].草业学报,1997,6(3):32-36
    [47]舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递[J].生物工程进展,2000,20(3):3-6
    [48]孙建昌,王兴盛,杨建龙.植物耐盐性研究进展[J].干旱地区农业研究,2008,1(26):226-230
    [49]孙兰菊,岳国峰.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28-31
    [50]孙小芳,江海东,林峥,曹卫星.NaCl胁迫下禾本科草坪草和牧草萌发特性的研究[J].草地学报,2000,6(4):23-28
    [51]孙国荣,陈月艳.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化[J].植物研究,1999,19(4):445-451.
    [52]谈建康,安树青.钠盐胁迫对小麦叶片核酸损伤和多胺积累的影响[J].农业环境科学学报,2004,23(3):428-431
    [53]王爱国.植物的氧代谢[M].植物生理与分子生物学.北京:科学出版社,1998:366-389
    [54]王国坤,田风霞,宫江峰,王玮.泛素/26S蛋白酶体系统介导的细胞程序化死亡[J].生命科学,2011,5(1):33-42
    [55]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465
    [56]汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用[J].植物生理学报1999,16(4):429-432
    [57]王素平,郭世荣,李璟.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报,2006,17(10):1883-1888
    [58]王文卿,叶庆华,王笑梅,林鹏.盐胁迫对木榄幼苗各器官热值,能量积累及分配的影响[J].应用生态学报,2008,12(l):8-12
    [59]王学文,蔺彩虹,李小峰,王文军,唐学军,史茂才.NaHCO3胁迫对大叶紫花苜蓿生理特征的影响[J].草业科学,2007,24(2):26-29
    [60]王志强,王丰峰,林同保.钙离子对盐胁迫小麦幼苗脯氨酸含量及其相关酶活性的影响[J].河南农业大学学报,2009:43(5):45-49
    [61]谢旗.植物ERAD及其耐盐胁迫机制的研究[J].细胞研究,2010,7(5):42-49
    [62]许样明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学,2000,6(4):379-387
    [63]薛高峰,宋阿林,孙万春,李兆君,范分良,梁永超.硅对水稻叶片抗氧化酶活性的影响及其白叶枯病抗性的关系[J].植物营养与肥料学报,2010,3:45-48
    [64]阎顺国,沈禹颖.生态因子对碱茅种子萌发期耐盐性影响的数量分析[J].植物生态学报,1996,20(5):414-422
    [65]杨明峰.NaCl和KCl胁迫对碱蓬根和地上部分生长的效应[J].山东师范大学学报(自然科学版),2002,17(1):68-72
    [66]杨淑慎,高俊凤,李学俊.植物叶片的衰老[J].西北植物学报,2001,21(6):1271-1277
    [67]杨淑慎,高俊凤.活性氧自由基与植物的衰老[J].西北植物学报,2001,21(2):215-220
    [68]杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305
    [69]杨秀玲,郁继华,李雅佳,李建建,张韵.NaCI胁迫对黄瓜种子萌发及幼苗生长的影响[J].甘肃农业大学学报,2004,39(1):6-9
    [70]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2
    [71]余玲.虎尾草种子萌发特性的研究[J].草业科学,1999,16(3):51-54
    [72]鱼小军,师尚礼,龙瑞军,王芳,陈本建.生态条件对种子萌发影响研究进展[J].草业科学,2010,23(10):44-49
    [73]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,40(9),1-3
    [74]曾幼玲.盐爪爪和盐穗木的耐盐生理生化及耐盐的相关基因克隆与表达分析
    [D].新疆农业大学,2004:47-48
    [75]张海燕,范哲峰.运城盐湖十种耐盐植物体内无机及有机溶质含量的比较研究[J].生态学报,2002,3:352-358
    [76]张红香,周道玮.种子发芽生态研究[J].草地学报,2009,1(17):131-133
    [77]张建锋,孙启祥.盐胁迫对柳树新无性系苗木生长和土壤酶活性的影响[J].水土保持学报,2005,19(3):125-129
    [78]张敏,蔡瑞国,李慧芝,李建敏,戴忠民,王振林,尹燕枰.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内原激素的变化[J].生态学报,2008,28(1):310-320
    [79]张勇,薛林贵,高天鹏,晋玲,安黎哲.荒漠植物种子萌发研究进展[J].中国沙漠,2005,25(1):106-112
