用户名: 密码: 验证码:
小电流脉冲TIG焊接电源及电弧物理特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在焊接领域中,直流TIG焊接被公认为是一种优质的焊接方法,但由于其工艺及早期TIG焊机技术不够完善,应用范围受到了一定的限制。近年来,为充分挖掘TIG焊的潜在优势,许多科研人员和工程技术人员对TIG焊在能量输出和工艺等方面进行了大胆的探索,特别是晶体管逆变技术、微电子控制器件、微处理机、数字信号处理器和计算机软件技术在TIG焊机中的成功应用,全面提升了TIG焊接工艺水平和TIG焊机性能,其中脉冲TIG焊接技术因热输入量低、能量密度大、高效节能等优点,成为各重要工业制造部门焊接高质量不可缺少的现代加工手段。
     根据直流脉冲TIG焊接技术的特点,本文设计了一套直流脉冲TIG焊接系统,系统主要包括基值电源、脉冲电源和人机界面三部分。基值电源主回路采用双功率管并联BUCK结构,即提高了工作频率,减少了输出电流的波动,同时也降低了功率管的损耗,为TIG电弧提供稳定的维弧电流;脉冲电源主回路采用全桥二次逆变拓扑结构,对于不同工作频率都有很强的适应性。一次逆变采用双PI调节方式,实现精确快速地功率输出控制,二次逆变控制采用ARM+CPLD结构,实现脉冲的频率,占空比等功能控制。双PI方式可以实现精细控制,同时又具有较高的实时性,对短路、过流等故障具有较强的保护能力。
     控制软件是电源系统的核心,脉冲电源控制软件采用前后台+流水线的控制结构,将通信、MODBUS协议解析、电压信号的采集、电流信号的采集等任务放在流水线上,通过任务状态的查询,实现最短周期的调度。PI算法在前台实现,周期的更新PWM调节量。这种结构与传统的串行结构相比,具有更高的实时性、更合理的软件结构性和更高的CPU利用率。
     高频变压器作为焊接系统的主要器件,其设计方法众多,本文采用有效面积Ae和磁链路长度Le作为控制参数,根据电磁理论,提出了新的设计方法,并对设计方法进行了详细推导。最后根据实验需求,依据文中设计方法对主功率变压器进行设计,在实验中变压器工作良好,证明了此方法的有效性。
     在小电流条件下,通过脉冲TIG电弧电特性的测量与研究,发现平均电流相同的实验条件下,频率为2500Hz时输入功率出现最大值,此时平均电子密度最大,随频率的提高,使得脉冲电弧的脉动特性趋向直流特性。通过对脉冲电弧的基值、峰值以及上升沿的电特性分析,在脉冲由峰值电流跃变到基值电流后,电弧电压和动态电阻可由一个惯性环节描述;脉冲由基值电流跃迁到峰值电流,可由三阶系统描述。研究发现,电弧在基值时的状态对电弧的影响比较大,随电弧频率的提高增强。
     最后,采用文中设计的脉冲TIG焊接电源对0.8+1.5mm不锈钢(0Cr18Ni9)薄板进行叠焊工艺实验,保护气分别用Ar、A_r+H_2(1%)、A_r+H_e(5%),实验结果表明,在A_r+H_2(1%)保护气氛围中,当脉冲频率为2500Hz时,脉冲TIG焊接方式能有效地降低工件热输入,减少工件焊接变形,使焊接质量显著提高。
DC TIG welding is generally acknowledged to be a high quality welding methodin the field of welding, but its range of application is limited because of imperfect forthe welding process and the early TIG welding technology. In recent years manyscientific researchers and technical engineers have valiantly explored the method ofTIG welding to exploit its latent advantages. With the successful application of sometechnologies, such as transistor inverter technology, microelectronic control devices,microprocessor, digital signal processor and computer software technology, theoverall technical characteristics of TIG welding method and TIG welder raised.Among all the application, DC pulse TIG has been one of the indispensable modernmaterial processing means because its advantage of low heat input, high Abilitydensity, energy efficiency and so on. This technology has been used by almost all keymanufacturing industry sectors.
