用户名: 密码: 验证码:
深圳河及沿岸污水处理厂典型雌激素微生物转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取雌激素酮(E1)、雌二醇(E2)、雌三醇(E3)、17α-雌二醇(17α-E2)和雌炔醇(EE2)等5种雌激素,采用气相色谱质谱联用(GC-MS)方法,调查了其在深圳河湾水体及相关污水处理厂中的时空分布和通量变化规律。研究污水厂不同类型活性污泥对雌激素的吸附降解,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)方法剖析雌激素胁迫下微生物群落结构的变化,识别功能微生物种群。模拟研究深圳河水体中雌激素物质在不同溶解氧条件下的衰减转化以及对微生物群落的影响。采用Gaussian03量子化学软件计算和分析雌激素生物转化过程的中间产物和代谢途径。
     深圳河湾水体中5种雌激素均有检出,EE2浓度最高,为15.6~443.7ng·L~(-1),其他4种雌激素浓度低于80ng·L~(-1)。深圳河中游雌激素污染较严重。在沿岸3个污水厂中,EE2在污水厂出水中浓度最高达853.0ng·L~(-1)。二级生物处理工艺对E2、E3和EE2的平均去除率分别约为19.1%、71.7%和81.2%,对E1和17α-E2去除率为负值。雨季,通过上游和中游两座污水厂排入深圳河的雌激素总通量分别是17.7g·d~(-1)和17.8g·d~(-1),对深圳河相应断面的贡献率分别为25%和12%;旱季,两座污水厂出水雌激素通量分别为43.5g·d~(-1)和69.7g·d~(-1),相应贡献率上升为39%和52%。活性污泥对雌激素的吸附在30min~1h之内达到平衡,遵循Langmuir和Freundlich模型。活性污泥对天然雌激素E1、E2、E3和17α-E2的生物降解速率分
     别约为347μg·L~(-1)·d~(-1)、252μg·L~(-1)·d~(-1)、405μg·L~(-1)·d~(-1)和268μg·L~(-1)·d~(-1)。EE2降解最慢,速率约为14μg·L~(-1)·d~(-1)。在单一雌激素胁迫条件下,E1和E3导致群落多样性增加,而E2、EE2和17α-E2导致群落多样性降低。耐受雌激素长期胁迫的菌群多为γ-变形菌。硝化细菌在EE2和E2转化过程中可能起到重要作用。
     深圳河水中溶解氧浓度对雌激素EE2和E2的转化有较大影响。好氧、缺氧和厌氧状态下EE2的平均半衰期分别约为12天、3.5天和20天。E2的半衰期分别为<1天、<1天和3天。缺氧条件下EE2和E2的转化最快。E1和E3是EE2和
     E2的转化产物。河水中的主要功能菌群包括常见的污染物降解菌、贫营养环境指示菌以及多种致病菌。
     量子化学计算表明,5种雌激素分子中,E1和E3能隙相对较低,反应活性相对较强;E3首先氧化C16位所连羟基,再进一步开环转化;E1分子中C17-C13键级最低,可能在此通过环氧化发生环开裂,生成小分子羧酸等易降解物质。
This thesis focused on the transformation of typical estrogens in Shenzhen River and related wastewater treatment plants (WWTPs). Five steroid estrogens including estrone (E1), estradiol (E2), estriol (E3),17a-estradiol (17a-E2) and ethinylestradiol (EE2) were selected as target chemicals. The distribution and flux shift of estrogens in Shenzhen River and three related sewage treatment plants (STPs) were investigated using gas chromatography-mass spectrometry (GC-MS). Adsorption and biodegradation of estrogens were studied using activated sludge at designed conditions. The microbial community structure under the estrogen stress was analyzed with the method of16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Transformation of estrogens in river water under different dissolved oxygen conditions was explored. The dominant microbial populations were identified in detail. A quantum chemistry software of Gaussian03was applied to identify the intermediates and metabolic pathways of estrogens.
     It was found that five selected estrogens including E1, E2, E3,17a-E2and EE2were detected in Shenzhen River water. EE2was measured with concentrations as15.6~443.7ng·L-1, while other four estrogens with concentrations lower than80ng·L-It was showed that midstream was more polluted than upstream and downstream. In the effluents of three wastewater treatment plants (WWTPs), EE2was the predominant estrogen with high concentration reached853.0ng·L-1. Biological treatment processes in WWTPs were effective in removing E2, E3and EE2with mean removals of19.1%,71.7%and81.2%, respectively. However, E1and17α-E2were removed with negative removal ratios.
