用户名: 密码: 验证码:
千日红酪氨酸酶抑制剂的分离纯化及其抑制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪氨酸酶是一种广泛存在于生物体内的、催化黑色素合成的关键限速酶,与生物体的重要生理过程密切关系,其活性的异常过量表达既可导致人体的色素沉着性疾病产生,也是导致果蔬褐变的主要原因。本文从千日红中提取和分离酪氨酸酶活性抑制成分并对其抑制机理展开深入探讨,获得了千日红具有美白祛斑作用的分子基础,而且揭示了千日红来源酪氨酸酶抑制剂的抑制作用的分子机制,为天然植物源酪氨酸酶抑制剂的开发提供基础数据和理论依据。主要内容及结果如下:
     一、植物源酪氨酸酶抑制剂的提取和分离
     在单因素实验研究的基础上,采用用响应曲面法(RSM)优化千日红的乙醇浸提条件,获得了优化的提取条件:提取温度为80℃、提取时间为3h,液料比为60mL/g(v/m),乙醇浓度为50%(v/v),在此条件下,千日红乙醇粗提物对酪氨酸酶的抑制率为(53.86±2.11)%。
     通过追踪分离产物的酪氨酸酶抑制活性,应用溶剂萃取、柱层析、制备色谱等分离到七种单一化合物,并采用核磁共振、质谱和单晶X-射线衍射等鉴定这些化合物的分子结构;分析千日红来源的化合物的酪氨酸酶抑制活性发现,香草酸、麦黄酮、对羟基肉桂酸和对甲氧基肉桂酸对酪氨酸酶的半抑制浓度(IC50)分别为510.01μg/mL、454.86μg/mL、15.82μg/mL和20.37μg/mL。
     二、植物源酪氨酸酶抑制剂的分子作用抑制机理研究
     应用酶动力学、紫外-可见光光谱分析、荧光光谱分析等探讨了千日红中分离纯化获得的香草酸、麦黄酮和两种肉桂酸衍生物对酪氨酸酶的抑制机理,构建了抑制剂与酪氨酸酶相互作用的分子对接结构模型。香草酸与氨基酸残基发生分子间相互作用酪氨酸酶结合在活性中心,与酪氨酸酶形成的复合体比酪氨酸酶单酚底物(L-酪氨酸)和二酚底物(L-多巴)与酶形成的复合体更加稳定,通过混合型抑制机理延长了酪氨酸酶催化单酚底物的迟滞时间,降低了酪氨酸酶催化单酚底物和二酚底物的反应初速度。
     麦黄酮对酪氨酸酶的荧光猝灭为静态猝灭,其通过与酪氨酸酶的氨基酸残基形成氢键和疏水作用在活性中心形成热力学稳定的麦黄酮-酪氨酸酶复合体结构,使酶催化反应的迟滞时间延长并降低酶催化反应初速度,对酪氨酸酶表现出以非竞争性抑制占主导地位的混合型抑制机理。
     对羟基肉桂酸和对甲氧基肉桂酸可以通过氢键和疏水作用竞争性地占据L-酪氨酸在酪氨酸酶活性中心的结合位置,而且,对羟基肉桂酸上的-OH既能螯合Cu~(2+)又能与关键氨基酸His-57形成氢键,而对甲氧基肉桂酸的-OCH_3上则不能,因此,对羟基肉桂酸可以抑制酪氨酸酶单酚催化活性和二酚催化活性,对甲氧基肉桂酸则只能抑制单酚催化活性,而且,酪氨酸酶可以催化对羟基肉桂酸生成具有荧光行为的醌类物质。
Tyrosinase is a rate-limiting oxidoreductase and widely exists in biosystem. It plays asignificant role in physiological functions. The excessive expression of tyrosinase may causehyperpigmentation diseases in body and unfavorable browning in food products. In thepresent study, the tyrosinase inhibitors were extracted from Gomphrena globosa (GG) and themechanism of tyrosinase inhibition was further discussed, which could reveal thedehyperpigmentation function of GG. In addition, the obtained results would provide newevidence to elucidate the unique molecular mechanism of GG and provide basic informationand theoretical basis for the exploration of tyrosinase inhibitors from natural plants. Asfollows, it is most content in this paper:
     The extraction and separation of tyrosinase inhibitors from natural plants
     Based on the results of single factor experiment, the extraction conditions was optimizedby the response surface methodology (RSM). The best extraction condition was80℃,withdraws for3hours, ratio of liquid to material60:1(v/m), as well as the concentration ofethanol50%. Under the above conditions, the inhibition rate of tyrosinase by the crudeextract of GG was (53.86±2.11)%.
     Following the biological effects to the tyrosinase, seven kinds of constitutes wereobtained by means of solvent extraction, column chromatography and preparativechromatography. The chemical structures were identified to be VA (VA), tricin,p-hydroxy-cinnamic acid (HCA), and p-methoxycinnamic acid (MCA) by modern analysistechniques such as nuclear magnetic resonance, mass spectrometry and X-ray single crystaldiffraction. The IC50values of VA, tricin, HCA and MCA were510.01μg/mL,454.86μg/mL,15.82μg/mL, and20.37μg/mL, respectively.
