用户名: 密码: 验证码:
食品模拟体系糖化反应过程中羧甲基赖氨酸的形成和抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品加工过程美拉德反应在改变食品组分的结构和功能的同时也产生了部分不可忽视的有害物质。在众多美拉德反应产物中,以羧甲基赖氨酸(CML)为代表的晚期糖基化终末产物(AGEs)已经证实与糖尿病等疾病都存在着千丝万缕的关系,CML潜在的危害性已越来越受到食品科技界的关注。国际食品科技领域关于CML的研究主要集中在CML生理医学方面,对CML的分析方法和毒性等方面的研究取得了一些进展,然而,针对食源性CML在食品加工过程中形成机理的研究则寥寥无几。本文将研究食品模拟体系糖化反应过程中有害物质CML的形成和演化的量化方法,在此基础上,确定食品加工过程中CML控制、抑制和消除策略。
     首先,本文建立了快速和精确检测食品模拟体系中CML的HPLC-MS检测方法。采用HPLC-MS检测CML的重现性好,精密度高,CML的检测定量限(LOQ)可以达到50ng/mL。采用此方法用于定量检测本文食品加热模拟体系中的CML。
     然后,研究微波和传统加热方式下的食品模拟体系糖化反应过程中CML生成的宏观变化规律。研究发现,在美拉德反应中还原糖更有利于生成CML,不同的糖生成的CML总量的顺序为:乳糖>葡萄糖>蔗糖。而且,微波加热相对于传统加热能够生成更多的CML。
     其次,在了解CML生成规律的基础上,本文探讨了形成CML的中间产物乙二醛和果糖基赖氨酸的生成规律和相互之间的联系。研究发现,CML中间产物果糖基赖氨酸能够生成乙二醛,说明果糖基赖氨酸不仅是形成CML的中间产物,同时也是生成CML中间产物乙二醛的前体物质。同时,基于CML的中间产物乙二醛形成于美拉德反应的所有阶段,本文提出了新的观点,即CML不仅产生于糖化反应的终末阶段,而且产生于糖化反应的开始阶段,在理论上可以将CML称为糖化过程的产物。
     本文采用碳标记示踪技术(CAMOLA)研究CML中间产物参与复杂的化学反应,通过合成13C标记CML,重点研究了CML形成的复杂路径。不同于传统观点认为CML分子上的羧甲基仅来自于葡萄糖残基的C-1和C-2位基团,本文研究发现CML中羧甲基的来源有两个途径:(1)果糖基赖氨酸分子中的葡萄糖残基的C-1和C-2位基团参与了CML分子上的羧甲基的形成;(2)葡萄糖氧化裂解的过程中,C-1和C-2位基团,C-3和C-4位基团,C-5和C-6位基团分别参与了乙二醛的形成,来自于葡萄糖残基不同基团的乙二醛与赖氨酸反应生成了CML,在此生成CML的路径中,CML中羧甲基分别来葡萄糖残基的C-1和C-2位基团,C-3和C-4位基团,C-5和C-6位基团。在此基础上,本文提出了CML形成的新途径,拓展了研究CML在食品加工过程中形成的新领域。
     研究还发现在葡萄糖和氨基酸的微波加热模拟体系中,CML中间产物果糖基赖氨酸的生成量和生成速率明显高于乙二醛,而且通过中间产物果糖基赖氨酸生成CML的总量远远大于通过乙二醛。结合13C标记的CML和CML中间产物的变化,本文认为无论是从形成CML的中间产物果糖基赖氨酸和乙二醛的生成量,还是从通过此两种路径形成的CML的总量角度研究,在葡萄糖和氨基酸加热体系中果糖基赖氨酸是生成CML的主要中间产物,乙二醛是次要中间产物。因此,不同于传统观点认为通过中间产物乙二醛生成CML的路径是主要路径,本文认为通过中间产物果糖基赖氨酸生成CML的路径是主要路径。
     另外,本文首次采用了多级动力学模型考察CML的形成动力学规律。研究了反应底物葡萄糖和赖氨酸,中间产物果糖基赖氨酸和乙二醛,反应终产物CML和类黑精等的反应速率、形成速率和降解速率。通过多级动力学模型较为全面阐述CML的形成机理。中间产物果糖基赖氨酸产生的反应速率常数大于生成乙二醛的反应速率,生成果糖基赖氨酸的活化能Ea低于生成乙二醛的活化能,说明食品加工过程中更容易生成中间产物果糖基赖氨酸,而且果糖基赖氨酸生成CML的转化率大于高于乙二醛,进一步证实了果糖基赖氨酸是形成CML的主要中间产物。
     最后,本文研究三种维生素(维生素B1,维生素C,维生素E)和两种黄酮类物质(芦丁和槲皮素)以及还原剂硼氢化钠对葡萄糖和赖氨酸模拟体系中CML生成的抑制效果。维生素C和维生素E对CML生成的没有抑制效果。维生素B1的氨基与氨基酸或蛋白质中的赖氨酸残基存在竞争的关系,竞争还原糖的羰基,抑制CML的生成。硼氢化钠对羰基化合物具有很强的还原能力,终止其氧化裂解生成CML。芦丁和槲皮素特有的酚羟基苯环结构具有强抗氧化能力,能够抑制CML的生成。通过结合CML生成的多级动力学模型研究发现,黄酮物质芦丁抑制CML的生成主要发生在糖化反应第二阶段,即中间产物的生成和转化为CML的阶段。
Maillard reaction not only changes the structure and function of food components, butalso generated a lot of harmful substances in food processing. Among those complex Maillardreaction products, Nε-(Carboxymethyl)lysine(CML)as the representative of advancedglycation end products (AGEs) has affinity relationship to diabetes and other diseases, CMLas a potentially harmful sector has attracted more and more attention. Correctly, theinternational food science and technology research focused on the physiology in medicine,analysis and toxicity of CML, however, the mechanism of formation of CML in foodprocessing was still unclear. The aim of this study was to evaluate the performance of formingCML during glycation reaction in food model systems, and then discuss the strategies oncontrolling, inhibiting and eliminating CML in food processing
     Firstly, a rapid and accurate HPLC-MS detection method was used to detect CML infood model system. The HPLC-MS detection method had good reproducibility and highaccuracy, the limit of quantification (LOQ) of CML detection was achieved50ng/mL. Thedetection method was used for the determination of CML formed in food model system in thepaper.
