用户名: 密码: 验证码:
可燃性气体泄爆动力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家经济的高速发展和能源结构的调整,可燃性气体得到了广泛应用,是工业发展必不可少的燃料与原料,且今后将进一步发展以液化石油气和天然气为主的工业、生活能源结构。但是可燃性气体在开采、输送、贮存、加工和使用过程中或者因为管道泄露,可燃性气体爆炸事故时有发生,特别是煤矿经常发生瓦斯爆炸事故,造成重大的财产损失和人员伤亡。根据可燃性气体发生爆炸的环境和场所,选择开口泄爆管道对可燃性气体的传播规律和其内在机理进行研究,为防止可燃性气体爆炸事故和减小爆炸事故带来的危害提供依据。
     预混火焰在开口泄爆管道内传播,是一个高速、流动的动力学过程,受到许多因素的制约和影响,导致火焰阵面结构、火焰传播特性参数发生不稳定的改变,因此课题将从甲烷-空气预混火焰传播的几个影响因素进行实验和理论分析。
     首先建立了一套长方体开口泄爆管道实验平台,利用高速纹影系统清晰的捕捉到预混火焰在不同实验工况下的动态传播过程和火焰阵面结构的变化,并以此得出了火焰阵面的传播速度;利用建立的数据采集系统测试了预混火焰在传播过程中的流场压力值并得到了对应的压力上升速率。针对预混火焰传播特性的参数值,进行理论分析和数值模拟验证,揭示无约束泄爆管道内预混火焰传播的动力学机理和传播规律。
     研究了不同泄压口比率下,预混火焰在长50cm的开口泄爆管道中的传播特性,得出了随着泄压口比率的增大,预混火焰的传播速度峰值随之增大,而流场压力和压力上升速率的峰值随之降低,并得出了他们与泄压口比率的关系式。当泄压口比率小于30%时,预混火焰的传播速度和流场压力峰值随泄压口比率急剧变化;而大于30%时,传播速度和流场压力峰值的变化都很小,故泄压口比率30%可看作是可燃性气体在开口泄爆管道的一个拐点比率,并可作为泄爆设计的重要参考值。
     通过三种不同当量比浓度的预混气体,研究得出在开口泄爆管道内,当量比浓度为1.26(富燃)时,速度和压力值均达到最大值,且达到最大值所需的时间也最短,这主要是因为开口导致空气进入管道内,当量比浓度发生改变,使其接近或等于化学当量比浓度,管道内可燃性气体反应较充分,单位体积内化学放热量增大,从而加快了火焰传播速度和增大了流场压力。而最佳浓度即当量比浓度为1.06时则处于“贫燃”状态,火焰传播速度和压力峰值降低。从而得出在开口泄爆管道内的当量比浓度是一个可变参数。
     同一长方体障碍物的截面不同,即阻塞比率的不同,会导致火焰传播特性的变化,阻塞比率越大,火焰燃烧爆炸产生的速度和压力就越大,因此应尽量将长方体障碍物的最小截面与火焰传播方向相同。
     长方体障碍物到点火端的距离与火焰的传播速度和流场压力峰值存在着一个先增大后减小的指数关系,得出了长径比在5.8~6.3之间为“位置危险区域”,火焰的传播速度和压力峰值最大。
     长方体障碍物的数量与火焰的传播速度和流场压力峰值存在着一个先增大后减小的变化规律,也就是在障碍物的截面一定的条件下,障碍物的长度与火焰传播特性的参数存在着这样的规律。
Combustible gas is the absolutely necessary fuel and raw material of industrial development, and would be widely used in future with the rapid development of national economy and the adjustment of energy structure. But combustible gas explosion occur from time to time in the mining, transportation, storage, process and using process, especially mine gas explosion, which always lead to big property losses and casualties. In order to prevent these explosion accidents and reduce these hazards, study the propagating law and the inner mechanism of flame accelerating with the explosion venting tube, according to the environment and places.