     The inhibitory mechanisms of inhibitors from natural plants on tyrosinase
     The molecular mechanisms of inhibitors from Gomphrena globosa (VA, HCA, tricin,and MCA) on tyrosinase were elucidated by means of enzyme kinetics and spectroscopytechniques, and molecular docking was used for interaction model establishment betweeninhibitors and tyrosianse.
     VA could interact with residues in the entrance to the dicopper center. VA could form a more stable complex with tyrosinase than the complexes for substrates. Moreover, VA couldprolong the lag time of tyrosinase for oxidation of L-tyrosine and decrease the initial reactionvelocity of monophenolase and diphenolase of tyrosinase by a mixed type of inhibitorymechanism.
     Quenching mechanism of tyrosinase by tricin was static mechanism. And tricin couldform complexes with tyrosinase by forming hydrogen bonds with residues near the catalyticcore domain and hydrophobic associations with residues in the hydrophobic pocket oftyrosinase. And these interactions extended the lag time of tyrosinase for oxidation ofL-tyrosine and decreased the initial reaction velocity of monophenolase and diphenolase oftyrosinase. Tricin behaved as a mixed-type inhibitory mechanism, in which thenon-competitive mechanism played the dominant roles.
     HCA and MCA could occupy the binding sites of substrates in the active center oftyrosinase by forming hydrogen bonds and hydrophobic force with residues of tyrosinaseactive center. Moreover,-OH of HCA could coordinate to Cu~(2+)and form hydrogen bondswith His-57, whereas-OCH_3of MAC couldn’t. As a result, HCA could inhibit bothmonophenolase and diphenolase activity of tyrosinase, and MCA could only function asmonophenolase inhibitor of tyrosinase. In addition, HCA could be oxidized by tyrosinase tocorresponding quinone slowly.
引文
[1] Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treathyperpigmentation[J]. Pigment cell research.2003,16:101-110.
    [2]王芳.桑叶中酪氨酸酶抑制成分的研究[D].杭州:浙江工商大学;2006.
    [3] Sussman AS. The functions of tyrosinase in insects[J]. The Quarterly Review of Biology.1949,24:328-341.
    [4] Fitzpatrick TB, Becker Jr S, Lerner AB, et al. Tyrosinase in human skin: demonstration ofits presence and of its role in human melanin formation[J]. Science (New York, NY).1950,112:223.
    [5] Shimao K. Partial purification and kinetic studies of mammalian tyrosinase[J].Biochimica et biophysica acta.1962,62:205-215.
    [6] Pomerantz SH. Separation, purification, and properties of two tyrosinases from hamstermelanoma[J]. The Journal of biological chemistry.1963,238:2351.
    [7] Lerch K. Neurospora tyrosinase: structural, spectroscopic and catalytic properties[J].Molecular and Cellular Biochemistry.1983,52:125-138.
    [8] Matoba Y, Kumagai T, Yamamoto A, et al. Crystallographic evidence that the dinuclearcopper center of tyrosinase is flexible during catalysis[J]. Journal of Biological Chemistry.2006,281:8981.
    [9] Sendovski M, Kanteev M, Ben-Yosef VS, et al. First structures of an active bacterialtyrosinase reveal copper plasticity[J]. Journal of Molecular Biology.2010,405:227-237.
    [10]陈清西,宋康康.酪氨酸酶的研究进展[J].厦门大学学报(自然科学版).2006,45:731-737.
    [11]丁大鹏.酪氨酸酶抑制剂的研究进展[J].实用医学杂志2005,21:1364-1366.
    [12] Seo SY, Sharma VK, Sharma N. Mushroom tyrosinase: recent prospects[J]. Journal ofagricultural and food chemistry.2003,51:2837-2853.
    [13]宋康康.抑制剂对酪氨酸酶的效应及其对黑色素生成调控的研究[D].厦门:厦门大学;2007.
    [14] Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases[J].Chemical reviews.1996,96:2563-2606.
    [15] Gerdemann C, Eicken C, Krebs B. The crystal structure of catechol oxidase: new insightinto the function of type-3copper proteins[J]. Accounts of chemical research.2002,35:183-191.
    [16] Klabunde T, Eicken C, Sacchettini JC, et al. Crystal structure of a plant catechol oxidasecontaining a dicopper center[J]. Nature Structural&Molecular Biology.1998,5:1084-1090.
    [17] Andrawis A, Kahn V. Effect of methimazole on the activity of mushroom tyrosinase[J].Biochemical Journal.1986,235:91.
    [18] Decker H, Schweikardt T, Nillius D, et al. Similar enzyme activation and catalysis inhemocyanins and tyrosinases[J]. Gene.2007,398:183-191.
    [19] Decker H, Schweikardt T, Tuczek F. The first crystal structure of tyrosinase: Allquestions answered?[J]. Angewandte Chemie International Edition.2006,45:4546-4550.
    [20] Granata A, Monzani E, Bubacco L, et al. Mechanistic Insight into the Activity ofTyrosinase from Variable-Temperature Studies in an Aqueous/Organic Solvent[J].Chemistry-A European Journal.2006,12:2504-2514.