     According to the characteristics of the DC pulse TIG welding technology, A DCpulse TIG welding system is designed in this paper. The welding system mainlyconsists of three parts: the base power supply, pulse power supply, and user interface.The main circuit of base power source uses BUCK structure with dual power tubes.This structure not only reduces the fluctuations in the output current by improving theoperating frequency, but also reduces the loss of power tube. The main circuit ofpulsed power supply uses the twice full-bridge inverter topology. In the first inverterthe double PI regulator is used to achieve quickly and accurately power output control.In the second inverter the ARM+CPLD structure is applied to control the outputfunction. The double PI regulator not only achievesduanlu fine control, but also hashigh real-time with a strong ability to protect short circuit and overcurrent faults.
     The software is the core of the welding power control system. The interrupt andthe pipeline structure are used in the pulse power control software. The tasks,including the communication, MOBUS protocol analysis, and data acquisition and soon, are placed on the pipeline. The PI algorithm software running in the foregroundupdates PWM fixed cycle regulation. It is compared with the traditional serialstructure. The comparison indicates that this structure has higher real-time, morereasonable structure and the CPU utilization.
     High frequency transformer, which is the main components of the weldingsystem, has many design methods. In this paper, by adopting the Ae and Le as thecontrol parameters, a new design method based on electromagnetic theory ispresented and derived in detail. Finally, according to the needs of experiments, thetransformer is designed based on the method. The transformer works well in theexperiment and this indicates the effectiveness of this design method.
     By pulsed arc physical parameters measurement in the small current conditions,the arc input power and the average electron density reach the maximum value whenthe pulse frequency is2500Hz. While the arc input power and the average electrondensity decrease gradually with increasing frequency, the increasing influence of thethermal inertia makes the pulsed arc characteristics approach the DC characteristics.Through the electrical characteristics analysis of peak current, base current, and therising edge, arc voltage and dynamic resistance could be an one-order systemdescription after peak current transition to the base current, while arc current can be athird-order system description by the base current transition to peak current. Throughthe mode system study, it is found that the arc thermal inertia in the base current makea great impact on the arc and the impact is enhanced with the improvement of the arcfrequency. This show the response of the arc on the external power supply frequencydepends on the physical parameters of the base status.
     Finally, the experiments on the0.8+1.5mm of stainless steel (0Cr18Ni9) sheetsof the stitch welding procedure is done by using the pulsed TIG welding power sourcedesigned in this paper with the protective gas of Ar, Ar+H2(1%) and Ar+He (5%).Experimental results show that, the Ar+H_2shielding gas pulsed TIG welding methodcan effectively reduce the heat input and the welding deformation of workpiece whenthe pulse frequency is2500Hz, while this method can also refine grains and improvethe quality of welding.
引文
[1]王宗杰.焊接方法及设备[M].北京:机械工业出版社,2007
    [2]林尚扬,杜兵.焊接行业现状与自主创新战略[J].焊接,2006(6)
    [3]殷树言,徐鲁宁,丁京柱.熔化极气体保护焊的高效化研究[J].焊接技术,2000,S1
    [4]张孔群,周国胜.美国高效焊接技术一瞥[J].造船技术.1997,10(2)
    [5]庄建清.高效MAG焊的应用[J].焊接技术,1991,5
    [6]林尚扬,关桥.《我国制造业焊接生产现状与发展战略研究》总结报告.中国工程院咨询项目.2003.