     Estrogen flux contributed by WWTP effluents were one of the main estrogen sources of Shenzhen River. In wet season, average fluxes of total estrogens discharged from two WWTPs were17.7g·d-1and17.8g·d-1, respectively, which took25%and12%proportions of Shenzhen River fluxes. In dry season, the average WWTPs effluent fluxes increased up to43.5g·d-1and69.7g·d-1with39%and52%contribution to Shenzhen River, respectively.
     The sorption equilibrium was attained in30min-lh and the biodegradation took relatively longer time. Under aerobic conditions, the average degrading rates of E1, E2, E3and17α-E2were347μg·L-1·d-1,252μg·L-1·d-1,405μg-L-1·d-1and268μg·L-1·d-1, respectively. However, the degradation rate of EE2was as low as14μg·L-1·d-1.16S rDNA analysis showed that E1and E3were able to increase the microbial diversity, while E2,17α-E2and EE2led to diversity decrease, γ-proteobacteria were identified as the dominant populations which were acclimatized under the estrogen stress in the long run. It was found that nitrifying bacteria was likely the significant functional population in EE2and E2transformation.
     Dissolved oxygen was a key factor for estrogen transformation in Shenzhen River. It was demonstrated that the average half-life time of EE2was12days under aerobic conditions and relatively long half-life time of20days under anaerobic conditions. However, the EE2half-life time under anoxic conditions was considerably short as3.5days. The average half-lives of E2under aerobic, anoxic and anaerobic conditions were <1day,<1day and3days, respectively. Estrone (E1) and estriol (E3) were detected as the intermediates in EE2and E2transformation. Bacterial communities in overlying water shifted gradually. Dominant populations included common biodegraders and typical oligotrophic microorganisms. There were also some pathogenic bacteria found in Shenzhen River.
     Molecular structural parameters including electron cloud, energy gap, dipole moment and bond order were demonstrated to be closely related to the reactivity and transformation properties of estrogens. Calculation results showed that the energy gaps of the frontier electron orbit were higher in E2,17α-E2and EE2than that in E1and E3, which increased the reactivity of E1and E3. It was demonstrated that hydroxyl oxidation on C16atom of E3occurred initially before further transformation. E1may be attacked at C13-C17bond due to the lowest bond order, which led to further epoxidation and cleavage of D ring on E1molecule.
引文
[1]Vos J G, Dybing E, Greim H A, et al. Health effects of endocrine-disrupting chemicals on wild life, with special reference to the European situation. Critical Reviews of Toxicology,2000,30:71-133.
    [2]Jobling S, Nola M, Tyler C R, et al. Widespread sexual disruption in wild fish. Environmental Science&Technology,1998,32:2498-2506.
    [3]托马斯·A·特内斯,阿德里亚诺·乔斯(著),周雪飞,张亚雷(译).人类药品、激素和香料——城市水资源管理中微污染物的挑战.上海:同济大学出版社,2009:168.
    [4]Purdom C E, Hardiman P A, Bye V V J, et al. Estrogenic effects of effluent from sewage treatment works. Chemistry and Ecology,1994,8:275-285.
    [5]Lange R, Hutchinson T H, Croudace C P, et al. Effects of the synthetic estrogen17a-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology&Chemistry,2001,20(6):1216-1227.
    [6]Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STW effluent.2. in vivo responses in trout and roach. Environmental Science&Technology,1998,32(11):1559-1565.
    [7]Ternes T A, Stumpf M, Mueller J, et al. Behavior and occurrence of estrogens in municipal sewage treatment plants-Ⅰ. investigations in Germany, Canada and Brazil. Science of the Total Environment,1999,225,81-90.
    [8]Ternes T A, Kreckel P, Mueller J. Behaviour and occurrence of estrogens in municipal sewage treatment plants-Ⅱ. aerobic batch experiments with activated sludge. Science of the Total Environment,1999,225:91-99.
    [9]Andersen H R, Siegrist H, Halling-Sorensen B. Fate of estrogens in a municipal sewage treatment plant. Environmental Science&Technology,2003,37:4021-4026.
    [10]谭仁祥主编.甾体化学.化学工业出版社.2009年1月第1版.北京.P52
    [11]Johnson A C, Belfroid A, Di Corcia A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment,2000,256:163-173.
    [12]Khanal S K, Xie B, Thompson M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environmental Science&Technology,2006,40:6537-6546.
    [13]Peter K, Vollhardt C, Schore N E(著),戴立信,席振峰,王梅祥,等(译).有机化学结构与功能.北京:化学工业出版社,2006.