     Then, the performance of forming CML during glycation reaction in food model systemswas also evaluated. The study showed that reducing sugars in the Maillard reaction was moreconducive to form CML.The order of reactivity for the formation of CML was lactose>glucose> sucrose. Microwave heating treatment in food model systems produced more CMLthan traditional heating treatment.
     Secondly, we discussed the formation of CML intermediate glyoxal and fructoselysine,and made a relationship between the two intermediates. Fructoselysine had the capacity toproduce glyoxal, the result showed fructoselysine not only was the intermediate of CML, butalso was the precursors of CML intermediate glyoxal. Because CML intermediate glyoxal wasformed at all stages of glycation in the Maillard reaction, so CML may be called as a productof the glycation process in theory.
     In this study, carbohydrate modul labeling technique (CAMOLA)was used to explainthe formation of the CML intermediate and the complex chemical reactions pathway offorming CML. The traditional view was the carboxymethyl of CML was only formed from C-1and C-2of glucose residues, however, we found the source of carboxymethyl of CML had two ways:(1)C-1and C-2of glucose residues in fructoselysine were involved in theformation of carboxymethyl of CML;(2)C-1and C-2of glucose residues, C-3and C-4of glucose residues, C-5and C-6of glucose residues were involved in the formationof glyoxal during glucose oxidative cleavage, and then glyoxal and lysine formed CML, sothe carboxymethyl of CML was from C-1and C-2of glucose residues, C-3and C-4ofglucose residues, C-5and C-6of glucose residues. The result expanded the theory offormation of CML in food processing.
     During the glucose-amino acid model system, the formation of CML fromfructoselysine was great higher than from glyoxal.Combined with the concentration of13Clabeled CML and CML intermediate formation, fructoselysine was the main intermediate, andglyoxal was the minor intermediate of CML,the formation of fructoselysine was the mainpathway to form CML, the paper overturned the traditional view that carbonyl compoundsglyoxal is the main intermediate of CML.The traditional view indexed that the pathway offorming CML was mainly through the intermediate products glyoxal, we found forming CMLthrough the intermediate product of fructose lysine was the main path.
     Furthermore, a multi-stage kinetics model was also discussed for formation of CML.Glucose and lysine, intermediates fructoselysine and glyoxal, the reaction end product CMLand melanoidins,the parameters of the rate constants and activation energies were estimatedin the kinetics model. The reaction rate constant of fructoselysine was great higher thanglyoxal, and the activation energy Ea of fructoselysine was lower than glyoxal, the resultshowed the formation of fructoselysine was easier than glyoxal, and fructoselysine wasfavorer to form CML.We found fructoselysine was a major intermediate of CML.
     Lastly, we also examined the inhibition effect of CML by some inhibitors in glucose-lysine model systems, the inhibitors were three vitamins (vitamin B1, vitamin C and vitaminE), two flavonoids (rutin and quercetin) and reducing agent sodium borohydride sodium.Ascorbic acid and tocopherol did not affect inhibition of CML. There was a competition ofcarbonyl reducing sugar competition between the vitamin B1and amino acids or amino lysineresidues of protein, inhibiting the generation of CML. Sodium borohydride reduction has astrong ability to reduce carbonyl compounds, not only to reduce dicarbonyl compoundsglyoxal, but also to reduce the main intermediate fructoselysine to terminate the oxidation ofCML forming. Rutin and quercetin inhibited the formation of CML via vicinyl dihydroxylgroups, which has a strong antioxidant capacity. We also discussed the pathway of inhibiting CML by rutin in a multi-stage kinetics model. Rutin inhibited the formation of CML mainlyoccurred in the second phase of the glycosylation reaction, the formation of the intermediateproduct and transformed into the stage of CML.
引文
[1] Waller G. R.; Feather M. S.; Milton S. The Maillard reaction in foods and nutrition [M].Washington D C, USA: ACS,1983:1–15.
    [2] Fujimaki M.; Namiki M.;Kato H., et al. Amino–Carbonyl reactions in food and biologicalSystems [M]. Amsterdam: Elsevier,1986.
    [3] Hodge J. E. J. Chemistry of browning reactions in model systems [J]. Journal ofAgricultural and Food Chemistry,1953,1(15):928–943.
    [4] Swedish National Food Administration (SNFA). Information about acrylamide in food.2002.4.34, http://www.slv.se.
    [5]文徽.第40届国际食品添加剂法典委员会(CCFA)会议在京召开[J].中国食品添加剂,2008,3:32-33.
    [6] Hesham A.; Hoda H.M.; Brahim G.E. Thiol containing compounds as controlling agents ofenzymatic browning in some apple products [J]. Food Research International,2006,39(8):855–863.
    [7] Osada Y,; Bamoto T. Antioxidative activity of volatile extracts from Maillard modelsystem [J]. Food Chemistry,2006,98(3):522–528.
    [8] Benjakul S.; Lertittikul W.; Bauer F. Antioxidant activity of Maillard reaction productsfrom a porcine plasma protein–sugar model system [J]. Food Chemistry,2005,93(2):189–196.
    [9] Yilmaz Y.; Toledo R. Antioxidant activity of water–soluble Maillard reaction products [J].Food Chemistry,2005,93(2):273–278.