    [7]丁陪番.焊接手册(第一卷)[M].北京:机械工业出版社,1992
    [8]齐力.激光焊接的应用[J].现代焊接,2005,1
    [9]周飞霓,卢本.激光焊接/切割工艺设备实践(一)[J].现代焊接.2011,2
    [10]蒲石林,肖敏.焊接手册[M].第一卷.北京:机械工业出版社,1992
    [11]陈强,孙振国.弧焊技术发展现状.制造业与未来中国—2002年中国机械工程学会年会论文集[C].2002年
    [12]张秀兰,马红艳,徐绪炯.数字化焊接电源的发展史[J].电焊机,2003,33(2):9-10
    [13]殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007,1
    [14] A.B.聂图什尔,K.M波利瓦诺夫.电工基础[M].北京:高等教育出版社,1958
    [15]李军花.焊接发展史(一)[J].焊接技术,2006,(05)
    [16]竞友.焊接史[J].现代焊接,2006,(02).
    [17] G.R.Stoeckinger. Advancement of the Numerically Controlled Gas Tungsten-arc WeldingProcess. Defense Technical Information Center,1970
    [18]莫文凯.高频脉冲TIG焊机及应用[J].电焊机,2004,(10)
    [19]高进强.脉冲TIG焊接熔池几何参数的视觉检测[J].山东工业大学学报,1999.29(16):567-572
    [20]李克海,何德孚,高进强.脉冲TIG焊熔池几何参数的计算机视觉检测[J].管焊,2000,23(6):29-36
    [21] Kovacevic R,Zhang YM, Li L. Monitoring of weldjoint penetrationbasedonweldpoolgeometrical appearance[J]. Welding Journal,1996,75(10):317s~329s
    [22] Kovacevic R, Zhang YM, RuanS. Sensing andcontrol of weld pool geometry forautomatedGTA welding[J]. Transactionof the ASME,1995,117:210~222
    [23] R. Kovacevic andY.M.Zhang.Real-time Image Processing for Monitoring of Free Weld PoolSurface[J]. Journal of Manufacturing Science and Engineering, May1997,161-169.Vol.119
    [24]殷树言,李西恭.小电流高频TIG电弧稳定性的研究[J].金属科学与工艺,1987,6(4)97-105
    [25]赵家瑞,李义丹.高频脉冲TIG焊的电弧控制及高频效应[J].天津大学学报,1989,3:25-32
    [26]赵家瑞.电流脉冲频率对TIG焊电弧影响机理的研究[J].电焊机,1993,2:16-18
    [27]赵家瑞,张选明,孙栋等.高频脉冲TIG焊电弧阳极行为的研究[J].电焊机,1991,1:9-13
    [28]董天顺,杨立军,梁建军.小电流脉冲TIG焊电弧动态特性的MATLAB仿真[J].焊接技术,2003,32(3):11-13
    [29]施秉周.不锈钢薄板高频脉冲氩弧焊的研究[J].电焊机,1980,(02):7-12
    [30]齐铂金,许海鹰,张伟.0Cr18Ni9Ti超音频脉冲TIG焊接头组织与性能[J].北京航空航天大学学报,2009,35(2):132-136
    [31]张秀兰,马红艳,徐绪炯.数字化焊接电源的发展史[J].电焊机,2003,33(2):9-10
    [32]伊达高科焊接有限公司.TIG氩弧焊/MMA手弧焊逆变焊接电源手册,2007
    [33]程良涛,邹娟,李辉.双管正激变换器[J].大功率变流技术,2010,02:34-37
    [34]张难.双管正激变换器并-并和串-并组合式的研究[J].电工电气,2011,06:25-29
    [35]李峰,李亮玉,李香.国内全数字化焊机的研究现状[J].焊接技术,2006,35(4)
    [36]古金茂.全数字交流短路过渡焊接系统及低热输入研究[D].北京工业大学博士学位论文,2009,4
    [37]刘嘉.弧焊逆变电源的数字化控制[D].北京工业大学博士学位论文,2002,4
    [38] Lin, Rong-Ho. Intelligent gas metal arc welding process control system: An application ofartificial neural network fuzzy inference, and expert system technologies[J]. DissertationAbstracts International,1994,Vol:55-08(B):110-130