     The dynamic process between flame and flow usually involves flame acceleration, flame structure variation and flame instability during the premixed flame accelerating propagation in the explosion venting tube, and is subjected to different restriction and influence. Accordingly, the study in this topic focuses on these influencing factors of methane-air premixed flame with experiments and theoretical analysis.
     Firstly, the experimental system on explosion venting tube was built up, The high speed schlieren photograph method was used to record the dynamic process of flame propagation clearly, including the precise flame front position, flame structure in the various experimental conditions, and that velocity of the flame front was obtained. The data acquisition system was establishment which was using to test the flow pressure, and the corresponding rate of pressure rise was calculated. Theory analysis and numerical simulation were carried out to describe the parameters of flame propagation, to explore the dynamic behavior of premixed flame propagation and propagation law in the unconstrained tube.
     Through the experiments studied the influences of different pressure-orifice ratios on the propagation characteristics in the long50cm tube. The velocity increased as the ratio rose, but the pressure and the rate of pressure rise decreased, by which to figure out the relation between the ratio and the propagation characteristics. Both peak velocity and pressure had a rapid change when the pressure-orifice ratio was less than30%, however, they changed was very little with the ratio for more than30%. So inflection point ratio was obtained when the pressure-orifice ratio was30%, and could be used as the important reference value for designing of explosion venting.
     The experiments studied the influences of the three concentration equivalence ratios. When the equivalence ratio was1.26, the value of velocity and pressure were up to maximum, and it took shortest time to reach the peaks. The main cause of the conclusion was the changed equivalence ratio in venting tube, and made them close to or equal to stoichiometric concentration ratio, then the reaction of premixed gas was more complete, heat output per unit volume was increased to maximum, so could speed up the flame propagation and increase pressure. But the optimum concentration was transformed into "lean-burn" state, so both the propagation velocity and pressure were decreased. Thus the concentration equivalence ratio was a variable parameter in the explosion venting tube.
     When the blockage ratio was different because of the same cuboids for the different placement direction, the flame propagation characteristics could change. The propagation velocity and pressure was increased with blockage ratio. So should keep the same direction between the least cross section and flame propagation.
     It was the exponential relationship for increases firstly then decreases between the distance and the flame propagation characteristics, and the distance was from the obstacle to ignition point. It was the "dangerous area of position" when the aspect ratio is5.8-6.3, the peak of the propagation velocity and pressure were the maximum.
     It was the variation for increases firstly then decreases between the length of obstacle and the flame propagation characteristics, the length was increased with the quantity of obstacle under the invariable cross section.
引文
[1]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [2]姚国欣,王建明.国外煤层气生产概况及对加速我国煤层气产业发展的思考[J].中外能源,2010,15(4):25-33.
    [3]余立新,孙文超,吴承康.半开口管道中的氢/空气火焰加速和压力发展过程[J].工程热物理学报,2001,22(4):637-640.
    [4]T.Hasegawa, K.Nishikado. Effect of density ratio on flame propagation along a vortex tube[C].26th symposium on combustion, The Combustion Institute,1996,26 (1):291-297.
    [5]C.A.Catlin, M.Fari weather, S.S.Ibrahim. Predictions of turbulent, premixed flame propagation in explosion tubes [J]. Combustion and Flame,1995,102(1-2):115-128.
    [6]Richard Siwek. Explosion venting technology[J]. Journal of Loss Prevention in the Process Industries,1996,9 (1):81-90.
    [7]Paul Holbrow, Stuart J Hawksworth, Alan Tyldesley. Thermal radiation from vented dust explosions[J]. Journal of Loss Prevention in the Process Industries,2000,13 (6):467-476.
    [8]Lee J H S, Knystautas R, Freiman A. High speed turbulent deflagrations and transition to detonation in H2-air mixtures[J]. Combustion and Flame,1984,56(2):227-239.
    [9]高泰荫,黄军涛,李元明,等.CH4-O2混合气中爆燃爆震转捩的数值模拟[J].爆炸与冲击,1998,18(4):36-43.
    [10]李润之.点火能量与初始压力对瓦斯爆炸特性的影响研究[D].青岛:山东科技大学,2010.
    [11]冯长根.热爆炸理论[M].北京:科学出版社,1988.