    [80]张有福,蔺海明,肖雯,陈春艳,贾恢先,陈拓.盐胁迫下不同树龄枸杞各器官的盐离子分布[J].西北植物学报,2006,26(1):68-72
    [81]张玉鑫,刘芳,康恩祥,陈年来NaCl胁迫下甜瓜幼苗离子吸收特性研究[J].植物营养与肥料学报,2008,14(3):533-539
    [82]张志勇,王清连,李召虎,段留生,田晓莉.缺钾对棉花幼苗根系生长的影响及其生理机制[J].作物学报,2009,35(4):718-723
    [83]张古文,朱月林,刘正鲁,魏国平,胡春梅.Ca(NO3)2胁迫对嫁接番茄生长、抗氧化酶活性和活性氧代谢的影响[J].植物营养与肥料学报,2008,14(3):234-239
    [84]郑青松,刘玲,刘友良.植物耐盐机理研究进展[J].植物生理与分子生物学学报,2003,29(6):585-588
    [85]赵晨阳,郑荣梁.DNA氧化性损伤与端粒缩短[J].生物化学与生物物理进展,2000,27(4):351-354
    [86]赵可夫.植物抗盐生理[M].北京:中国科技出版社,1993,105-106
    [87]郑世英,陈吉美.植物的抗盐生理[J].德州高专学报,2000,41(6):39-40
    [88]周国安,关荣霞,李英慧,常汝镇,邱丽娟.异源表达一个大豆Na+/H+逆向转运蛋白基因GmNHX2提高拟南芥的耐盐性[J].科学通报2009,6(17):43-49
    [89]周建国.衍生于大麦的LEA基因通过细胞膜片保护授予转基因水稻的脱水耐性[J].作物育种信息,2003,12(7):24-32
    [90]朱新广,张其德NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338
    [91]Abebe T, Guenzi AC, Martin B, Cushman JC. Tolerance of mannitol-accu mulating transgenic wheat to water stress and salinity[J]. Plant physiol,2003,131:1748-1755
    [92]Ahmed SM. Vapour toxicity and repellency of some essential pests[J]. Ind-ian Per-fume,1996,30:273-278
    [93]Aj M, Kan M. Ungar IA. Seed germination and dormancy of Polygonum aviculare as influenced by salinity, temperature and gibberellin acid[J]. Seed Sci&Technol,2007,26:107-117
    [94]Apel K, Hirt H. Reactive oxygen species:metabolism oxidative stress, and singal transduction[J]. Annu Rev Plant Physiol Plant Mol Biol,2004,55:331-399
    [95]Arakawa K, Takabe T, Sugiyama T. Purifieation of betainealdehyd dehydro gen-ase from spinach leaves and preparation of its anti-body[J]. Bioehem.2007,101:1485-1488
    [96]Asada K. The water cycle in chloroplasts scavenging of active oxygen and dissipation of excess photons[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    [97]Attia H, Karray N, Rabhi M. Salt-imposed restrictions on the uptake of macroeleents by roots of Arabidopsis thaliana[J].Acta Plant Physiology,2008,30:723-727
    [98]Bates LS, Waldren RP. Isolation of spinach leaf peroxisomes sucrose solut-ion by percoll density gradient centrifugation[J]. Journal of Plan Soil,2003,39:205-217
    [99]Chen XJ, Wang JL, Zhao YX. The research on cDNA fragment of Betaine Aldehyde Dehydrogenase (BADH) gene in Atriplex centralasiatica [J]. Acta Phytophysiol-ogical Sinica,2001,27(4):309-312
    [100]Chpamna VJ. Salt masrhes and salt deserst of the word[M].2004. NewJersey: Stechert-Macmillna, Pennsuaken.