    [10] Hofmann T. Studies on the relationship between molecular weight and the color potencyof fractions obtained by thermal treatment of glucose/amino acid and glucose/proteinsolutions by using ultracentrifugation and color dilution techniques [J]. Journal of Agriculturaland Food Chemistry,1998,46(10):3891–3895.
    [11] Hofmann T.; Schieberle P. Quantitative model studies on the effectiveness of differentprecursor systems in the formation of the intense food odorants2–furfurylthiol and2–methyl–3–furanthiol [J]. Journal of Agricultural and Food Chemistry,1998,46(1):235–241.
    [12] Tressl R.; Wondrak G. T.;Kruger R, P., et al. New melanoidin–like Maillard polymersfrom2–deoxypentoses [J]. Journal of Agricultural and Food Chemistry,1998,46(1):104–110.
    [13] C mmerer B.; Kroh L. W. Investigation of the influence of reaction conditions on theelementary composition of melanoidins [J]. Food Chemistry,1995,53(1):55–59.
    [14] C mmerer B, Jalyschko W, Kroh L W. Intact carbohydrate structures as part of themelanoidin skeleton[J].Journal of Agricultural and Food Chemistry,2002,50(7):2083–2087.
    [15] Gu F.L.; Kim J.M; Hayat K., et al.Characteristics and antioxidant activity of ultrafiltratedMaillard reaction products from a casein-glucose model system [J]. Food Chemistry,2009,117(1):48–54.
    [16]龚巧玲,张建友,刘书来,等.食品中的美拉德反应及其影响[J].食品工业科技,2009,30(2):330-334,338.
    [17] Martins S.I.F.S.; Jongen W.M.F.; van Boekel M.A.J.S.A review of Maillard reaction infood and implications to kinetic modeling [J]. Trends in food science and technology.2000,11(9-10):364-373.
    [18] Jing H.; Kitts D. D. Antioxidant activity of sugar-lysine Maillard reaction products incell free and cell culture systems [J]. Archives of Biochemistry and Biophysics,2004,429(2):154-163.
    [19] Friedman M. Food browning and its prevention [J]. Journal of Agricultural and FoodChemistry,1996,44(3):631-648.
    [20]尤新.氨基酸和糖类的美拉德反应—开发新型风味剂和食品抗氧剂的新途径[J].食品工业科技,2004,25(7):138-139.
    [21] Laura J.C.; Mar V.; Pedro J.M., et.al. Effect of the dry-heating conditions on theglycosylation of β-lactoglobulin with dextran through the Maillard reaction [J].FoodHydrocolloids,2005,19(5):831-837.
    [22] Hao Jing; David D; Kitts. Antioxidant activity of sugar–lysine Maillard reactionproductsin cell free and cell culture systems [J]. Archives of Biochemistry and Biophysics,2004,429(2):154–163.
    [23] Ide N.; Lau B.H.S.; Ryu K., et al. Antioxidant effects of fructosyl arginine, a Maillardreaction product in aged garlic extracts [J]. Journal of Nutritional Biochemistry,1999,10(6):372–376.
    [24] Hayase F.; Takahashi Y. Indentification of blue pigment formed in a D–xylose–glycinereaction system [J].Biosci.Biotechnol.Biochem.1999,63(8):1512.
    [25] Wang Huiying, Sun Tao. Progress in research of antioxidative activity of maillardreaction products [J]. Food Science and Technology,2007(8):12–15.
    [26] Xu Q.P.; Tao W.Y.; Ao Z.H. Antioxidant t activity of vinegar melanoidins [J]. FoodChemistry,2007,102(3):841–849.
    [27] Ahmed N.; Mirshekar–Syahkal B.; Kennish L., et al. Assay of advanced glycationendproducts in selected beverages and food by liquid chromatography with tandem massspectrometric detection [J]. Molecular Nutrition and Food Research,2005,49(7):691–699.
    [28] Medzhitov R. Origin and physiological roles of inflammation [J]. Nature,2008,454:428–435.
    [29] Reddy S.; Bichler J.; Wells–Knecht K.J., et al. N epsilon–(carboxymethyl)lysine is adominant advanced glycation end product (AGE) antigen in tissue proteins [J]. Biochemistry,1995,34(34):10872–10878.
    [30] ebeková K.; Somoza V. Dietary advanced glycation endproducts (AGEs) and theirhealth effects–PRO [J]. Molecular Nutrition and Food Research.2007,51(9),1079–1084.
    [31] Mottram D.S.; Wedzicha B.L.; Dodson A. T.Acrylamide is formed in the Maillardreaction.Nature,2002,419:448–449.
    [32] Stadler R.H.; Blank I.; Varga N.,et al. Acrylamide from Maillard reaction products [J].Nature,2002,419:449–450.
    [33] Yaylayan V.A.; Wnorowski A.; Locas C.P. Why asparagine needs carbohydrate togenerate acrylamide[J]. Journal of Agricultural and Food Chemistry,2003,51(6):1753–1757.
    [34] Vattem D.A.; Shetty K. Acrylamide in food: a model for mechanism of formation andits reduction[J]. Innovative Food Science and Emerging Technologies,2003,4(3):331–338.
    [35] Vlassara H.; Brownlee M.; Cerami A. Accumulation of diabetic rat peripheral nervemyelin by macrophages increases with the presence of advanced glycosylation endproducts[J]. The Journal of Experimental Medicine,1984,160(1):197-207.
    [36] Ahmed M. U.; Thorpe S. R.; Baynes J. W. Identification of Nε–(carboxymethyl)lysine asa degradation product of fructoselysine in glycated protein [J]. The Journal of BiologicalChemistry,1986,261,4889–4894.