    [12]Y.N.Shebeko, S.GTsarichenko, A.Y.Korolchenko, et al. Burning velocities and flammability limits of gaseous mixture at elevated temperature and pressure[J]. Combustion and Flame, 1995,102 (4):427.
    [13]傅维镳,张永廉.燃烧学[M].北京:高等教育出版社,1989.
    [14]孙金华.燃烧理论[M].淮南:淮南矿业学院,1995.
    [15]刘贞堂.瓦斯(煤尘)爆炸物证特性参数实验研究[D].北京:中国矿业大学(北京),2010.
    [16]Peter Glarborg, Maria U.Alzueta, Kim Dam-Johansen, et al. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor[J]. Combustion and Flame,1998, 115 (1-2):1-27.
    [17]胡耀元,周邦智,杨元法,等.H2、CH4、CO多元爆炸性混合气体的爆炸极限及其容器因素[J].中国科学(B辑),2002,32(1):35-39.
    [18]张俊霞.CH4/空气燃烧反应动力学机理的简化及应用[D].包头:内蒙古科技大学,2005.
    [19]董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8(1):44-48.
    [20]Sun Peide. Study on the mechanism of interaction for coal and methane gas[J]. Journal of Coal Science & Engineering,2001,7(1):58-63.
    [21]许世海,熊云,刘晓.液体燃料的性质及应用[M].北京:中国石化出版社,2010.
    [22]Moen.I.O, Lee.J.H.S, Hjertager.B.H, et al. Pressure development due to turbulent flame propagation in large-scale methane-air explosions[J]. Combustion and Flame,1982,47: 31-52.
    [23]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学(北京),2003.
    [24]Brown. TJ A Tech Rep Br Elec Allied Ind Res Assoc. D/T109,1959.
    [25]沈伟,杜扬.受限空间尺度对可燃气体爆燃波发展过程的影响[J].实验力学,2006,21(2): 122-128.
    [26]王志荣.受限空间气体爆炸传播及其动力学过程研究[D].南京:南京工业大学,2005.
    [27]尉存娟.水平管道内甲烷-空气预混气体爆炸过程研究[D].太原:中北大学,2010.
    [28]K.Sato, Y.Sakai, M.Chiqa. Flame propagation along 90°bend in an open duct[J]. Symposium (International) on Combustion,1996,26 (1):931-937.
    [29]高建康,营从光,林柏泉,等.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作[J].煤矿安全,2005,36(2):4-6.
    [30]Caron M, Goethals M, De Smedt G, et al. Pressure dependence of the auto-ignition temperature of methane/air mixtures[J]. Journal of Hazardous Material,1999,65 (3): 233-244.
    [31]冯长根,陈林顺,钱新明.点火位置对独头巷道中瓦斯爆炸超压的影响[J].安全与环境学报,2001,1(5):56-59.
    [32]吴红波,张立,郭子如.点火能对瓦斯火焰传播影响的实验研究[J].煤矿爆破,2004,22(01):5-7.
    [33]卢捷.多元混合气体爆炸特性与安全控制研究[D].北京:北京理工大学,2003.
    [34]谭迎新.可燃气体爆炸特性试验装置的电气控制设计与制作[D].太原:华北工学院,1987.
    [35]李润之,司荣军.点火能量对瓦斯爆炸压力影响的实验研究[J].矿业安全与环保,2010,37(2):14-16.
    [36]陈先锋.丙烷-空气预混火焰微观结构及加速传播过程中的动力学研究[D].合肥:中国科学技术大学,2007.
    [37]Babkin V S, Korzhavin A A, Bunev v a. Propagation of premixed gaseous explosion flame in porous media[J]. Combustion and Flame,1998,87:182-190.
    [38]Ritsu Dobashi. Experimental study on gas explosion behavior in enclosure[J]. Journal of Loss Prevention in the Process Industries,1997,10(2):83-89.
    [39]Masri A R, Ibrahim S S, Nehzat N, et al. Experiment study of premixed flame propagation over various solid obstructions[J]. Experimental Thermal and Fluid Science,2000,21: 109-116.