    [21]王娟,马慧群.皮肤黑素的代谢及其影响因素[J].基础医学与临床.2011,31:1293-1297.
    [22]何学民,秦德安.黑色素与酪氨酸酶[J].中国化妆品.1994,3:32-33.
    [23]张廷红,葛长海,万海清.酪氨酸酶的应用研究进展[J].沿海企业与科技.2005,2:161-163.
    [24]赵玲玲,张理平.抑制酪氨酸酶药物研究新进展[J].海峡药学.2009,21:124-126.
    [25] Xu Y, Stokes AH, Roskoski Jr R, et al. Dopamine, in the presence of tyrosinase,covalently modifies and inactivates tyrosine hydroxylase[J]. Journal of neuroscience research.1998,54:691-697.
    [26]孙爱兰,谭天伟,朱中伟.谷胱甘肽和壳聚糖美白活性的研究[J].日用化学工业.2004,34270-271.
    [27] Palumbo A, d'Ischia M, Misuraca G, et al. Mechanism of inhibition of melanogenesis byhydroquinone[J]. Biochimica et Biophysica Acta (BBA)-General Subjects.1991,1073:85-90.
    [28] Petit L, Piérard GE. Skin-lightening products revisited[J]. International journal ofcosmetic science.2003,25:169-181.
    [29]乔方,黄晓钰,余海虎.果蔬酶促褐变机理及其抑制方法研究进展[J].安徽农业科学.2007,35:7406-7408
    [30]王相友,王健,朱继英等.双孢蘑菇酶促褐变特性及褐变的控制[J].食品科学.2011,32:318-322.
    [31] Matsuda S, Shibayama H, Hisama M, et al. Inhibitory effects of a novel ascorbicderivative, disodium isostearyl2-OL-ascorbyl phosphate on melanogenesis[J]. Chemical&pharmaceutical bulletin.2008,56:292.
    [32]陈效兰,雷钢铁.柠檬酸在食品工业中的应用[J].食品研究与开发.2000,21:6-7.
    [33]陶文沂,孙微,许正宏等.曲酸在食品中的应用[J].中国食品添加剂.2000,2:26-31.
    [34]曹荣,薛长湖,徐丽敏等.复合保鲜剂在对虾保鲜及防黑变中的应用[J].农业工程学报.2009,25:294-298.
    [35]郝云彬,郑斌,杨会成等.多酚氧化酶抑制剂在海捕虾防黑变中的应用[J].食品研究与开发.2011,32:133-136.
    [36]赵娇,戚晓玉,尤瑜敏等.日本对虾的酚氧化酶特性研究[J].上海水产大学学报.1997,6:157-165.
    [37] Iyengar R, Bohmont CW, Mcevily AJ.4-Hexylresorcinol and prevention of shrimpblackspot: residual analyses[J]. Journal of food composition and analysis.1991,4:148-157.
    [38]郑丹,段青源,钟惠英等.甲壳类酪氨酸酶促褐变的研究进展[J].水产科学.2008,27:421-426.
    [39]孟凤霞,高希武,张岚等.昆虫酪氨酸酶的研究进展[J].中国媒介生物学及控制杂志.2004,15:496-499.
    [40]石启田.银杏酚对菜青虫的拒食活性研究[J].农药研究与应用.2008,12:31-34.
    [41] Sugimoto K, Nomura K, Nishimura T, et al. Syntheses of[alpha]-arbutin-[alpha]-glycosides and their inhibitory effects on human tyrosinase[J]. Journalof bioscience and bioengineering.2005,99:272-276.
    [42] Yi W, Cao R, Wen H, et al. Synthesis and biological evaluation of helicid analogues asmushroom tyrosinase inhibitors[J]. Bioorganic&medicinal chemistry letters.2008,18:6490-6493.
    [43] Nishida J, Gao H, Kawabata J. Synthesis and evaluation of20,40,60-trihydroxychalcones as a new class of tyrosinase inhibitors[J]. Bioorg Med Chem.2007,15:2396-2402.
    [44] Sonmez F, Sevmezler S, Atahan A, et al. Evaluation of new chalcone derivatives aspolyphenol oxidase inhibitors[J]. Bioorganic&medicinal chemistry letters.2011,21:7479-7482.
    [45] Khan KM, Maharvi GM, Khan MTH, et al. Tetraketones: A new class of tyrosinaseinhibitors[J]. Bioorganic&medicinal chemistry.2006,14:344-351.
    [46] Song S, Lee H, Jin Y, et al. Syntheses of hydroxy substituted2-phenyl-naphthalenes asinhibitors of tyrosinase[J]. Bioorganic&medicinal chemistry letters.2007,17:461-464.
    [47] Schurink M, van Berkel WJH, Wichers HJ, et al. Novel peptides with tyrosinaseinhibitory activity[J]. Peptides.2007,28:485-495.
    [48] Li SB, Nie HL, Zhang HT, et al. Kinetic Evaluation of Aminoethylisothiourea onMushroom Tyrosinase Activity[J]. Applied biochemistry and biotechnology.2010,162:641-653.