    [101]Delauney AJ, Verma DP. Proline biosynthesis and osmoregulation in plants[J]. Plant,1993,4(3):215-223
    [102]Deshnium P, Los DA, Hayashill. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress[J]. Plant Mol Bio.1995,29:897-907
    [103]Drew MC. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root syst-em and the shoot in barley[J]. New Phytol,1995,75:479-490
    [104]Dudeek AE, Peacoek CH. Effect of salinity on seashore grasses[J]. Agron,1995,77:47-54
    [105]Erieson MC, Alfinito SH. Proteins produced during salt stress in tobacco cell culture. Plant Physiol,2004,74:506-509
    [106]Flagella Z, Campanile RG, Ronga G. The maintenance of transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance [J]. Plant Science,2006,118:127-133
    [107]Flowers TJ. The effect of sodium chloride on enzyme activities from four halohphyte species of Chenopodiaceae[J].Plant Science,1972.11:1881-1886
    [108]Gao X, Zou GH, Wang L, Zhang F. Silicon decrease transpiration rate and conductance from stomata of maize plant[J]. Plant Nutriention,2006,29:1637-1647
    [109]Ghassemi F, Jakeman AJ, Nix HA. Salinisation of land and water resources CAB internation[J]. Plant Science,2005,12:45-49
    [110]Gossett DR, Banks SW, Millhollon EP, Lucas MC. Antioxidant responses to NaCl stress in control and an NaCl-tolerant cotton cell line grown in the presence of paraquat and exogenous glutathione[J]. Plant physiol,1996,112:803-809
    [111]Guo BH, Zhang YM, Li HJ. Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase[J]. Acta Bot Sin,2008,42:279-283
    [112]Guo Y, Zhang L, Xiao G. Expression of betaine aldyhyde dehydrogenase gene and salinity tolerence in rice transgenic plant[J]. Science China,2007,27:151-155
    [113]Gutterman Y. Seed germination in desert plants[J]. Berlin Springer2006,12:343-346
    [114]Hai LP. A gene that complements yeast salt stress sensitive mutants is indeed by NaCl and acid[J]. Plant Physiology,1999,124:941-948
    [115]Hamdy A. Salinity irrigation assessment and managment techniques[J]. Inc. New York.1996,12:147-180
    [116]Hang L, Grad H. A root-specific kinase homolog induced by dehydration, ABA and NaCl[J]. Plant Physiology,1995,23:37-43
    [117]Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K. Molecular cloning and functional characterizat-ion of two kinds of betaine aldehyde dehydrogenase in betaine accumulating mangrove Avicenniamarine (Forsk) vierh[J]. Plant Mol Bio,2005,45:353-363
    [118]Hidenori H. Transformation with the coda gene for choline oxidase:accumulate-ion of glyeine betaine and enhance tolerance to salt and stress[J]. Plant Physiol,2007,12(1):133-142
    [119]Hodge A. The plastic plant:root responses to heterogeneous supplies of nutri-ents[J]. New Phytol,2004,162:9-24
    [120]Huang ZY, Yu C. Isolation of spinach leaf peroxisomes in0.25molar sucrose solution by percoll densitygradient centrifugation[J]. Plant Physiol,2003,70(4):1210-1222
    [121]Jing RL, Chang XP, Hu RH, Dong YC. A relationship between betaine metabol-ism and drought resistance of winter wheat seedling under changed watering[J]. Acta Agronomica Sinica,1999,25(4):494-498
    [122]Juan A. Pujol, Jose F. Recovery of germination from different osmotic conditions by four halophytes from southeastern Spain[J]. Annals of Botany,2000,85:279-286
    [123]Julie G, Johanson M, John M. Uptake and distribution of sodium and potassium by seedlings [J]. Plant Physial,2011,73:1532-1587
    [124]Katembe WJ, Ungar IA, John PM. Effect of saliniy on gemrination and seedling growth of two Atriplex species[J]. Ann. Bot,1998,12:167-175
    [125]Kawasaki Hayashill. Transformation of Oryza Sativa with a gene for choline oxidase enhances tolerance to salt stress[J]. Plant Mol Bio,2011,29:897-907
    [126]Khan MA, Ungar IA. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions[J]. Am Bot,1997:279-283
    [127]Khedr AH, Abbas T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T. An isozyme of betaine aldehyde dehydrogenase in barley[J]. Plant Cell Physiol,2001,42:1088-1092
    [128]Kulieva FB, Shanina ZB, Strogonov BP. Effect of high sodium chloride content rations on the invitro cell division of crop is capillaris[J]. Fiziol Rast,1995,22:131-135