    [40]S.S. Ibrahim, A.R.Masri. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries,2001,14(3): 213-221.
    [41]Hjertager.B.H. Simulation of transient compressible turbulent reactive flows[J]. Combustion Science and Technology,1982,27 (5-6):159-170.
    [42]J.Kindracki, A.Kobiera, G.Rarata, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels[J]. Journal of Loss Prevention in the Process Industries,2007,20 (4-6):551-561.
    [43]G.Ciccarelli, CJ.Flowler, M.Bardon. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves,2005,14(3):161-166.
    [44]K.-H.Oh, H*.Kim, J.-B.Kim, et al. A study on the obstacle-induced variation of the gas explosion characteristics[J]. Journal of Loss Prevention in the Process Industries,2001,14 (6):597-602.
    [45]Lee Y. S., Park D.J., Green A.R., et al. Experimental investigations on gas explosions by different ignition positions and solid obstacles in a partially confined region[C]. Progress in Safety Science and Technology (Vol.IV) Part A-Proceedings of the 2004 International Symposium on Safety Science and Technology,2004:1110-1119.
    [46]A.V.Fedorov. Some phenomena during flame propagation in a half-open channel with an obstacle[J]. Combustion, Explosion, and Shock Waves,2003,39 (5):509-512.
    [47]林柏泉.瓦斯爆炸动力学特征参数的测定及其分析[J].煤炭学报,2002,27(2):164-167.
    [48]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [49]吴红波,颜事龙,张立.障碍物对瓦斯火焰传播过程的影响[J].煤矿爆破,2006,24(1):1-3.
    [50]何学秋,杨艺,王恩元,等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报,2004,29(2):186-189.
    [51]杨宏伟,范宝春,李鸿志.障碍物和管壁导致火焰加速的三维数值模拟[J].爆炸与冲击,2001,21(04):259-264.
    [52]应展烽.预混火焰与障碍物相互作用的研究[D].南京:南京理工大学,2008.
    [53]叶经方,范宝春,应展烽,等.甲烷-空气预混火焰越过不同形状障碍物的实验研究[J].实验流体力学,2006,20(4):40-44.
    [54]叶经方,姜孝海,范宝春,等.同形障碍物影响火焰的实验和数值研究[J].中国安全生产科学技术,2006,2(03):9-13.
    [55]毕明树,董呈杰.密闭空间障碍物条件下甲烷-空气爆炸实验[A].中国职业安全健康协会2009年学术年会论文集[C],2009:350-354.
    [56]朱建华.管道内可燃气体爆炸过程研究及危险性评价[D].北京:北京理工大学,2003.
    [57]刘玉华,丁以斌.立体结构障碍物不同阻塞比对火焰传播的影响[J].湖南有色金属,2008,24(1):1-4.
    [58]张雷.管道中甲烷空气预混气体火焰加速实验研究与数值模拟[D].淮北:安徽理工大学,2008.
    [59]丁以斌,郭子如,汪泉,等.立体结构障碍物对甲烷预混火焰传播影响的研究[J].中国安全科学学报,2010,20(12):52-55.
    [60]John Nagy, John W.Conn. Harry C.Verakis. Explosion development in a spherical vessels[M]. U.S., Bureau of Mines,1969.
    [61]D.J.Bayless, A.R.Schroeder, D.C.Johnson, et al. The effects of natural gas cofiring on the ignition delay of pulverized coal and coke particles[J]. Combustion Science and Technology,1994,98 (1-3):85-198.
    [62]Collins P.K, Schroeder A.R, Buckius R.O., et al. Flammability characteristics of treated coals[J]. Journal of Energy Resources and Technology,1992,114 (1):65-69.
    [63]Cashdollar.Kenneth L. Coal dust explosibility[J]. Journal of Loss Prevention in the Process Industry,1996,9(1):65-76.
    [64]Cashdollar.Kenneth L. Overview of dust explosibility characteristics[J]. Journal of Loss Prevention in the Process Industry,2009,13 (1):183-199.