    [14]李青松.水中甾体类雌激素内分泌干扰物去除性能及降解机理研究.2007.同济大学博士学位论文.
    [15]Soto A M, Calabro J M, Prechtl N V, et al. Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in eastern nebraska, USA. Environmental Health Perspectives,2004,112(3):346-352.
    [16]Hutchins S R, White M V, Hudson F M, et al. Analysis of lagoon Samples from different concentrated animal feeding operations for estrogens and estrogen conjugates. Environmental Science&Technology,2007,41:738-744.
    [17]Kolodziej E, Sedlak D. Rangeland grazing as a source of steroid hormones to surface waters. Environmental Science&Technology.2007,41(10):3514-3520.
    [18]Schiliro T, Pignata C, Fea E, et al. Toxicity and Estrogenic Activity of a Wastewater Treatment Plant in Northern Italy. Archives of Environmental Contamination and Toxicology.2004,47(4):456-462.
    [19]Harries J E, Shenhan D A, Jobling S, et al. A survey of estrogenic activity in United Kingdom inland waters. Environmental Toxicology&Chemistry,1996,15:1993-2002.
    [20]Harries J E, Sheahan D A, Jobling S, et al. Estrogenic activity in five United Kingdom rivers detected by measurement of vitellogenesis in caged male trout. Environmental Toxicology&Chemistry,1997,16:534-542.
    [21]Hansen P D, Dizer H, Hock B, et al. Vitellogenin-a biomarker for endocrine disruptors. Trends in Analytical Chemistry,1998,17(7):448-451.
    [22]吴翠琴,袁东星,刘宝敏.乙炔基雌二醇对真鲷幼鱼的雌激素效应研究.海洋环境科学,2009,28(6):630-634.
    [23]Hashimoto S, Bessho H, Hara A, et al. Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo Bay, Japan. Marine Environmental Research,2000,49,39-53.
    [24]Aerni H R, Kobler B, Rutishauser B V, et al. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Analytical and Bioanalytical Chemistry,2004,378:688-696.
    [25]Hashimoto S, Horiuchi A, Yoshimoto T, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. Archives of Environmental Contamination and Toxicology,2005,48:209-216.
    [26]Folmar L C, Denslow N D, Rao V, et al. Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environmental Health Perspectives,1996,104:1096-1101.
    [27]Lye C M, Frid C L J, Gill M E, et al. Abnormalities in the reproductive health of flounder Platichthys flesus exposed to effluent from a sewage treatment works. Marine Pollution Bulletin,1997,34:34-41.
    [28]Scott A P, Katsiadaki I, Mark F K, et al. Relationship between sex steroid and vitellogenin concentrations in flounder (Platichthys flesus) sampled from an estuary contaminated with estrogenic endocrine-disrupting compounds. Environmental Health Perspectives.2006,114(s1):27-31.
    [29]Shao J, Shi G, Jin X, et al. Preliminary survey of estrogenic activity in part of waters in Haihe River, Tianjin. Chinese Science Bulletin,2005,50(22):2565-2570.
    [30]Pawlowski S, van Aerle R, Tyler C R, et al. Effects of17a-ethynylestradiol in a fathead minnow (Pimephales promelas) gonadal recrudescence assay. Ecotoxicology and Environmental Safety,2004,57:330-345.
    [31]谭仁祥.甾体化学.北京:化学工业出版社,2009.
    [32]荣顺兴.雌激素受体的研究进展.职业卫生与应急救援,2005,23(1):11-14.
    [33]Tanenbaum D M, Wang Y, Williams S P, et al. Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains. Proceedings of the National Academy of Sciences,1998,95:5998-6003.
    [34]Tedesco R, Thomas J A, Katzenellenbogen B S, et al. The estrogen receptor:a structure-based approach to the design of new specific hormone-receptor combinations. Chemistry&Biology,2001,8(3):277-287.
    [35]Lai K M, Johnson K L, Scrimshaw M D, et al. Binding of waterborne steroid estrogens to solid phases in river and estuarine system. Environmental Science&Technology,2000,34:3890-3894.
    [36]Ying G G, Kookana R S, Ru Y J. Occurrence and fate of hormone steroids in the environment. Environmental International,2002,28:545-551.
    [37]Sun W L, Ni J R, Xu N, et al. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere,2007,66:700-707.
    [38]Lai K M, Scrimshaw M D, Lester J N. Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Appllied Environmental Microbiology,2002,68:859-864.
    [39]Lai K M, Scrimshaw M D, Lester J N. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Science of the Total Environment,2002,289:159-168.