    [39] Simpson,P.K.,Artificial Neural Systems: Foundations, Paradigms,Applications ansImplementations[J], New York:Pergamon Press,1900
    [40] Twomey,J.and A.Smith,Nonparametric Error Estimation Methods for Evaluating andValidating Artificial Neural Network Prediction Models, Intelligent Engineering Systemsthrough Artificial Neural Networks[J],New York:ASME Press,1993
    [41] Hirose,Y.K. Yamashita,and S. Hijiya,Bcakpropagation Algorithm which Varies the Numberof Hidden Units[J], Neural Networks,1991,4:61-66
    [42]孙清洁.超声-TIG电弧复合焊接方法及电弧行为研究[D].哈尔滨工业大学博士论文,2010.3
    [43]肖笑,陈克选,宋聚海,王晓非.单电源脉冲热丝TIG焊的研究[J].电焊机,2009,39(6):38-41
    [44]齐铂金,许海鹰,黄松涛,张伟.超音频脉冲TIG焊电源拓扑及电弧焊适用性[J].北京航空航天大学学报,2009,35(1):61-64
    [45]姚河清,姚诗涛,祁涛,王守艳,范兴辉.双芯变极性TIG焊接电源控制系统及其功能分配[J].电焊机,2008,38(11):72-75
    [46]朱志明,陈杰,赵港,王琳化.充分发挥数字化控制的优势,全面提升焊接逆变电源的工艺性能和软开关适应性[J].电焊机,2009,39(1):90-96
    [47]黄石生.新型弧焊电源及其智能控制[M].北京:机械工业出版社,2000
    [48]侯世英,林茂,刘小燕,唐昆明.一簇新型零电流零电压PWM变换器[J].重庆大学学报,2008,31(10):1134-1138
    [49] WAKABAYASHI FT,BONATO M J,CANESIN CA.A new family ofzero-current-switchirig PWM converters[C].Power Electronics SpecialistsConference.Charleston,USA:IEEE Press,1999:451-456
    [50] ZHANG J M,ZHANG F,XIE X G,et a1.A novel ZVS dc-dc converter for high powerapplications[J].IEEE Transactions on Industrial Electronics,2004,19(2):420-429
    [52] WANG C M.Novel zero-voltage-transition PWM dc-dc converters[J].IEEE IndustrialElectrical,2006,53(1):254—262
    [52] WANG C M.New family of zero-current-switching PWM converters using a newzero-current—switching PWM auxiliary circuit[J].IEEE Transactions on IndustrialElectronics,2006,53(3):768—777
    [53] ADME,FARZANEHFARDH.Family of zero-current transition PWM converters[J].IEEETransactions on Industrial Electronits2008,55(8):3055—3063
    [54]黄石生,杜贵平,李阳,陆沛涛,王振民.电弧等离子体及其高效电源.华南理工大学学报[J].2003,31(10):11-13
    [55]刘嘉,卢振洋,殷树言.电焊接的数字化[J].焊接学报,2002,23(1):88-92
    [56]徐建华.弧焊逆变电源电流闭环的设计计算方法[J].河南科学,2003,21(6):695-699
    [57]雷能芳.基于分布式算法有限脉冲响应(FIR)滤波器的FPGA设计[J].科学技术与工程,2010,10(11):2743-2746
    [58]郭晓宇,潘登,杨同中.基于FPGA实现FIR滤波器的研究[J].电子技术应用,2004,04:61-63
    [59]黄宏纬,游荣义.一种具有四阶级联结构的IIR数字滤波器的设计[J].集美大学学报(自然科学版),2010,15(01):67-71
    [60] TIM320C28X系列DSP指令和编程指南[M].北京:清华大学出版社,2005
    [61] TIM320C28X系列DSP的CPU与外设(上)[M].北京:清华大学出版社,2004
    [62] TIM320C28X系列DSP的CPU与外设(下)[M].北京:清华大学出版社,2004