    [37] Henle, T. Protein–bound advanced glycation endproducts (AGEs) and bioactive aminoacid derivatives in foods [J]. Amino Acids,2005,29(4):313–322.
    [38] Ames, J.M. Evidence against dietary advanced glycation endproducts being a risk tohuman health [J]. Molecular Nutrition and Food Research,2007,51(9):1085–1090.
    [39] Fu, M. X.; Requena, J. R.; Jenkins, A. J., et al. The advanced glycation end product,Nε–(carboxymethyl) lysine, is a product of both lipid peroxidation and glycoxidationreactions [J]. The Journal of Biological Chemistry,1996,271(17):9982–9986.
    [40] Kislinger T.;Fu C.; Huber B.,et al. N(epsilon)–(carboxymethyl)lysine adducts of proteinsare ligands for receptor for advanced glycation end products that activate cell signalingpathways and modulate gene expression [J]. Journal of Biological Chemistry,1999,274:31740–31749.
    [41] Dei R.; Taleda A.; Niwa H., et al. Lipid peroxidation and advanced glycation endproducts in the brain in normal aging and in Alzheimer' s disease[J]. Acta Neuropathologica,2002,104(2):113–122.
    [42] Nerlich A.G.; Schleicher E.D. Nε–(carboxymethyl)lysine in atherosclerotic vascularlesions as a marker for local oxidative stress[J]. Atherosclerosis,1999,144(1):41–47.
    [43] Bar J.; Franke S.; Wenda B. Pentosidine and Nε–(carboxymethyl)lysine in Alzheimer'sdisease and vascular dementia[J]. Neurobiol Aging,2003,24(2):333–338.
    [44] Frankre S.; Muller A.; Sommer M., et al. Serum levels of total homocysteine,homocysteine metabolites and of advanced glycation end–products (AGEs) in patients afterrenal transplantation [J]. Clinical nephrology,2003,59(2):88–97.
    [45] Horie K.; Miyata H.; Maeda K., et al. Immunohistochemical colocalization ofglycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions [J].Journal of Clinical Investigation,1997,100(12):2995–3004.
    [46] Shibayama R.; Araki N.; Nagai R., et al. Autoantibody against Nε–(carboxymethyl)lysine: an advanced glycation end product of the maillard reaction [J]. Diabetes,1999,48(9):1842–1849.
    [47] Uesugi N.; Sakata N.; Nagai R., et al. Glycoxidative modification of AA amyloiddeposits in renal tissue [J]. Nephrol Dial Transplant,2000,15(3):355–365.
    [48] Uesugi N.; Sakata N.; Horiuchi S., et al. Glycoxidation modified macrophages and lipidperoxidation products are associated with the progression of human diabetic nephropathy [J].American Journal of Kidney Diseases,2001,38(5):1016–1025.
    [49] Dunn J.A.; Ahmed M.U.; Murtiashaw M.H., et al. Reaction of ascorbate with lysine andprotein under autoxidizing conditions: Formation of Nε–(carboxymethyl)lysine by reactionbetween lysine and products of autoxidation of ascorbate[J]. Biochemistry,1990,29(49):10964–10970.
    [50] Yan S.D.; Schmidt A.M.; Anderson G.M., et al. Enhanced cellular oxidant stress by theinteraction of advanced glycation end products with their receptors/binding proteins [J]. TheJournal of Biological Chemistry,1994,269(13):9889–9897.
    [51] Misur I.; Zarkovic K.; Barada A., et al. Advanced glycation endproducts in peripheralnerve in type2diabetes with neuropathy [J]. Acta Diabetologica,2004,41(4):158–166.
    [52] Lindenmeier M.; Faist V.; Hofmann T. Structural and functional characterization ofpronyl–lysine, a novel protein modification in bread crust melanoidins showing in vitroantioxidative and phase I/II enzyme modulating activity[J].Journal of Agricultural and FoodChemistry,2002,50(24):6997–7006.
    [53] Yamagishi S., Matsui T., Nakamura K. Possible link of food–derived advanced glycationend products (AGEs) to the development of diabetes [J]. Medical Hypotheses,2008,71(6):876–878.
    [54] Miyata T.; Wada Y.; Cai Z., et al. Implication of an increased oxidatiave stress in theformation of advanced glycation end products in patientes with end–stage renal failure [J].Kideny International,1997,51:1170–1181.
    [55] Bierhaus A.; Haslbeck K.M.; Humpert P.M., et al.Loss of pain perception in diabetes isdependent on a receptor of the immunoglobulin superfamily [J]. Journal of ClinicalInvestigation,2004,114(12):1741–1751.
    [56] Du X.L.; Edelstein D.; Rossetti L.,et al. Hyperglycemia-induced mitochondrialsuperoxide overproduction activates the hexosamine pathway and induces plasminogenactivator inhibitor-1expression by increasing Sp1glycosylation [J]. Proceedings of theNational Academy of Sciences of the United States of America,2000,97(2):12222–12226.
    [57] Brownlee M. The pathobiology of diabetic complications: a unifying Mechanism[J].Diabetes,2005,54(6):1615–1625.
    [58] Arribas–Lorenzo G.; Morales F. J. Analysis,distribution,and dietary exposure of glyoxaland methylglyoxal in cookies and their relationship with other heat–induced contaminants [J].Journal of Agricultural and Food Chemistry,2010,58(5):2966-2972.
    [59] Singh R.; Barden A.; Mori T., et.al.Advanced glycation end-products: a review [J].Diabetologia,2001,44(2):129-146.
    [60] Urios P.; Sternberg M. Flavonoids inhibit the formation of the cross–linking AGEpentosidine in collagen incubated with glucose, according to their structure [J]. EuropeanJournal of Nutrition,2007,46(3):139–146.