    [40]Langston W J, Burt G R, Chesman B S, et al. Bioavailability and effects of oestrogens and xeno-oestrogens in the aquatic environment. Journal of Marine Biology Assessment,2005,85:1-31.
    [41]Komori K, Tanaka H, Okayasu Y, et al. Analysis and occurrence of estrogen in wastewater in Japan. Water Science&Technology.2004,50(5):93-100.
    [42]Soliman M A, Pedersen J A,(Mel)Suffet I H. Rapid gas chromatography-mass spectrometry screening method for human pharmaceuticals, hormones, antioxidants and plasticizers in water. Journal of Chromatography A,2004,1029(1-2):223-237.
    [43]Williams R J, Johnson A C, Smith J J L, et al. Steroid Estrogens Profiles along River Stretches Arising from Sewage Treatment Works Discharges. Environmental Science&Technology,2003,37:1744-1750.
    [44]Pedersen J A, Soliman M,(Mel)Suffet I H. Human pharmaceuticals, Hormones, and Personal Care Product Ingredients in Runoff from Agricultural Fields Irrigated with Treated Wastewater. Journal of Agricultural and Food Chemistry,2005,53:1625-1632.
    [45]Ying G G, Kookana R S, Dillon P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water Research,2003,37:3785-3791.
    [46]Peng X, Wang Z, Yang C, et al. Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography-mass spectrometry. Journal of Chromatography A,2006,1116:51-56.
    [47]Lopez de Alda M J, Barcelo D. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by fully automated on-line solid-phase extraction-liquid chromatography-diode array detection. Journal of Chromatography A,2001,911:203-210.
    [48]Ternes T A. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trends in Analytical Chemistry,2001,20(8):419-434.
    [49]Lopez de Alda M J, Barcelo D. Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry. Journal of Chromatography A,2000,892(1-2):391-406.
    [50]Lopez de Alda M J, Barcelo D. Use of solid-phase extraction in various of its modalities for sample preparation in the determination of estrogens and progestogens in sediment and water. Journal of Chromatography A,2001,938:145-153.
    [51]Nakamura S, Hwee Sian T, Daishima S. Determination of estrogens in river water by gas chromatography-negative-ion chemical-ionization mass spectrometry. Journal of Chromatography A,2001,919(2):275-282.
    [52]Croley T R, Hughes R J, Koenig B G, et al. Mass spectrometry applied to the analysis of estrogens in the environment. Rapid Communications in Mass Spectrometry,2000,14(13):1087-1093.
    [53]Pojana G, Gomiero A, Jonkers N, et al. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International,2007,33(7):929-936.
    [54]Quintana J B, Carpinteiro J, Rodriguez I, et al. Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection. Journal of Chromatography A,2004,1024:177-185.
    [55]Lopez de Alda M J, Barcelo D. Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius Journal of Analytical Chemistry,2001,371:437-447.
    [56]Ternes T A, Andersen H, Gilberg D, et al. Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry,2002,74:3498-3504.
    [57]Ying G G, Kookana R S. Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment. Environmental Science&Technology,2003,37:1256-1260.
    [58]Desbrow C, Routledge E J, Brighty G C, et al. Identification of estrogenic chemicals in STW effluent.1. Chemical fractionation and in vitro biological screening. Environmental Science&Technology,1998,32:1549-1558.
    [59]Huang C, Sedlak D L. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using ELISA and GC/MS/MS. Environmental Toxicology&Chemistry,2001,20:133-139.
    [60]Isobe T, Shiraishi H, Yasuda M, et al. Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,2003,984:195-202.
    [61]Gomes R L, Avcioglu E, Scrimshaw M D, et al. Steroid estrogen determination in sediment and sewage sludge:a critique of sample preparation and chromatographic/mass spectrometry considerations, incorporating a case study in method development. Trends of Analytical Chemistry,2004,23:737-744.
    [62]Kuster M, Lopez de Alda M J, De Alda M J L, et al. Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. Trends in Analytical Chemistry,2004,23:790-798.
    [63]Liu R, Zhou J L, Wilding A. Microwave-assisted extraction followed by gas chromatography-mass spectrometry for the determination of endocrine disrupting chemicals in river sediments. Journal of Chromatography A,2004,1038:19-26.
    [64]Campbell C G, Borglin S E, Green F B, et al. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water:A review. Chemosphere,2006,65:1265-1280.
    [65]Kozlowska-Tylingo K, Namiesnik J, Gorecki T. Determination of estrogenic endocrine disruptors in environmental samples-a review of chromatographic methods. Critical Reviews in Analytical Chemistry,2010,40(3):194-201.