    [49]杜凌云,咸小丹,岳巧秀.奥扎格雷对蘑菇酪氨酸酶的抑制动力学[J].常州工程职业技术学院学报.2010,3:42-47.
    [50] Satooka H, Kubo I. Effects of Thymol on Mushroom Tyrosinase-Catalyzed MelaninFormation[J]. Journal of agricultural and food chemistry.2011,59:8908-8914.
    [51] Qiu L, Chen QX, Wang Q, et al. Irreversibly inhibitory kinetics of3,5-dihydroxyphenyldecanoate on mushroom (Agaricus bisporus) tyrosinase[J]. Bioorganic&medicinal chemistry.2005,13:6206-6211.
    [52]苏明星,王伟,唐建阳.庚酸-34-二羟基苯酯和34-二羟基苯甲酸己酯对蘑菇酪氨酸酶抑制效应[J].中国食品学报2011,11:42-46.
    [53] Casa ola-Martí GM, Khan MTH, Marrero-Ponce Y, et al. New tyrosinase inhibitorsselected by atomic linear indices-based classification models[J]. Bioorganic&medicinalchemistry letters.2006,16:324-330.
    [54] Casa ola-Martín GM, Marrero-Ponce Y, Khan MTH, et al. Dragon method for findingnovel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays[J].European journal of medicinal chemistry.2007,42:1370-1381.
    [55] Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in humanmelanocyte culture[J]. Journal of Pharmacology and Experimental Therapeutics.1996,276:765-769.
    [56] Okunji C, Komarnytsky S, Fear G, et al. Preparative isolation and identification oftyrosinase inhibitors from the seeds of Garcinia kola by high-speed counter-currentchromatography[J]. Journal of Chromatography A.2007,1151:45-50.
    [57] Momtaz S, Mapunya B, Houghton P, et al. Tyrosinase inhibition by extracts andconstituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening[J].Journal of ethnopharmacology.2008,119:507-512.
    [58] Zheng ZP, Cheng KW, Chao J, et al. Tyrosinase inhibitors from paper mulberry(Broussonetia papyrifera)[J]. Food Chemistry.2008,106:529-535.
    [59] Karioti A, Protopappa A, Megoulas N, et al. Identification of tyrosinase inhibitors fromMarrubium velutinum and Marrubium cylleneum[J]. Bioorganic& Medicinal Chemistry.2007,15:2708-2714.
    [60] Lin YP, Hsu FL, Chen CS, et al. Constituents from the Formosan apple reduce tyrosinaseactivity in human epidermal melanocytes[J]. Phytochemistry.2007,68:1189-1199.
    [61] Wu S, Ng CC, Tzeng WS, et al. Functional antioxidant and tyrosinase inhibitoryproperties of extracts of Taiwanese pummelo (Citrus grandis Osbeck)[J]. African Journal ofBiotechnology.2011,10:7668-7674.
    [62] Jun H, Roh M, Kim HW, et al. Dual inhibitions of lemon balm (Melissa officinalis)ethanolic extract on melanogenesis in B16-F1murine melanocytes: Inhibition of tyrosinaseactivity and its gene expression[J]. Food Science and Biotechnology.2011,20:1051-1059.
    [63] Jin YH, Lee SJ, Chung MH, et al. Aloesin and arbutin inhibit tyrosinase activity in asynergistic manner via a different action mechanism[J]. Archives of pharmacal research.1999,22:232-236.
    [64] Shi Y, Chen QX, Wang Q, et al. Inhibitory effects of cinnamic acid and its derivatives onthe diphenolase activity of mushroom (Agaricus bisporus) tyrosinase[J]. Food Chemistry.2005,92:707-712.
    [65] Kubo I, Nihei K, Shimizu K. Oxidation products of quercetin catalyzed by mushroomtyrosinase[J]. Bioorganic&medicinal chemistry.2004,12:5343-5347.
    [66] Song KK, Huang H, Han P, et al. Inhibitory effects of cis-and trans-isomers of3,5-dihydroxystilbene on the activity of mushroom tyrosinase[J]. Biochemical and biophysicalresearch communications.2006,342:1147-1151.
    [67] Lu ZR, Shi L, Wang J, et al. The effect of trifluoroethanol on tyrosinase activity andconformation: inhibition kinetics and computational simulations[J]. Applied biochemistry andbiotechnology.2010,160:1896-1908.
    [68] Huang XH, Chen QX, Wang Q, et al. Inhibition of the activity of mushroom tyrosinaseby alkylbenzoic acids[J]. Food Chemistry.2006,94:1-6.
    [69] Zhang JP, Chen QX, Song KK, et al. Inhibitory effects of salicylic acid familycompounds on the diphenolase activity of mushroom tyrosinase[J]. Food Chemistry.2006,95:579-584.
    [70] Hu WJ, Yan L, Park D, et al. Kinetic, structural and molecular docking studies on theinhibition of tyrosinase induced by arabinose[J]. International Journal of BiologicalMacromolecules.2012,50:694-700.