    [61] Hartkopf J.; Pahlke C.; Lüdemann G., et al. Determination of Nε–carboxymethyllysine bya reversed–phase high–performance liquid chromatography method [J]. Journal ofChromatography A,1994,672(1–2):242–246.
    [62] Somoza V., Wenzel E., Weiss C., et al. Dose–dependent utilisation of casein–linkedlysinoalanine, N(epsilon)–fructoselysine and N(epsilon)–carboxymethyllysine in rats [J].Molecular Nutrition and Food Research.2006,50(9):833–841.
    [63] Ames, J. M. Determination of Nε–(Carboxymethyl)lysine in Foods and RelatedSystems[J]. Annals of the New York Academy of Sciences,2008,1126:20–24.
    [64] Gopalkrishnapillai B.; Nadanathangam V.; Karmakar N., et al.Evaluation ofautofluorescent property of hemoglobin–advanced glycation end product as a long–termglycemic index of diabetes [J].Diabetes,2003,52(4):1041–1046.
    [65] Mitsuhashi T.; Vlassara H.; Founds H.W., et al. Standardizing the immunologicalmeasurement of advanced glycation endproducts using normal human serum [J]. Journal ofImmunological Methods,1997,207(1):179–88.
    [66] Odetti P.; Fogarty J.; Sell D.R., et al. Chromatographic quantitation of plasma anderythrocyte pentosidine in diabetic and uremic subject [J]. Diabetes,1992,41(2):153–159.
    [67] Kislinger T.; Humeny A.; Peich C.C., et al. Relative quantification ofNε–(Carboxymethyl)lysine, imidazolone A, and the Amadori product inglycatedlysozyme by MALDI-TOF mass spectrometry [J]. Journal of Agricultural and FoodChemistry,2003,51(1):51–57.
    [68] Lin C.Y.; Chen C.S.; Shieh M.S., et al. Development of an automated immunoassay foradvanced glycosylation end products in human serum [J]. Clin Biochem.2002;35(3):189–195.
    [69] Makita Z.; Vlassara H.; Rayfield E., et al. Hemoglobin–AGE: a circulating marker ofadvanced glycosylation [J]. Science,1992,258(5082):651–653.
    [70] Wang J.; Sun B.; Cao Y., et al. Protein glycation inhibitory activity of wheat bran feruloyloligosaccharides [J]. Food Chemistry,2009,112(2):350–353.
    [71]袁小平.酶解麦麸制备阿魏酰低聚糖及其生物活性的研究.[D]江南大学.2006年.
    [72] Vasan S.; Zhang X.; Zhang X.N., et al. An agent cleaving glucose–derived proteancrosslinks in vitro and in vivo [J]. Nature,1996,382(6585):275–278.
    [73] Goldberg, T.; Cai, W.; Peppa, M., et al. Advanced glycoxidation end products incommonly consumed foods [J]. Journal of the American Dietetic Association,2004,104(8):1287–1291.
    [74] Henle, T. Ages in food: do they play a role in uremia [J]? Kidney InternationalSupplement,2003,84,145–147.
    [75] Koschinsky, T.; He, C. J.; Mitsuhashi, T., et al. Orally absorbed reactive glycationproducts (glycotoxins): an environmental risk factor in diabetic nephropathy [J]. Proceedingsof the National Academy of Sciences of the United States of America,1997,94(12):6474–6479.
    [76] Hofmann S.M.; Dong H.J.; Li Z., et al. Improved insulin sensitivity is associated withrestricted intake of dietary glycoxidation products in the db/db mouse [J]. Diabetes,2002,51:2082-2089.
    [77] Lin R.Y.; Dore A.T.; Ghodsi N., et al. Lowering of dietary advanced glycationendproducts (AGE) reduces neointimal formation after arterial injury in geneticallyhypercholesterolemic mice [J]. Atherosclerosis,2002,163:303-311.
    [78] Uribarri J.; Peppa M.; Cai W., et al. Restriction of glycotoxins markedly reduces AGEtoxins in renal failure patients [J]. Journal of the American Society of Nephrology,2003,14:728-731.
    [79] Vlassara H.; Cai W.; Crandall J., et al. Inflammatory markers are induced by dietaryglycotoxins: A pathway for accelerated atherosclerosis in diabetes [J]. Proceedings of theNational Academy of Sciences of the United States of America,2002,99:15596-15601.
    [80] Drusch S; Faist V.; Erbersdobler H. F. Determination of Nε–carboxymethyllysine in milkproducts by a modified reversed–phase HPLC method [J]. Food Chemistry,1999,65(4):547–553.
    [81] Fenaille F.; Parisod, V.; Visani, P., et al. Modifications of milk constituents duringprocessing: a preliminary benchmarking study [J]. International Dairy Journal,2006,16(7),728–739.
    [82] Büser W.; Erbersdobler H.F.; Liardon R. Identification and determination of N-ε-carboxymethyllysine by gas-liquid chromatography [J].Journal of Chromatography.A,1987,387:515-519.
    [83] Charissou A.; Ait-Ameur L.; Birlouez-Aragon I. Evaluation of a gaschromatography/mass spectrometry method for the quantification of carboxymethyllysine infood samples [J]. Journal of Chromatography. A,2007,1140(1-2):189–194.
    [84] Delgado Andrade C.; Seiquer I.; Navarro M. P., et al. Maillard reaction indicators in dietsusually consumed by adolescent population [J]. Molecular Nutrition and Food Research,2007,51(3):341–351.
    [85] Assar S.H.;Moloney C., Lima, M., et al. Determination of Nε–(carboxymethyl)lysine infood systems by ultra performance liquid chromatography–mass spectrometry[J]. AminoAcids,2009,36(2),317–326.