    [66]Morales-Munoz S, Luque-Garcia J L, Ramos M J, et al. Sequential automated focused microwave-assisted soxhlet extraction of compounds with different polarity from marine sediments prior to gas chromatography mass spectrometry detection. Chromatographia,2005,62(1/2):69-74.
    [67]Gomes R L, Birkett J W, Scrimshaw M D, et al. Simultaneous determination of natural and synthetic steroid estrogens and their conjugates in aqueous matrices by liquid chromatography/mass spectrometry. International Journal of Environmental Analytical Chemistry,2005,85(1):1-14.
    [68]Xu X, Roman J M, Issaq H J, et al. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Analytical Chemistry,2007,79:7813-7821.
    [69]Salvador A, Moretton C, Piram A, et al. On-line solid-phase extraction with on-support derivatization for high-sensitivity liquid chromatography tandem mass spectrometry of estrogens in influent/effluent of wastewater treatment plants. Journal of Chromatography A,2007,1145:102-109.
    [70]Beck I-C, Bruhn R, Gandrass J, et al. Liquid chromatography-tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. Journal of Chromatography A,2005,1090:98-106.
    [71]Yamasaki K, Takeyoshi M, Yakabe Y, et al. Comparison of reporter gene assay and immature rat uterotrophic assay of twenty three chemicals. Toxicology,2002,170:21-30.
    [72]Thorpe K L, Cummings R I, Hutchinson T H, et al. Relative potencies and combination effects of steroidal estrogens in fish. Environmental Science&Technology,2003,37(6):1142-1149.
    [73]Jurgens M D, Holthaus K I E, Johnson A C, et al. The potential for estradiol and ethinylestradiol degradation in English rivers. Environmental Toxicology&Chemistry,2002,21:480-488.
    [74]张静云,吕剑,何义亮,等.环境雌激素的生物检测与应用.环境科学与技术,2007,30(2):100-103.
    [75]http://news.xinhuanet.com/english/2007-01/12/content_5597696.htm
    [76]Rutishauser B V, Pesonen M, Escher B I, et al. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environmental Toxicology&Chemistry,2004,23:857-864.
    [77]周海东,黄霞,王晓琳,等.北京市城市污水雌激素活性的研究.环境科学,2009,30(12):3590-3595.
    [78]Pawlowski S, Ternes T A, Bonerz M, et al. Estrogenicity of solid phase2extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. Toxicology in Vitro,2004,18(1):129-138.
    [79]Tanaka H, Yakou Y, Takahashi A, et al. Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Science&Technology,2001,43(2):125-132.
    [80]Svenson A, Allard A S, Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research,2003,37(18):4433-4443.
    [81]Beck I C, Bruhn R, Gandrass J. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere,2006,63:1870-1878.
    [82]Jin S, Yang F, Liao T, et al. Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environmental Toxicology&Chemistry,2008,27(1):146-153.
    [83]Gutendorf B, Westendorf J. Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens, and xenoestrogens. Toxicology,2001,166:79-89.
    [84]Korner W, Spengler P, Bolz U, et al. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany.2. Biological analysis. Environmental Toxicology&Chemistry,2001,20:2142-2151.
    [85]Tabak H H, Bunch R L. Steroid hormones as water pollutants Ⅰ. Metabolism of natural and synthetic ovulation-inhibiting hormones by microorganisms of activated sludge primary settled sewage. Developments in Industrial Microbiology,1970,11:367-376.
    [86]Tabak H H, Bloomhuff R N, Bunch R L. Steroid hormones as water pollutants Ⅱ. Studies on the persistency and stability of natural urinary and synthetic ovulation-inhibiting hormones in untreated and treated wastewaters. Developments in Industrial Microbiology,1981,22:497-519.
    [87]Shore L S, Gurevitz M, Shemesh M. Estrogen as an environmental pollutant. Bulletin of Environmental Contamination and Toxicology,1993,51:361-366.
    [88]D'Ascenzo D, Corcia A D, Gentili A, et al. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment,2003,302:199-209.
    [89]Baronti C, Curini R, D'Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science&Technology,2000,34:5059-5066.
    [90]Carballa M, Omil F, Lema J M, et al. Behavior of pharmaceuticals, cosmetics andhormones in a sewage treatment plant. Water Research,2004,38:2918-2926.
    [91]Braga O, Smythe G A, Schafer A I, et al. Steroid estrogens in primary and tertiary wastewater treatment plants. Water Science&Technology,2005,52(8):273-278.