    [71] Si YX, Yin SJ, Park D, et al. Tyrosinase inhibition by isophthalic acid: kinetics andcomputational simulation[J]. International Journal of Biological Macromolecules.2011,48:700-704.
    [72] Ryu Y, Westwood I, Kang N, et al. Kurarinol, tyrosinase inhibitor isolated from the rootof Sophora flavescens[J]. Phytomedicine.2008,15:612-618.
    [73] Liu J, Yi W, Wan Y, et al.1-(1-Arylethylidene) thiosemicarbazide derivatives: A newclass of tyrosinase inhibitors[J]. Bioorganic&medicinal chemistry.2008,16:1096-1102.
    [74] Ha YM, Park YJ, Lee JY, et al. Design, synthesis and biological evaluation of2-(substituted phenyl)thiazolidine-4-carboxylic acid derivatives as novel tyrosinaseinhibitors[J]. Biochimie.2012,94:533-540.
    [75] Wu JJ, Lin JC, Wang CH, et al. Extraction of antioxidative compounds from wine leesusing supercritical fluids and associated anti-tyrosinase activity[J]. The Journal ofSupercritical Fluids.2009,50:33-41.
    [76] Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibitionproperties of a polysaccharide fraction isolated from the rind from Punica granatum[J].Bioresource technology.2007,98:3159-3163.
    [77] Choi HK, Lim YS, Kim YS, et al. Free-radical-scavenging and tyrosinase-inhibitionactivities of Cheonggukjang samples fermented for various times[J]. Food Chemistry.2008,106:564-568.
    [78]袁勤生.现代酶学[M].上海:华东理工大学出版社;2001.
    [79]闫军,李昌生,陈声利等.咖啡酸、阿魏酸和香草酸对酪氨酸酶活性的影响[J].中国临床药理学与治疗学.2004,9:337-339.
    [80] Cho SJ, Roh JS, Sun WS, et al. N-Benzylbenzamides: a new class of potent tyrosinaseinhibitors[J]. Bioorganic&medicinal chemistry letters.2006,16:2682-2684.
    [81]王克夷.蛋白质导论[M].北京:科学出版社;2007.
    [82] Fu H. Protein-Protein Interactions: Methods and Applications. New Jersey: HumanaPress;2004.
    [83] Si YX, Wang ZJ, Park D, et al. Effect of hesperetin on tyrosinase: Inhibition kineticsintegrated computational simulation study[J]. International Journal of BiologicalMacromolecules.2012,50:257-262
    [84] Amin E, Saboury AA, Mansouri-Torshizi H, et al. Evaluation of p-phenylene-bis andphenyl dithiocarbamate sodium salts as inhibitors of mushroom tyrosinase[J]. Actabiochimica Polonica.57:277-283.
    [85]朱志远,张燕,李征等.受体蛋白与药物分子对接的研究进展[J].中国临床药理学与治疗学.2009,14:1308-1313.
    [86]段爱霞,陈晶,刘宏德等.分子对接方法的应用与发展[J].分析科学学报.2009,25:473-477.
    [87] Si Y-X, Yin S-J, Oh S, et al. An Integrated Study of Tyrosinase Inhibition by Rutin:Progress using a Computational Simulation[J]. Journal of biomolecular structure&dynamics.2012,29:999-1012.
    [88] Kang S-M, Heo S-J, Kim K-N, et al. Molecular docking studies of a phlorotannin,dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity[J]. Bioorganic&Medicinal Chemistry.2012,20:311-316.
    [89] Wang ZJ, Wang SF, Oh S, et al. The Effect of Thiobarbituric Acid on Tyrosinase:Inhibition Kinetics and Computational Simulation[J]. Journal of Biomelecular Structure&Dynamics.2011,29:463-470.
    [90]潘竹,朱青青.结构生物学研究技术的进展[J].西南民族大学学报(自然科学版).2005,增刊.
    [91] Battaini G, Monzani E, Casella L, et al. Inhibition of the catecholase activity ofbiomimetic dinuclear copper complexes by kojic acid[J]. Journal of Biological InorganicChemistry.2000,5:262-268.
    [92] Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure,inhibition mechanism and perspective for the future[J]. Cellular and molecular life sciences.2005,62:1707-1723.
    [93]邓燕,杨柳.当归对体外黑素细胞和酪氨酸酶的激活作用[J].第一军医大学学报.2003,23:239-241.
    [94]沈钧,何莉萍,张瑞斌.甘草提取物对酪氨酸酶活性的抑制作用[J].中国临床药理学与治疗学.2006,11:940-942.
    [95]邱凌,钟雪,庄江兴等.芦荟皮酪氨酸酶抑制剂有效成分的提取与分析[J].厦门大学学报(自然科学版).2008,47:227-230.
    [96]龚静,张飞伟,韩锐等.红景天水提液对酪氨酸酶抑制效果的初步研究[J].四川大学学报(自然科学版).2006,43:468-471.
    [97]韩鹏,邱凌,黄浩等.银杏叶和银杏外种皮乙醇提取物对酪氨酸酶的抑制作用比较[J].厦门大学学报(自然科学版).2005,44:116-119.