    [65]Gieras.M, Klemens.R, Rarata.G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature[J]. Journal of Loss Prevention in the Process Industries,2006,19(2-3):263-270.
    [66]何朝远.瓦斯煤尘共存条件下爆炸危险性的研究[J].煤矿安全,1996,27(12):5-6.
    [67]费国云.独头巷道中瓦斯爆炸引爆沉积煤尘的试验[J].煤炭工程师,1997,21(4):16-19.
    [68]刘义.甲烷、煤尘火焰结构及传播特性的研究[D].合肥:中国科学技术大学,2006.
    [69]Yi Liu. Jinhua Sun, Dongliang Chen. Flame propagation in the hybrid mixture of coal dust and methane[J]. Journal of Loss Prevention in the Process Industries,2007,20 (4-6): 691-697.
    [70]陈东梁.甲烷/煤尘复合火焰传播特性及机理的研究[D].合肥:中国科学技术大学,2007.
    [71]张莉聪,徐景德,吴兵,等.甲烷-煤尘爆炸波与障碍物相互作用的数值研究[J].中国安全科学学报,2004,14(8):82-85.
    [72]司荣军.矿井瓦斯煤尘爆炸传播规律研究[D].青岛:山东科技大学,2007.
    [73]VDI3673 Part 1, Pressure venting of dust explosions[S]. Verein Deutscher Ingenieure. Beuth Verlag Gmbh, Berlin,1974.
    [74]NFPA 68, Guide for venting deflagrations[S]. National Fire Protection Association, Quincy, MA, USA,1988.
    [75]国家安全生产监督管理总局.GB/T15605-2008粉尘爆炸泄压指南[S].北京:中国标准出版社,2009-10-01.
    [76]Francesco Tamanini, John V.Valiulis. Improved guidlines for the sizing of vents in dust explosions[J]. Journal of Loss Prevention in the Process Industries,1996,9(1):105-118.
    [77]Bradley D, Mitcheson A. Venting of gaseous explosions in spherical vessels[J]. Combustion and Flame,1978,32 (3):221-255.
    [78]Y.Wu, J.Swithenbank. Experimental studies on gas-dynamics of venting explosions[J]. Chemical Engineering Research and Design, Part A,1992,70(3):200-202.
    [79]A.Alexiou, G.E.Andrews, H.Phylaktou. Side-vented gas explosions in a long vessel:the effect of vent position[J]. Journal of Loss Prevention in the Process Industries,1996,9(5): 351-356.
    [80]Catlin C.A.. Scale effects on the external combustion caused by venting of a confined explosion[J]. Combustion and Flame,1991,83(3-4):399-411.
    [81]Ngay.J, Verakis H.C.. Development and control of dust explosions[M]. New York:Marcel Dekker Inc,1983
    [82]杜志敏.泄爆过程中二次爆炸等异常现象的实验研究[D].南京:南京理工大学,2003.
    [83]姜孝海.泄爆外流场的动力学机理研究[D].南京:南京理工大学,2004.
    [84]师喜林,王志荣,蒋军成.球形容器内气体的泄爆过程[J].爆炸与冲击,2009,29(4):390-394.
    [85]师喜林,蒋军成,王志荣,等.甲烷-空气预混气体泄爆过程的实验研究[J].中国安全科学学报,2007,17(12):107-110.
    [86]胡俊,万士昕,浦以康,等.柱形容器开口泄爆过程中的火焰传播特性[J].爆炸与冲击,2004,24(4):330-336.
    [87]何学超.丙烷-空气预混火焰在90°弯曲管道内传播特性的实验和模拟研究[D].合肥:中国科学技术大学,2010.
    [88]Chi D.N.N, Perlee H.E. Mathematical study of a propagating flame and its induced aerodynamics in a coal mine passageway [M]. U.S. Bureau of Mines,1974.
    [89]喻健良.预混火焰在微小通道中传播和淬熄的研究[D].大连:大连理工大学,2008.
    [90]杨春丽.突出诱发瓦斯爆炸数值模拟及实证研究[D].北京:中国矿业大学(北京):2009.