    [92]Esperanza M, Suidan M T, Marfil-Vega R, et al. Fate of sex hormones in two pilot-scale municipal wastewater treatment plants:Conventional treatment. Chemosphere,2007,66:1535-1544.
    [93]Nasu M, Goto M, Kato H, et al. Study on endocrine disrupting chemicals in wastewater treatment plants. Water Science&Technology,2000,43(2):101-108.
    [94]Belfroid A C, Van der Horst A, Vethaak A D, et al. Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Science of the Total Environment,1999,225:101-108.
    [95]Clara M, Kreuzinger N, Strenn B, et al. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research,2005,39:97-106.
    [96]Cargouet M, Perdiz D, Mouatassim-Souali A, et al. Assessment of river contamination by estrogenic compounds in Paris area (France). Science of the Total Environment,2004,324:55-66.
    [97]Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere,2005,59:511-524.
    [98]Snyder S A, Keith T L, Verbrugge D A, et al. Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environmental Science&Technology,1999,33:2814-2820.
    [99]Wang Y, Hu W, Cao Z, et al. Occurrence of endocrine-disrupting compounds in reclaimed water from Tianjin, China. Analytical and Bioanalytical Chemistry,2005,383:857-863.
    [100]Hashimoto T, Murakami T, Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. Water Research,2009,43:573-582.
    [101]Braga O, Smythe G A, Schafer A I, et al. Fate of Steroid Estrogens in Australian Inland and Coastal Wastewater Treatment Plants. Environmental Science&Technology,2005,39(9):3351-3358.
    [102]Johnson A C, Sumpter J P. Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science&Technology,2001,35:4697-4703.
    [103]Layton A C, Gregory B W, Seward J R, et al. Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee, USA. Environmental Science&Technology,2000,34:3925-3931.
    [104]Vader J S, van Ginkel C G, Sperling F M G M, et al. Degradation of ethinyl estradiol by nitrifying activated sludge. Chemosphere,2004,41:1239-1243.
    [105]崔成武,纪树兰,任海燕,等.气提式三重循环生物膜反应器处理制药废水中的甾体雌激素.环境科学研究,2006,19(4):56-60.
    [106]Chang S, Jang N, Yeo Y, et al. Fate and transport of endocrine-disrupting compounds (oestrone and17β-oestradiol) in a membrane bio-reactor used for water re-use. Water Science&Technology,2006,53(9):123-130.
    [107]Hu J Y, Chen X, Tao G, et al. Fate of Endocrine Disrupting Compounds in Membrane Bioreactor Systems. Environmental Science&Technology2007,41(11):4097-4102.
    [108]Nghiem L D, McCutcheon J, Schafer A I, et al. The role of endocrine disrupters in water recycling:risk or mania? Water Science&Technology,2004,50(2):215-220.
    [109]Williams R J, Jurgen M D, Johnson A C. Initial predictions of the concentrations and distribution of17α-estradiol, oestrone and ethynyl oestradiol in3English rivers. Water Research,1999,33:1663-1671.
    [110]Williams R J, Johnson A C, Smith J J L, et al. Steroid Estrogens Profiles along River Stretches Arising from Sewage Treatment Works Discharges. Environmental Science&Technology,2003,37:1744-1750.
    [111]Kuch H M, Ballschmitter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environmental Science&Technology,2001,35:3201-3206.
    [112]Labadie P, Budzinski H. Determination of Steroidal Hormone Profiles along the Jalle d'Eysines River (near Bordeaux, France). Environmental Science&Technology,2005,39:5113-5120.
    [113]Tabata A, Kashiwa S, Ohnishi Y, et al. Estrogenic influences of estradiol-17β, p-nonylphenol and bisphenol A on Japanese Medaka (Oryzias iatipes) at detected environmental concentrations. Water Science&Technology,2001,43(2):109-116.
    [114]Morteani G, Moller P, Fuganti A, et al. Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environmental Geochemistry and Health,2006,28:257-264.
    [115]Mibu K, Wada J, Okayasu Y, et al. Distribution of estrogen, nonylphenol and its derivatives in the sediments of a shallow lake. Water Science&Technology,2004,50(5):173-179.
    [116]Lee Y C, Wang L M, Xue Y H, et al. Natural estrogens in the surface water of Shenzhen and the sewage discharge of Hong Kong. Human and Ecological Risk Assessment,2006,12:301-312.