    [63] Abraham I. Pressman,Keith Billings,Taylor Morey. Switching power supply design [M].北京:电子工业出版社,2010,6
    [64]张兴柱.开关电源功率变换器拓扑与设计[M].北京:中国电力出版社,2010
    [65] Definitive guide to the ARM Cortex-M3. Joseph Yiu[M].北京:北京航空航天大学出版社,2009
    [66] STMicroelectronics corp. RM0008Reference manual.2010,4
    [67]王永虹,徐炜,郝立平. STM32系列ARM Cortex-M3微控制器原理与实践[M].北京:北京航空航天大学出版社,2008
    [68] Middlebrook RD, Tan FD. A Unified Model for Current-Programmed Converters[J].IEEETrans onPowerElectronics,1995,10(4):397-408
    [69]柳彬,吴浩伟,孙朝晖,徐正喜大功率逆变电源IGBT关断电压尖峰抑制研究[J].舰船科学技术,2009,31(12):62-65
    [70]陈祥富,李宝军, IGBT的吸收电路[J].石家庄铁道学院学报,1997,10:101-104
    [71]龚斌,贾正春,熊娅俐,许强. IGBT的开关过电压保护电路研究[J].电工技术杂志,2002,3:1-4
    [72]杨岳峰,张奕黄. IGBT的瞬态保护和缓冲电路[J].电机电器技术,2003,3:10-11
    [73]孙强. IGBT逆变器缓冲电路的设计[J].电工技术,2002,12:30-32
    [74] Goldberg A F.IEEE20th Annual,PESC’89, Vol2, Page(s):625-634
    [75] Goldberg A F.IEEE,19th Annua,PESC’88Record, Vol2, Page(s):1105-1111
    [76] Casey L F.IEEE3rd Annual,APEC’88.1988, Page(s):352.359
    [77]李希茜.高频变压器的设计[J].现在电子技术,2001,9:7-8
    [78] ColonelWm. TMc. Lyman, Transformer and inductor designhandbook [M]. USA: CRCPress,2004
    [79]贾瑞皋,薛庆忠.电磁学[M].北京:高等教育出版社,2011
    [80] SippolaW. SepponenR E. Accurate prediction of high frequency power-transformer lossesand temperature rise[J]. IEEE Trans. Power Elect,2002(17):825-847
    [81]王永初.Butterworth滤波器在过程控制中的应用(I)[J].工业仪表与自动化装置,1994,(6):13-15
    [82]王永初.Butterworth滤波器在过程控制中的应用(Ⅱ)[J].工业仪表与自动化装置,1995,(1):10-14
    [83]李钟慎.基于MATLAB设计巴特沃斯低通滤波器[J].信息技术,2003,27(3):49-52
    [84] Atia A E, Williams A E, Newcomb R W. Narrow-band Multiple-coupled Cavities Synthesis[J].IEEE Trans. Circuit and Systems,1974,21(5):649~655
    [85] Cameron R J, Rhodes J D. Asymmetric Realization of Dual-mode Bandpass Fiter[J]. IEEETrans. Microwave Theory Tech,1981,29(1):649~655
    [86] Bell H C. Canonical Asymmetric Coupled-resonator Filters[J]. IEEE Trans. MicrowaveTheroy Tech,1982,30(1):1335-1340
    [87]曾瑜,马侠,李艳等.切比雪夫滤波器的计算机辅助设计[J].半导体杂志,1996,21(4):21-23
    [88] GABOR C. TE MES,“Circuit synthesis and design”,1977
    [89] G.. DARYANAN l“Principles of Active Network Synthesis and Design”1976
    [90] HARRYY. F. LAM,“Analog and Digital Filter:Design and Realization”,1979
    [91]方康玲.过程控制系统[M].武汉:武汉理工大学出版社,2002,6
    [92]胡寿松.自动控制原理[M].北京:科学出版社,2003,8
    [93]刘金琨.先进PID控制MATLAB仿真[M].第二版.北京:电子工业出版社,2004.