    [98]李艳莉,钟理,梁丽红.6种中药抑制酪氨酸酶活性的实验研究[J].时珍国医国药.2002,13:129-131.
    [99]杜志云,涂增清,焜张等.超声波辅助提取槐花总黄酮及其对酪氨酸酶的抑制作用[J].林产化学与工业.2011,31:39-44.
    [100]石嘉怿.青梅花提取物的酪氨酸酶抑制作用及机理研究[J].食品工业科技.2011,32:205-211.
    [101]胡长效,朱静,孙晓静.独角莲的化学成分及药理作用研究进展[J].农业与技术.2007,27:50-54.
    [102] Lim T, Lim Y, Yule C. Evaluation of antioxidant, antibacterial and anti-tyrosinaseactivities of four Macaranga species[J]. Food Chemistry.2009,114:594-599.
    [103] Kim M, Park J, Song K, et al. Screening of plant extracts for human tyrosinaseinhibiting effects[J]. International journal of cosmetic science.2012,34:202-208.
    [104]韩学俭.艳丽药草千日红[J].开卷有益(求医问药).2006,7:39.
    [105]韩学俭.观赏药用植物千日红的开发及应用[J].农家科技.2006,7:45.
    [106] Shen X. Traditional Chinese medicine, e.g. used for relieving cough and asthmacomprises Gomphrena globosa, Rhus chinensis, Perilla fruit, affine cudweed, and ThornyElaeagnus leaf. Chinese: SHEN X (SHEN-Individual). p.4.
    [107] Minale L, Piattelli M, De Stefano S. Pigments of centrospermae--VII.*1:: Betacyaninsfrom Gomphrena globosa L[J]. Phytochemistry.1967,6:703-709.
    [108] Savchenko T, Whiting P, Sarker SD, et al. Distribution and identity ofphytoecdysteroids in Gomphrena spp.(Amaranthaceae)[J]. Biochemical Systematics andecology.1998,26:337-346.
    [109] Cai Y, Sun M, Corke H. Identification and distribution of simple and acylatedbetacyanins in the Amaranthaceae[J]. Journal of agricultural and food chemistry.2001,49:1971-1978.
    [110] Dinda B, Ghosh B, Arima S, et al. Phytochemical investigation of Gomphrena globosaaerial parts[J]. ChemInform.2005,36:no-no.
    [111] Arcanjo DDR, de Albuquerque ACM, Melo B, et al. Phytochemical screening andevaluation of cytotoxic, antimicrobial and cardiovascular effects of Gomphrena globosaL.(Amaranthaceae)[J]. Journal of Medicinal Plants Research.2011,5:2006-2010.
    [112]杜孝元,玮刘,史飞等.酪氨酸酶活性抑制实验及其在祛斑美白化妆品功效评价中的应用[J].中国美容医学.2005,14:740-742.
    [113]熊雄,单连海.天然植物酪氨酸酶活性抑制剂研究进展[J].35.2007,13.
    [114]董小萍.天然药物化学[M].北京:中国中医院出版社;2010.
    [115]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版).2005,14:236-240.
    [116]彭晓霞,路莎莎.响应面优化法在中药研究中的应用和发展[J].中国实验方剂学杂志.2011,17:296-299.
    [117]余小翠,刘高峰.响应面分析法在中药提取和制备工艺中的应用[J].中药材.2011,33:1651-1655.
    [118]葸玉琴,梁孔贤,常河林等.响应曲面法优化微波辅助提取小蓟中黄酮类化合物[J].西北师范大学学报(自然科学版).2011,47:63-74.
    [119]朱洪梅,猛赵.响应面法优化沙棘色素提取及抗氧化性研究[J].林产化学与林业.2010,30:73-84.
    [120]计红芳,张令文,赵节昌等.响应面优化柠檬蜡伞多酚类物质的提取工艺研究[J].中国食品添加剂.2011:90-98.
    [121]刘琳,鄢瑞明,曾凡骏.响应面法优化枸杞多糖提取的研究[J].食品与发酵科技.2010,47:32-35.
    [122]龚盛昭,杨卓如.微波提取白附子美白成分的工艺研究[J].中药材.2004,27:863-866.
    [123]李艳莉,钟理,梁丽红.祛斑中药白附子提取工艺研究[J].中国医药工业杂志.2002,33538-540.
    [124]鄢贵龙,刘乃森.葛根提取物对酪氨酸酶活性的影响[J].天然产物研究与开发.2009,21:96-98.
    [125] Prasad KN, Yang B, Yang S. Identification of phenolic compounds and appraisal ofantioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds[J]. FoodChemistry.2009,116.
    [126]周丽珍.超声场对酿酒酵母的活性及生物效应的影响与作用机制研究[D].广州:华南理工大学;2007.
    [127]王昌禄,江慎华,陈志强等.应用生物活性追踪法对香椿抗氧化活性的研究[J].林产化学与工业.2006,28:39-43.
    [128]方玉春,邵长伦,曹秀萍等.枫桦抗肿瘤活性化学成分的追踪分离研究[J].中草药.2009,40:96-98.