    [129]Kishor.Overexpression of pyrroline-5-carboxylate synthetase increases proline production confers osmotolerance in transgenic plants[J]. Plant Physiol,1995, 108:1387-1394
    [130]Konstantinova T, Parvanova D, Atanassov A, Djilianov D. Freezing tolerant tobacco, transformed to accumulate oxygenization[J]. Plant Sci,2008,163:157-164
    [131]Kuiper DJ, Schuit M. Actual cytokine in contention in plant tissue as an indicator for salt resistance in cereals[J]. Plant Soil,1990,123:243-250
    [132]Levitt J. Response of plants to environmental stress in water, salt and other stress[M]. New York:Academy Press,1990:102-106
    [133]Li QL, Gao XR, Yu XH. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda and its use in improved tolerance to salinity in transgenic tobacco[J]. Biotechnology Letters,2003,25(17):1431-1436
    [134]Li YH, Wang W, Ma Q, Zou Q. The osmotic adjustment and photosynthesis of wheat cultivar hanfeng with high yield, drought resistance under drought stress[J]. Acta Agronomica Sinica,2003,29(5):759-764
    [135]Liang JS, Zhang JH, Cao XZ. Effect of changes of temperature around roots in relation to water uptake by roots and leaf transpiration[J]. Acta Botanica Sinica,2005,40(12):1152-1158
    [136]Lijing L. Plant ERAD mechanism by progress under salt stress[J]. Cell Research,2011,6:12-26
    [137]Lilius T. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J]. Biotechnology,2010,14:177-180
    [138]Liphs N, Waisel Y. Adaptation of plants to saline environments:salt excretion and glandular structure [J]. Tasks for Vegetation Science,1992,5(4):45-54
    [139]Liu J, Zhu JK. A Caleium sensor homologue required for plant salt tolerance[J]. Science,1998,280:1943-1945
    [140]Luo AL, Liu JY, Ma DQ, Wang XC, Liang Z. Relationship between drought resistance and betaine aldehyde dehydrogenase in the shoots of different genotypic wheat and sorghum[J]. Acta Botanica Sinica,2006,43(1):108-110
    [141]Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JL, Damsz B, Narasimhan ML, Hasegaw PM, Joly RJ, Bressan RA. Does proline accumulation play an active role in stress indeed growth[J]. Plant,2002,31:699-712
    [142]Mani S, Cotte B, Montagu M, Verbr N. Altered levels of proline dehydrogenase-cause hypersensitivity to proline and its analogs in Arabidopsis[J].Plant Physiol,2009,128:73-83
    [143]Mccue KF, Hanson AD. Drought and salt tolerance:towards understanding and application[J]. Biotechnology,2000,8:358-362
    [144]Melissa A. Exidence that abaxial leaf glands are the sites of salt seeretion in leaves of the mangrove Avieennia Marine(Forsk)Nierh[J]. New phytol,1992,120:1-7
    [145]Michelet B, Boutry M. The plasma membrane H+-ATPase:A highly regulated enzyme with multiple physiological functions[J]. Plant Physiol,1995,108(1):1-6
    [146]Miftakhova F, Burasheva GS, Abilov ZA, Ahmad VU and Zahid M. Coumarins from the aerial part of Halocnemum strobilaceum[J].Fitoterapia,2005,72(3):319-321
    [147]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci,2002,7:405-410
    [148]Moghaeb EA, Saneoka H, Fujita K. Effect of salinity on osmotic adjust-ment,glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants Salicomia and Suaeda[J].Plant Sci,2004,166:1345-1349
    [149]Moran JF, Becana M. Drought induces oxidative stress in plants[J], Planta,2010,94:346-352
    [150]Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment,2002,25:239-250
    [151]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant Cell Environ,1993,16:15-24
    [152]Nakamura T, Nomura M, Mori H. An isozyme of betaine aldehyde dehy drogenase in barley[J]. Plant Cell Physiol,2001,42(10):1088-1092
    [153]Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K. Toxicity of free proline revealed T-DNA tagged mutant deficient in proline dehydrog-enase[J].PlantCell Physiol,2003,44:541-548
    [154]Noctor G, Veljvoic-Jovnovic S, Foyer H. Peroxide processing in photosynthesis: antioxidant coupling and redox signalling[J]. Philosophical Transactions of the Royal Society of London.2008,355:1465-1475
    [155]Oish H, Ebina M. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia[J]. Plant Physiol,2005,162:1077-1086