    [117]Liu Y, Guan Y, Tam N F Y, et al. Influence of Rainfall and Basic Water Quality Parameters on the Distribution of Endocrine-Disrupting Chemicals in Coastal Area. Water, Air,&Soil Pollution,2010,209(1-4):333-343.
    [118]Peck M, Gibson R W, Kortenkamp A, et al.(2004). Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environmental Toxicology&Chemistry,23,945-952.
    [119]Ying G G, Kookana R S. Sorption and degradation of estrogen-like-endorine disrupting chemicals in soil. Environmental Toxicology&Chemistry,2005,24:2640-2645.
    [120]Holthaus K I E, Johnson A C, Jurgens M D, et al. The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers. Environmental Toxicology&Chemistry,2002,21:2526-2535.
    [121]Zhang Y, Zhou J L. Removal of estrone and17β-estradiol from water by adsorption. Water Research,2005,39:3991-4003.
    [122]Yu Z Q, Xiao B H, Huang W L, et al. Sorption of steroid estrogens to soils and sediments. Environmental Toxicology&Chemistry,2004,23:531-539.
    [123]Sun W L, Ni J R, Xu N, et al. Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere,2007,66:700-707.
    [124]Ren Y X, Nakano K, Nomura M, et al. A thermodynamic analysis on adsorption of estrogens in activated sludge process. Water Research,2007,41:2341-2348.
    [125]Matsuoka S, Kikuchi M, Kimura S, et al. Determination of estrogenic substances in the water of Muko river using in Vitro assays, and the degradation of natural estrogens by aquatic bacteria. Journal of Health Science,2005,51:178-184.
    [126]Casas-Campillo C, Bautista M. Microbiological Aspects in the Hydroxylation of Estrogens by Fusarium moniliformet. Applied Microbiology,1965,13(6):977-984.
    [127]Sih C J, Lee S S, Tsong Y Y, et al. Mechanism of steroid oxidation by microorganisms:3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an intermediate in the microbiological degradation of ring A of androst-4-ene-3,17-dione. Journal of Biological Chemistry,1966,241:540-550.
    [128]Yi T, Harper W F Jr. The link between nitrification and biotransformation of17a-Ethinylestradiol. Environmental Science&Technology,2007,41:4311-4316.
    [129]Weber S, Leuschner P, Kampfer P, et al. Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Applied Microbial and Cell Physiology,2005,67:106-112.
    [130]Roh H, Chu K H. A17β-Estradiol-utilizing Bacterium, Sphingomonas Strain KC8:Part I-Characterization and Abundance in Wastewater Treatment Plants. Environmental Science &Technology,2010,44(13):4943-4950.
    [131]Fujii K, Kikuchi S, Satomi M, et al. Degradation of17a-estradiol by a Gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appllied Environmental Microbiology,2002,68:2057-2060.
    [132]Yoshimoto T, Nagai F, Fujimoto J, et al. Degradation of estrogens by Rhodococcus zopfii and Rhodococcus equi isolated from activated sludge in wastewater treatment plants. Applied&Environmental Microbiology,2004,70:5283-5289.
    [133]Zeng Q, Li Y, Gu G, et al. Sorption and biodegradation of17β-estradiol by acclimated aerobic activated sludge and isolation of the bacterial strain. Environmental Engineering Science,2009,26:783-790.
    [134]Ren H, Ji S, Naeem ud din A, et al. Degradation characteristics and metabolic pathway of17a-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere,2007,66:340-346.
    [135]Shi J H, Suzuki Y, Lee B D, et al. Isolation and characterization of the ethynylestradiol-biodegrading microorganism Fusarium proliferatum strain HNS-1. Water Science&Technology,2002,45(12):175-179.
    [136]Shi J, Fujisawa S, Nakai S, et al. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia oxidizing bacterium Nitrosomonas europaea. Water Research,2004,38:2323-2330.
    [137]Ren Y X, Nakano K, Nomura M, et al. Effects of bacterial activity on estrogen removal in nitrifying activated sludge. Water Research,2007,41:3089-3096.
    [138]Gaulke L S, Strand S E, Kalhorn T F, et al.17a-ethinylestradiol transformation via abiotic nitration in the presence of ammonia oxidizing bacteria. Environmental Science&Technology,2008,42:7622-7627.
    [139]De Gusseme B, Pycke B, Hennebel T, et al. Biological removal of17a-ethinylestradiol by a nitrifier enrichment culture in a membrane bioreactor. Water Research,2009,43:2493-2503.