    [129]张雪梅,王瑞,安睿等. HPLC同时测定玄参中5种成分的含量[J].中国中药杂志.2011,36:709-711.
    [130]邹耀华,殷红妹,郭怡飚等. HPLC-PDA法检测西红花和红花中十一种非法添加色素[J].中国卫生检验杂志.2010,20:2724-2728.
    [131] Nakano H, Kawada N, Yoshida M, et al. Isolation and Identification of FlavonoidsAccumulated in Proanthocyanidin-free Barley[J]. J Agric Food Chem.2011,59:9581-9587.
    [132] Harvey PW, Everett DJ. Significance of the detection of esters of p-hydroxybenzoicacid (parabens) in human breast tumours[J]. Journal of Applied Toxicology.2004,24:1-4.
    [133]严海泓,李宝笙,张雅茜. HPLC法测定胡黄连主根与须根中香草酸与肉桂酸含量[J].天津中医药.2008,25:512-514.
    [134]杜怡昊,刘建华,李计龙等.川楝子中香草酸含量测定研究[J].天然产物研究与开发.2011,23:1103-1106.
    [135]李康,陈晓辉,毕开顺. RP-HPLC法测定地骨皮中香草酸的含量[J].中草药.2005,36:446-447.
    [136]焦涛,吴春蕾,刘圆. RP-HPLC测定白花丹药材中的香草酸[J].华西药学杂志.2009,24:295-297.
    [137] Wang H, Chou Y, Hong Z, et al. Bioconstituents from stems of Synsepalum dulcificumDaniell (Sapotaceae) inhibit human melanoma proliferation, reduce mushroom tyrosinaseactivity and have antioxidant properties [J]. Jornal of the Taiwan institute of chemicalengineers2011,42:204-211.
    [138] Miyazawa M, Oshima T, Koshio K, et al. Tyrosinase inhibitor from black rice bran[J].Journal of agricultural and food chemistry.2003,51:6953-6956.
    [139] Chou TH, Ding HY, Hung WJ, et al. Antioxidative characteristics and inhibition ofalpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and VA fromOriganum vulgare [J]. Experimental dermatology.2010,19:742-750.
    [140]龚盛昭,杨卓如,林希.香草酸对酪氨酸酶催化活性的抑制作用[J].精细化工.2005,22:927-930.
    [141]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社;2005.
    [142]龚仁敏.酶可逆抑制作用中线性混合型抑制的动力学[J].安徽师大学报(自然科学版).1998,21:46-49.
    [143] Chen QX, Ke LN, Song KK, et al. Inhibitory effects of hexylresorcinol anddodecylresorcinol on mushroom (Agaricus bisporus) tyrosinase[J]. The Protein Journal.2004,23:135-141.
    [144] Shaikh S, Seetharamappa J, Kandagal P, et al. Binding of the bioactive componentisothipendyl hydrochloride with bovine serum albumin[J]. Journal of molecular structure.2006,786:46-52.
    [145] Song W, Ao M, Shi Y, et al. Interaction between Phillygenin and Human SerumAlbumin based on Spectroscopic and Molecular Docking[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2012,85:120-126.
    [146] Kubo I, Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity andinhibition mechanism[J]. Journal of agricultural and food chemistry.1999,47:4121-4125.
    [147] Kim D, Park J, Kim J, et al. Flavonoids as mushroom tyrosinase inhibitors: afluorescence quenching study[J]. Journal of agricultural and food chemistry.2006,54:935-941.
    [148] Davis IW, Baker D. RosettaLigand docking with full ligand and receptor flexibility[J].Journal of Molecular Biology.2009,385:381-392.
    [149] Meiler J, Baker D. ROSETTALIGAND: Protein-small molecule docking with fullside-chain flexibility[J]. PROTEINS: Structure, Function, and Bioinformatics.2006,65:538-548.
    [150] http://www.rosettacommons.org.
    [151] http://www.pymol.org.
    [152] Li Y, He W, Liu J, et al. Binding of the bioactive component jatrorrhizine to humanserum albumin[J]. Biochimica et Biophysica Acta (BBA)-General Subjects.2005,1722:15-21.
    [153] Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study usingthe Phyre server[J]. Nature protocols.2009,4:363-371.
    [154] Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fastprotein structure alignment in three dimensions[J]. Acta Crystallographica Section D:Biological Crystallography.2004,60:2256-2268.
    [155] Zhou JM, Ibrahim RK. Tricin—a potential multifunctional nutraceutical[J].Phytochemistry Reviews.2010,9:413-424.
    [156] Yazawa K, Kurokawa M, Obuchi M, et al. Anti-influenza virus activity of tricin,4',5,7-trihydroxy-3',5'-dimethoxyflavone[J]. Antiviral chemistry&chemotherapy.2011,22:1.
    [157] Pretorius J. Flavonoids: a review of its commercial application potential asanti-infective agents[J]. Current Medicinal Chemistry-Anti-Infective Agents.2003,2:335-353.