    [156]Papini A, Trippanera GB, Maggini F, Filigheddu R, Biondi E. New insights in Salicornia[J]. allied genera Chenopodiaceae inferred from DNA sequence data[J]. Plant Biosystems,2007,138(3):215-233
    [157]Rengel Z, Damwn PM. Grops and genotypes differ in efficiency of potas-sium upatke and use[J]. Physiology Plantarum,2008,133:624-636
    [158]Roberto A, Carlosa J. Rapid purification and properties of betaine aldehyde dehydrogenase from pseudomon[J]. Bacterial,1999,181:1292-1300
    [159]Scott BJ, Robson AD. The distribution of Mg, P and K in the split roots of subterranean clover[J]. Ann Bot,1991,67:251-256
    [160]Seki. Effects of salinity, temperature and their interaction on the germination percentage and seedling growth of Leymus chinensis [J]. Acta Ecologica Sinica,2010,28(10):4710-4717
    [161]Shinji K, Chris B, Michael D, Hong W, Susan B, Kiyoshi K, David G, Hans J. Gene Expression profiles during the initial phase of salt stress in rice[J]. The plant cell,2001,13:889-905
    [162]Simon KT. A caffeic acid ester from Halocnemum strobilaceum [J]. Phyto-chemistry,2009,51(3):465-467
    [163]Spickff CM, Smimoff NRG. An in viov Nuelear Magnetain vestig ation of iontranspory in maize and spartina angliea roots dring exposed to high salt co-ncentration[J]. Plant Physiology,1993,1102:629-638
    [164]Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal catalyzed reaction[J]. Annu Rev Biochem,1993,62: 797-821
    [165]Tattini MR, Gucci MA, Coradeschi C. Gas exchange and ion content in halophytes plant during salinity stress and subsequent relief[J]. Physiol Plant,1995,95:203-210
    [166]Tobe K, Zhang LP, Omasa K. Alleviatory effects of calcium on the toxicity of sodium, potassium and magnesium chlorides to seed germination in three non-halophytes[J]. Seed Science Research,2003,13:47-54
    [167]Tryon PR, Chap in FS. Temperature control over root growth and root biomass in taiga forest trees[J]. Canadian Journal of Forest Research,2007,13:827-833
    [168]Vakhmistrov DB, Natalia I, Tikhaya D, Natalia E. Mishustina. Characterization and comparison of membrane-bound Na, K, Mg-ATPase from tissues of Hor-deumvulgare L. and Halocnemum strobilaceum[J].Plant Physiology,1992,55(2):155-160
    [169]Voikmar KM, Hu Y, Steppuhn H. Physiological responses of plant salinity[J]. Plant Science,1998,78(1):19-27
    [170]Weber DJ, Rasmussen H. Electron analyses of salt distribution in the halophytes Salicornia[J]. Planta,2007,55:1516-1523
    [171]Weigle P, Weretilinyk EA. Betaine aldehyde oxidation by Spinach chloroplast [J]. Plant Physiol,1996,82:753-759
    [172]Weretilnyk EA, Hanson AD. Molecular cloning of a plant betaine aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought[J]. Proc Nat. Acad Sci USA,1990,87:2745-2749
    [173]Whlel Y. Biology of haio Phytes. AeademiePress[J].1972:40
    [174]Xiaoshan W, Zhenwu W, Dalin L, Guoqi Z. Effects of NaCl and silicon on activities of antioxidantive enzymes in roots, shoots and leaves of Alfalfa[J]. Biotechnology,2011,10(4):545-549
    [175]Yancey PH. Living with water stress:evolution of oxidation to system[J]. Science,2002,227:1214-1222
    [176]Ye CJ, Wu SW, Yang QK, Ma CZ, Yang GS, Wang B. Cloning, sequencing and salt induced expression of PEAMT and BADH in oilseed rape (Brassicanaps)[J].DNA Seq,2008,16:364-371
    [177]Yi LP, Ma J, Li Y. Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stages[J]. Science in China SeriesD-Earth Sciences,2007,50(1):97-106
    [178]Yin ZF,He ZX. Physiological characteristic changes during the process of seed germination and seeding growth of Alfalfa under the NaCl stress[J]. Journal of Plant Resources and Environment,2006,(1):16-19
    [179]Yu AL, Xu JH, Zhou H, Zhang MQ, Chen RK. Cloning and sequencing of BADH gene from maize[J]. Mole Plant Breed,2004,2(3):365-368
    [180]Zhang JZ, Creelman RA, Zhu JK. From laboratory to field using information from Arabidopsis thaliana to engineer salt, cold, and drought tolerance in crops[J]. Plant Physiol,135:615-621
    [181]Zhao KF. Effeet of salinity on the contents of monocotyledonous halophytes and their contribution to osmotic adjustment[J]. Acta Botanica Sinica,1999,41(12):1287-1292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700