    [86] Beaulieu L.P.; Harris C.S.; Saleem A., et al. Inhibitory effect of the Cree traditionalmedicine wiishichimanaanh (Vaccinium vitis-idaea) on advanced glycation endproductformation: identification of active principles [J]. Phytotherapy Research,2010,24(5):741-747.
    [87] Dittrich R.; Hoffmann I.; Stahl P., et al. Concentrations of Nε–carboxymethyllysine inhuman breast milk, infant formulas, and urine of infants [J]. Journal of Agricultural and FoodChemistry,2006,54(18):6924–6928.
    [88] Nico C.; Mentink C.J.; Hendriks G., et al. Liquid chromatographic method for thequantitative determination of Nε-carboxymethyllysine in human plasma proteins [J]. Journalof Chromatography B,2004,808(2):163–168.
    [89] Birlouez–Aragon I.; Pischetsrieder M.; Leclere J., et al. Assessment of protein glycationmarkers in infant formulas [J]. Food Chemistry,2004,87(2):253–259.
    [90] Chao, P. C.; Hsu C. C.; Yin M.C. Analysis of glycative products in sauces and sauce–treated foods [J]. Food Chemistry,2009,113(1):262–266.
    [91] Zhang Q. B.; Ames, F. M.; Smith, R. D., et al. A perspective on the Maillard reaction andthe analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronicdisease [J]. Journal of Proteome Research,2009,8(2):754–769.
    [92] Namiki, M.; Hayashi, T. The Maillard reaction in foods [M]. Washington D C, USA:ACS,1983:21–46.
    [93] Wolff S. P.; Dean R. T. Glucose autoxidation and protein modification the potential roleof autoxidative glycosylation in diabetes [J]. Biochemical Journal,1987,245(1):243–250.
    [94] Bengmark S. Advanced glycation and lipoxidation end productsamplifiers of inflammation: the role of food [J]. Journal of Parenteral and Enteral Nutrition,2007,31,430–440.
    [95] Ruttkat A.; Erbersdobler H.F. Nε-Carboxymethyllysine is formed during heating oflysine with ketoses [J]. Journal of Agricultural and Food Chemistry,1995,68:261-263.
    [96] Lima, M., Assar, S. H., Ames, J. M. Formation of Nε–(Carboxymethyl)lysine and loss oflysine in casein glucose–fatty acid model systems [J]. Journal of Agricultural and FoodChemistry,2010,58(3),1954–1958.
    [97] Farghaly M.; Maghraby S.E. Toxicological evaluation and bioavailability of14C–fenitrothion bound residues on soybeans towards experimental animals [J]. Food andChemical Toxicology,2008,46(9):3111-3115.
    [98] Ravi S; Mathew K.M; Padmanabhan D., et al. A facile synthesis of14C pyrithiobac–sodium [J]. Journal of Labelled Compounds and Radiopharmaceuticals,2006,49(4):339–343.
    [99] Smith A.M.; Mao J.; Rebecca A. Metabolic fate of14Cacrolein under aerobic andanaerobic aquatic conditions [J]. Journal of Agricultural and Food Chemistry,1995,43(9):2497–2503.
    [100] Tanigawa T.; Mizo–oku Y.; Moriguchi K., et al. Simple and rapid quantitative assayof13C–labelled urea in human serum using liquid chromatography—atmospheric pressurechemical ionization mass spectrometry [J]. Journal o f Chromatography B,1996,683(2):135–142.
    [101] Kulik W.; Oosterveld M.J.S.; Kok R.M., et al. Determination of13C and15Nenrichments of urea in plasma by gas chromatography–combustion isotope ratio massspectrometry and gas chromatography–mass spectrometry using the2–methoxypyrimidinederivative [J]. Journal of Chromatography B,2003,791(1–2):399–405.
    [102]李常芊,苏艺群,陆天翼,等.利用不同剂量的13C–尿素呼气试验检测幽门螺杆菌[J].胃肠病学和肝病学,1997,6(2):150–151.
    [103] Khan S.U.; Behki R.M.; Dumrugs B. Fate of bound14C residues in soil as affected byrepeated treatment of prometryn [J].Chemosphere,1989,18(11–12):2155–2160.
    [104]朱明风,杨智行,蔡根风,等.13C–尿素呼气试验诊断幽门螺杆菌感染[J].放射免疫学杂志,2001,14(2):20.
    [105] Folch J.; Lees M.; Sloane Stanley G.H.A simple method for the isolation andpurification of total lipids from animal tissues [J]. Journal of Biological Chemistry,1957,226:497–509.
    [106]刘新.基于乙酰化稳定同位素标记—液相色谱—傅立叶变换离子回旋共振质谱联用的定量蛋白质组研究策略的建立、评价与应用[D].北京军事医学科学院,2007.
    [107]贾明宏,李本昌.农药学研究的重要手段–放射性同位素示踪技术[J].农药科学与管理,1996,60(4):14–19.
    [108] Wallace M.A.; Raab C. E.; Dean D. C., et al. Synthesis of35S aryl sulfonyl chloridesfrom35Selemental sulfur [J]. Journal of Labelled Compounds and Radiopharmaceuticals,2005,48(4):275–283.
    [109] Szyperski T.; Neri D.; Leiting B., et al. Support of1H NMR assignments in proteins bybiosynthetically directed fractional13C–labeling [J]. Journal of Biomolecular NMR,1992,2(4):323–334.
    [110] Schieberle P. The carbon module labeling (CAMOLA) technique: a useful tool foridentifying transient intermediates in the formation of Maillard–type target molecules [J].Annals of the New York Academy of Sciences,2005,1043,236–248.
    [111] Yaylayan, V.A.; Keyhani A. Origin of carbohydrate degradation products inL–alanine/13C–glucose model systems [J]. Journal of Agricultural and Food Chemistry,2000,48(6):2415–2419.