    [158] Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: antioxidants or signallingmolecules?[J]. Free Radical Biology and Medicine.2004,36:838-849.
    [159] Steffen Y, Gruber C, Schewe T, et al. Mono-O-methylated flavanols and otherflavonoids as inhibitors of endothelial NADPH oxidase[J]. Archives of biochemistry andbiophysics.2008,469:209-219.
    [160] Plochmann K, Korte G, Koutsilieri E, et al. Structure-activity relationships offlavonoid-induced cytotoxicity on human leukemia cells[J]. Archives of biochemistry andbiophysics.2007,460:1-9.
    [161] Harris R, Waring R. Sulfotransferase inhibition: potential impact of diet andenvironmental chemicals on steroid metabolism and drug detoxification[J]. Current drugmetabolism.2008,9:269-275.
    [162] Lehrer S. Solute perturbation of protein fluorescence. Quenching of the tryptophylfluorescence of model compounds and of lysozyme by iodide ion[J]. Biochemistry.1971,10:3254-3263.
    [163] Anand U, Jash C, Boddepalli RK, et al. Exploring the Mechanism of FluorescenceQuenching in Proteins Induced by Tetracycline[J]. The Journal of Physical Chemistry B.2011,115:6312-6320.
    [164] Wang H-R, Zhu W-J, Wang X-y. Mechanism of inhibition of arginine kinase byflavonoids consistent with thermodynamics of docking simulation[J]. International Journal ofBiological Macromolecules.2011,49:985-991.
    [165] Tian J, Liu J, Xie J, et al. Binding of wogonin to human serum albumin: a commonbinding site of wogonin in subdomain IIA[J]. Journal of Photochemistry and Photobiology B:Biology.2004,74:39-45.
    [166]黄建蓉.磁场影响有机介质中酶促合成柚皮苷酯机理及其特性研究[D].广州:华南理工大学;2010.
    [167] Eftink M, Ghiron C. Exposure of tryptophanyl residues in proteins. Quantitativedetermination by fluorescence quenching studies[J]. Biochemistry.1976,15:672-680.
    [168] Abou-Zied OK, Al-Shihi OIK. Characterization of subdomain IIA binding site ofhuman serum albumin in its native, unfolded, and refolded states using small molecularprobes[J]. Journal of the American Chemical Society.2008,130:10793-10801.
    [169] Ware WR. Oxygen quenching of fluorescence in solution: an experimental study of thediffusion process[J]. The Journal of Physical Chemistry.1962,66:455-458.
    [170] Bang SH, Han SJ, Kim DH. Hydrolysis of arbutin to hydroquinone by human skinbacteria and its effect on antioxidant activity[J]. Journal of cosmetic dermatology.2008,7:189-193.
    [171] Ross PD, Subramanian S. Thermodynamics of protein association reactions: forcescontributing to stability[J]. Biochemistry.1981,20:3096-3102.
    [172] Oh HI, Hoff JE, Armstrong GS, et al. Hydrophobic interaction in tannin-proteincomplexes[J]. Journal of agricultural and food chemistry.1980,28:394-398.
    [173]唐灵芝,黄华永,张鲁勉等.4-羟基肉桂酸衍生物清除羟自由基活性的构效关系[J].汕头大学医学院学报.2007,20:18-20.
    [174]张立伟,陈世荣,频杨.肉桂酸类抗氧化剂结构-活性关系研究[J].结构化学.2003,22:341-345.
    [175]金小玲,杨汝婷,尚亚靖等.羟基肉桂酸衍生物的氧化偶联及其相关产物清除自由基的活性[J].科学通报.2010,55:2466.
    [176]赵春贵,张立伟,董建华等.肉桂酸及其衍生物对活性氧H2O2清除作用[J].化学研究与应用.2004,16:685-687.
    [177]张春乐,宋康康,陈祥仁等.肉桂酸及其衍生物的抑菌活性研究[J].厦门大学学报(自然科学版).2006,45:16-18.
    [178]鲁严,朱文元,谭城.苦参碱及肉桂酸对体外培养小鼠黑素细胞黑素生成的影响[J].临床皮肤科杂志2006,35:698-700.
    [179] Kubo I, Nihei K, Tsujimoto K. Methyl p-coumarate, a melanin formation inhibitor inB16mouse melanoma cells[J]. Bioorganic&medicinal chemistry.2004,12:5349-5354.
    [180]龚盛昭,邓相庆,李仕梅.对羟基肉桂酸抑制酪氨酸酶活性的动力学研究[J].日用化学工业.2006,36:159-162.
    [181] Qiu L, Chen Q-H, Zhuang J-X, et al. Inhibitory effects of a-cyano-4-hydroxycinnamicacid on the activity of mushroom tyrosinase[J]. Food Chemistry2009,112:609-613.
    [182]龚盛昭,王晓立,林取妹等.肉桂酸甲酯抑制酪氨酸酶催化反应的动力学研究[J].化学研究与应用.2009,21:1168-1172.
    [183]肖凤霞,邓少东,谢林江等.荧光分光光度法测定巴戟天中蒽醌的含量[J].第四军医大学学报.2009,30:2873-2875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700