    [94] lUwe Meyer-Baese. Digital Signal Progcessing with Field Programmable Gate Arrays[M].Second Edition.北京:清华大学出版社,2006
    [95] Peter C. The Ten Commandments of Excellent Design[J].State Machine Technical,1997,(2)
    [96] D. A. Patterson, J. L. Hennessy. Computer Organization and Design: The Hardware/SoftwareInterface[M]. McGrawHill, NewYork,1995
    [97] T. A. Johnson, I. S. Kourtev. A single latch, high speed double-edge triggeredflip-lop(DETFF)[C].in:Proc.of8th IEEE International ConferenceonElectronic,Cir-cuitsandSystems,ICECS,2001
    [98]乔恩明,薛玉均,刘敏.绝缘栅双极型晶体管(IGBT)(一)[J].电子元器件应用,2011,13(10):52-56
    [99]安藤弘平,长谷川光雄.焊接电弧现象[M].北京:机械工业出版社,1985
    [100]鄢景华.自动控制原理[M].哈尔滨:哈尔滨工业大学出版社,1996
    [101] Ding Z F,Sun J Z, Wang D Z, Wu J, Zhang J, Zhang P Y2008Chin. Phys. B171848
    [102] Moisan M,Ferreira C M,Hajlaoui Y,Henry J,Pantel R,Ricard A,Zakrazewski Z1982RevuePhys. Appl.17707
    [103] Kunze K, Miclea M. Musa G, Franzke J, Vadla C, Niemax K,2002Spectrochimica Acta B57137
    [104]胡坤平,宋永伦,夏源等.电弧发射光谱的动态诊断方法及其应用[J].焊接学报,2009(1):47-59
    [105] Abdellatif G, Imam H.2002Spectrochimica Acta B: Atomic Spectroscopy571155
    [106] Griem H R. Plasma spectroscopy [M]. New York: McGraw-Hill,1964:305
    [107] Wujec T, Olchawa W, Halenka J, Musielok J2002Phys, Rev. E6066403
    [108] Guo Q C, Liu L Y, Wang D Z, Zhang J L2010Chin. Phys.B192653
    [109] Konjevic N2001Plasma Sources Sci. Technol.10356
    [110] Pellern S, Musiol K, Pokrzywka B. Chapelle J1996J. Phys B: at. Mol, Opt. Phys.293911
    [111]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986
    [112]吴蓉,李燕,朱顺官等.等离子体电子温度的发射光谱法诊断[J].光谱学与光谱分析,2008,28(4):731-735
    [113]宋永伦.焊接电弧等离子体的光谱诊断法及其应用的研究[D].天津大学博士论文,1990,5
    [114]辛以轩.等离子体发射光谱分析[M].北京:化学工业出版社,2005
    [115]徐晨明.氩氦电弧的光谱诊断及其应用[D].哈尔滨工业大学博士论文,2005,5
    [116] Thome AP. Spectrophysics.[M]. Lodon: Chapman&Hall,1974
    [117] Paul KC,Hatazawa S, Takahashi M, et al. ThinSolidFilms[J],1999,345:134
    [118] H. R. Griem. Spectral Line Broadening by Plasma[M]. New York: Academic Press.1974
    [119] H. R. Griem.. plasma spectroscopy[M]. New York:McGraw-Hill,1964
    [120] Jelinek F,Mercer R L. Interpolated Estimation of Markov Soutce Parameters from SpaceData. In Proceedings of the Workshop on Pattern Recognition in Practice, Amsterdam,Netherlands:North-Holand,1980,5
    [121] SAVITZKYA, GOLAYM J. Smoothing and differentiationof data by simplified leastsquaresprocedures [J].AnalyticalChemistry,1964(7):1627-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700