    [112]石宁宁,徐虹,姚俊,等.利用13C标记葡萄糖分析γ–聚谷氨酸的代谢途径[J].过程工程学报,2007,1:145–148.
    [113]杨海涛,谢益民,范建云,等.13C同位素标记法研究木质素与木聚糖的连接[J].林产化学与工业,2007,27(1):11–14.
    [114] Yamagishi S.; Matsui T.; Nakamura K., et al. Minodronate, a nitrogen–containingbisphosphonate, inhibits advanced glycation end product–induced vascular cell adhesionmolecule–1expression in endothelial cells by suppressing reactive oxygen species generation[J]. International Journal of Tissue Reactions,2005,27(4):189–195.
    [115] Blakytny, R.; Harding J.J. Prevention of cataract in diabetic rats by aspirin, paracetamol(acetaminophen) and ibuprofen [J]. Experimental Eye Research,1992,54(4):509–518.
    [116] Guardiola F.;Tres A.;Codony R.,et al. Lack of effect of oral supplementation withantioxidants on cholesterol oxidation product concentration of human plasma, as revealed byan improved gas chromatography method [J]. Analytical and Bioanalytical Chemistry,2007,389(1):277–289.
    [117] Edelstein D.; Brownlee M. Mechanistic studies of advanced glycation end productinhibition by aminoguanadine [J].1992, Diabetes41(1),26–29.
    [118]庄秀园,瞿伟菁,杨现艳.几种中药有效成分对糖基化终产物形成的抑制作用[J].中成药,2006,28(5):732-734.
    [119] Rice-Evans C.A.; Miller N.J.; Paganga G. Structure–antioxidant activity relationshipsof flavonoids and phenolic acids [J]. Free Radical Biology and Medicine,1996,20(7):933–56.
    [120] Pashikanti S.; de Alba D.R.; Boissonneault G.A., et al. Rutin metabolites: Novelinhibitors of nonoxidative advanced glycation end products [J]. Free Radical Biology andMedicine,2010,48(5):656–663.
    [121] Cervantes–Laurean D.; Schramm D.D.; Jacobson E.L., et al. Inhibition of advancedglycation end product formation on collagen by rutin and its metabolites [J]. Journal ofNutritional Biochemistry,2006,17(8):17531–17540.
    [122] Srey C.; Hull G.L.; Connolly L., et al. Effect of Inhibitor Compounds onNε–(Carboxymethyl)lysine(CML) and Nε–(Carboxyethyl)lysine (CEL) Formation in ModelFoods [J]. Journal of Agricultural and Food Chemistry,2010.58(2):12036–12041.
    [123] Babaei-Jadidi R.; Karachalias N.; Ahmed N., et al. Prevention of incipient diabeticnephropathy by high–dose thiamine and benfotiamine [J]. Diabetes,200352(8):2110–2120.
    [124]丁斌鹰.尿素对棉酚和干酪素反应抑制作用的研究[J].武汉工业学院学报,2000,1:6–7.
    [125]于彭伟.美拉德反应对食品加工的影响及其应用[J].肉类研究.2010,10:15–19.
    [126] Horvat S.; Jakas A. Peptide and amino acid glycation: new insights into the Maillardreaction [J]. Journal of Peptide Science,2004,10(3),119-37.
    [127] Richter R.C.; Link D.; Kingston, H.M. Peer reviewed: microwave-enhanced chemistry[J].Analytical Chemistry,2001,73(1):30–37.
    [128]金钦汉,戴树珊,黄卡玛.微波化学[M].第二版.北京:科学出版社.2001:1-5.
    [129] Maskan M. Kinetics of color change of kiwifruits during hot air and microwave drying[J].Journal of Food Engineering.2001,48(2),169-175.
    [130] Oliveira, M. E. C.; Franca, A. S. Microwave heating of foodstuffs [J]. Journal of FoodEngineering,2002,53(4),347-359.
    [131] Thornalley P. J.; Langborg A.;Minhas H. S. Formation of glyoxal, methylglyoxal and3-deoxyglucosone in the glycation of proteins by glucose [J]. Biochemical Journal,1999,344,109-116.
    [132] Ishii T.; Kumazawa S.; Sakurai T., et al. Mass spectroscopic characterization of proteinmodification by malondialdehyde [J]. Chemical Research in Toxicology,2005,19(1),122-129.
    [133] Courel M.; Ait-Ameur L.; Capuano E., et al. Effects of formulation and bakingconditions on neo-formed contaminants in model cookies [J]. Czech Journal of FoodSciences,2009,27:93-95.
    [134] Villamiel M.; Corzo N.; Martinez-Castrob I., et al. Chemical changes duringmicrowave treatment of milk [J]. Food Chemistry,1996,56(4):385-388.
    [135] Ameur L.A.;Mathieu O.;Lalanne V., et al. Comparison of the effects of sucrose andhexose on furfural formation and browning in cookies baked at different temperatures [J].Food Chemistry,2007,101(4),1407-1416.
    [136] Bridiau N.; Cabane S.; Maugard T.,et al. Facile synthesis of pseudo-C-glycosyl p-amino-DL-phenylalanine building blocks via Amadori rearrangement [J]. Tetrahedron,2009,65(2),531-535.
    [137] Whittaker, A. G.; Mingos, D. M. P. The application of microwave heating to chemicalsynthesis. Journal of Microwave Power Electromagnetic Energy,1994,29,195-219.
    [138] Heddleson, R. A.; Doores, S.; Anantheswaran, R. C. Parameters affecting destruction ofSalmonella spp. by microwave heating [J]. Journal of food Science,1994,59(2),447-451.
    [139] Kato A. Industrial applications of Maillard-type protein-polysaccharide conjuates [J].Food Science and Technology Research,2002,8(3),192-399.