    [91]林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报(自然科学版),2002,31(1):6-9.
    [92]汀泉.管道中甲烷-空气预混气爆炸火焰传播的研究[D].淮北:安徽理工大学,2006.
    [93]Arntzen B J. Modeling of turbulence and combustion for simulation of gas explosions in complex geometries [D]. Norwegian University of Science and Technology, Norway,1998.
    [94]Bakke J R, Hjertager B H. The effect of explosion venting in empty vessels[J]. International Journal for Numerical Methods in Engineering,1987,24(1):129-140.
    [95]Michele Maremonti, Gennaro Russo, Ernesto Salzano, et al. Numerical simulation of gas explosions in linked vessels[J]. Journal of Loss Prevention in the Process Industries,1999, 12 (3):189-194.
    [96]E.Salzano, F.S.Marra, G.Russo, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials,2002,95 (3):233-247.
    [97]Bretislav Janovsky, Petr Selesovsky, Jan Horkel, et al. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the Process Industries,2006,19 (2-3):280-287.
    [98]Kirkpatrick M P, Armfield S W, Masri A R, et al. Large eddy simulation of a propagating turbulent premixed flame[J]. Flow, Turbulence and Combustion,2003,70(1-4):1-19.
    [99]Zhang Q, Pang L, Liang H M. Effect of scale on the explosion of methane in air and its shockwave[J]. Journal of Loss Prevention in the Process Industries,2011,24(1):43-48.
    [100]LI Xiao-dong, BAI Chun-hua, LIU Qing-min. Effects of obstacles on flame propagation behavior and explosion overpressure development during gas explosions in a large closed tube[J]. Journal of Beijing Institute of Technology,2007,16 (4):399-403.
    [101]吴兵.矿井半封闭空间瓦斯爆炸过程动力学研究[D].北京:中国矿业大学(北京),2003.
    [102]周校平,张晓男.燃烧理论基础[M].上海:上海交通大学出版社,2001.
    [103]W.P.M.Mercx, A.C.Berg. Explosion blast prediction model in the revised CPR 14E (Yellow Book)[J]. Process Safety Progress,1997,16(3):152-159.
    [104]程远平,王海锋,王亮,等.煤矿瓦斯防治理论与工程应用[M].徐州,中国矿业大学出版社,2010.
    [105]周校平,张晓男.燃烧原理基础[M].上海,中国交通大学出版社,2001.
    [106]姚干兵.液态碳氢燃料云雾爆轰及其抑制与泄放研究[D].南京:南京理工大学,2006.
    [107]张廷芳.计算流体力学[M].大连理工大学出版社,1992.
    [108]Launder B. E., Spalding D.B. Mathematical models of turbulence [M]. Academic press, London,1972.
    [109]梁春利,毕明树.设置障碍物密闭容器内气体爆炸数值模拟[J].石油化工设备,2005,34(6):23-26.
    [110]张峥,陈思维,杜杨.油气管道中可燃气体爆炸特性的数值模拟[J].管道技术与设备,2008,34(9):2-5.
    [111]孙威.通光口径纹影系统结构分析与设计[D].绵阳:中国工程物理研究院,2010.
    [112]安新亮,何旭,王丽雯,等.应用高速纹影法对汽油机燃烧过程的研究[J].内燃机工程,2007,28(2):1-5.
    [113]Jarosinsky.J, Strehlow. R.A, Azarbarzin.A. The mechanism of lean limit extinguishment of an upward propagating flame in a standard flammability tube[J]. In 19th Symposium on Combustion, the Combustion Institute,1982:1549-1557.
    [114]Patnaik G., Kailasanath K. Numerical simulation of the extinguishment of downward propagating flames[J]. In 24th Symposium on Combustion, the Combustion Institute, 1992:189-195.
    [115]王岳,雷宇,张孝谦,等.浮力对皱折锋面预混V形火焰的影响[J].燃烧科学与技术,2002,8(6):493-497.
    [116]秦文茜.超细水雾抑制含障碍物甲烷爆炸的实验研究[D].合肥:中国科学技术大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700