    [140] Delatour T.; Hegele J.; Parisod V., et al. Analysis of advanced glycation endproducts indairy products by isotope dilution liquid chromatography-electrospray tandem massspectrometry. The particular case of carboxymethyllysine [J]. Journal of Chromatography, A,2009,1216(12),2371-2381.
    [141]金征宇,顾正彪,童群义,等.碳水化合物化学:原理与应用[M].北京:化学工业出版社.2008:1-18.
    [142] Ajandouz E H, Puigserver A. Nonenzymatic browning reaction of essential amino acids:effect of pH on caramelization and Maillard reaction kinetics [J]. Journal of Agricultural andFood Chemistry,1999,47(5):1786-1793.
    [143] Ashoor S. H.; Zent J. B. Maillard browning of common amino acids and sugars [J].Journal of Food Science,1984,49(4):1206-1207.
    [144]毛善勇,周瑞宝.马宇翔,等.美拉德反应产物抗氧化活性[J].粮食与油脂,2003,11(2):15-16.
    [145] Borrelli R.C.; Mennella C.; Barba F., et al. Characterizationof coloured compoundsobtained by enzymatic extraction of backery products [J]. Food Chemical Toxicology,2003,41(10):1367-1374.
    [146] Wagner K.H.; Derkits S.; Herr M., et al. Antioxidative potential of melanoidins isolatedfrom a roasted glucose-glycine model [J]. Food Chemistry,2006,78(3):375-382.
    [147] Yanagimoto K.; Lee K. G.; Ochi H., et al. Antioxidative activity of heterocycliccompounds formed in Maillard reaction products [J]. International Congress Series,2002,1245:335-340.
    [148] Matmaroh K.; Benjakul S.; Tanaka M. Effect of reactant concentrations on the Maillardreaction in fructose-glycine medol system and the inhibition of black tiger shrimppolyphenoloxidase [J].Food Chemistry,2006,98(1):1-8.
    [149]李林,卢家炯.美拉德反应的抑制及消除方法[J].广西轻工业,2000,4:16-18.
    [150] Wells–Knecht K.J.; Zyzak D.V.; Litchfield J.E., et al. Mechanism of autoxidativeglycosylation: identification of glyoxal and arabinose as intermediates in the autoxidativemodification of proteins by glucose [J]. Biochemistry.1995,34(11):3702–3709.
    [151] Knol J. J.; van Loon W. A. M.; Linssen J. P. H., et al. Toward a kinetic modelforacrylamide formation in a glucose–asparagine reaction system [J]. Journal of Agriculturaland Food Chemistry,2005,53(15):6133–6139.
    [152] Martins S. I. F. S.; Van Boekel M. A. J. S. A kinetic model for the glucose/glycineMaillard reaction pathways [J]. Food Chemistry,2005,90(1–2):257–269.
    [153] Brands, C. M. J.; Wedzicha, B. L.; Van Boekel, M. A. J. S. Quantification of melanoidinconcentration in sugar-casein systems [J]. Journalof Agriculturaland Food Chemistry,2002,50(5):1178-1183.
    [154] Leong, L. P.; Wedzicha, B. L. A critical appraisal of the kinetic model for the Maillardbrowning of glucose with glycine [J]. Food Chemistry,2000,68(1):21-28.
    [155] Leong, L. P. Modelling of the Maillard reaction involving more than one amino acid [D].Dissertation, University of Leeds, Leeds, U.K.,1999.
    [156] Lee K.G.; Shibamoto T. Toxicology and antioxidant activities of non–enzymaticbrowning reaction products: review [J]. Food Reviews international,2002,18(2–3):151–175.
    [157] Wu, J. W.; Hsieh, C. L.; Wang, H. Y., et al. Inhibitory effects of guava (Psidium guajavaL.) leaf extracts and its active compounds on the glycation process of protein [J]. FoodChemistry,2009,113(1),78-84.
    [158] Peng X.; Ma J.; Cheng K. W., et al. The effects of grape seed extract fortification onthe antioxidant activity and quality attributes of bread [J]. Food Chemistry,2010,119(1):49-53.
    [159] Réblová, Z. The effect of temperature on the antioxidant activity of Tocopherols [J].European Journal of Lipid Science and Technology,2006,108(10),858-863.
    [160] Cervantes-Laurean D.; Roberts MJ.; Jacobson E.L., et al. Nuclear proteasomeactivation and degradation of carboxymethylated histones in human keratinocytes followingglyoxal treatment [J]. Free Radical Biology and Medicine,2005,38(6):786–795.
    [161] Nagasawa T.; Tabata N.; Ito Y., et al. Nishizawa N;Inhibition of glycation reaction intissue protein incubations by water soluble rutin derivative[J].Molecular and CellularBiochemistry,2003,249(1-2):3–10.
    [162] Olthof M.R.; Hollman, P.C.; Buijsman M.N., et al. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans [J]. Journal ofNutrition,2003,133(6):1806–1814.
    [163] Erlund I.; Kosonen T.; Alfthan G., et al. Pharmacokinetics of quercetin from quercetinaglycone and rutin in healthy volunteers [J].European Journal of Clinical Pharmacology,2000,56(8):545-553.
    [164] Freedman B.I.; Wuerth J.P.; Cartwright K., et al. Design and baseline characteristicsfor the aminoguanidine clinical trial in overt type2diabetic nephropathy (ACTION II)[J].Controlled Clinical Trials,1999,20(5):493–510.
    [165]梁海燕,古德祥,木苗直秀,等.类黄酮化合物对糖基化反应终产物AGE的抑制作用[J].天然产物研究与开发.2002,14(2):14-18.
    [166] Yin M.C.; Chan K.C.Nonenzymatic antioxidative and antiglycative effects of oleanolicacid and ursolic acid [J]. Journal of Agricultural and Food Chemistry,2007,55(17):7177–7181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700