    [140]Skotnicka-Pitak J, Khunjar W O, Love N G. Characterization of Metabolites Formed During the Biotransformation of17a-Ethinylestradiol by Nitrosomonas europaea in Batch and Continuous Flow Bioreactors. Environmental Science&Technology,2009,43:3549-3555.
    [141]Stumpe B, Marschner B. Factors controlling the biodegradation of17b-estradiol, estrone and17a-ethinylestradiol in different natural soils. Chemosphere,2009,74:556-562.
    [142]Yu C P, Ahuja R, Sayler G, et al. Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Applied&Environmental Microbiology,2005,71:1433-1444.
    [143]Zhang K. Occurrence, microbial, and photochemical degradation of endocrine disrupting estrogens in surface water. Dissertation for the degree of doctor of philosophy in chemistry, university of Massachusetts Lowell. United States.2006.
    [144]Lee H B, Liu D. Degradation of17β-estradiol and its metabolites by sewage bacteria. Water, Air&Soil Pollution,2002,134:353-368.
    [145]Coombe R G, Tsong Y Y, Hamilton P B, et al. Mechanisms of steroid oxidation by microorganisms. Journal of Biological Chemistry,1966,241:1587-1595.
    [146]周维善,庄治平.甾体化学进展.北京:科学出版社.2002.
    [147]Lee H B, Liu D. Degradation of17β-estradiol and its metabolites by sewage bacteria. Water, Air&Soil Pollution,2001,134:353-368.
    [148]Cajthaml T, Kresinova Z, Svobodova K, et al. Microbial transformation of synthetic estrogen17a-ethinylestradiol. Environmental Pollution,2009,157:3325-3335.
    [149]Czajka C P, Londry K L. Anaerobic biotransformation of estrogens. Science of the Total Environment,2006,367:932-941.
    [150]Ying G G, Toze S, Hanna J, Yu X Y, et al. Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater. Water Research,2008,42:1133-1141.
    [151]Des Mes T Z D, Kujawa-Roeleveld K, Zeeman G, et al. Anaerobic biodegradation of estrogens-hard to digest. Water Science&Technology,2008,57(8):1177-1182.
    [152]Zeng Q, Li Y, Gu G. Nitrate-dependent degradation of17a-ethinylestradiol by acclimated activated sludge under anaerobic conditions. Journal of Chemical Technology&Biotechnology,2009,84:1841-1847.
    [153]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Reviews,1995,59:143-169.
    [154]王洪媛,管华诗,江晓路.微生物生态学中分子生物学方法及T-RFLP技术研究.中国生物工程学报,2004,24(8):42-47.
    [155]Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rRNA. Applied&Environmental Microbiology,1993,59:695-700.
    [156]Lopez I, Ruiz-Larrea F, Cocolin L, et al. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis. Applied&Environmental Microbiology,2003,69(11):6801-6807.
    [157]Chinalia F A, Killham K S.2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast-Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere,2006,64:1675-1683.
    [158]Akarsubasi A T, Eyice O, Miskin I, et al. Effect of Sludge Age on the Bacterial Diversity of Bench Scale Sequencing Batch Reactors. Environmental Science&Technology,2009,43(8):2950-2956.
    [159]Martinez-Inigo M J, Perez-Sanz A, Ortiz I, et al. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. Chemosphere,2009,75:1376-1381.
    [160]Liu Y, Wang F, Xia S, et al. Study of4-t-octylphenol degradation and microbial community in granular sludge. Journal of Environmental Sciences,2008,20:167-171.
    [161]张锡辉,伍婧娉,王治军,等HS-SPME-GC法测定水中典型嗅味物质.中国给水排水, 2007,23(2):78-82.
    [162]高晓薇,刘元元,戴纪翠,等.深圳河健康状况诊断及分析.北京大学学报(自然科学版).2010,46(4):636-642.
    [163]Ying G G, Kookana R S, Kumar A. Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies. Environmental Toxicology&Chemistry,2008,27(1):87-94.
    [164]Esplugas S, Bila D M, Krause L G T, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials,2007,149:631-642.
    [165]Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science&Technology,2004,38(20):5476-5483.
    [166]Liu B, Wu F, Deng N S. UV-light induced photodegradation of17a-ethinylestradiol in aqueous solutions, Journal of Hazardous Materials,2003,98(1-3):311-316.
    [167]Felske A, Engelen B, Nubel U, et al. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Applied and Environmental Microbiology,1996,62:4162-4167.
    [168]王爽.水源水中微生物群落结构的研究.清华大学硕士学位论文.2006.
    [169]http://blast.ncbi.nlm.nih.gov/Blast.cgi
    [170]Lim T H, Gin K Y H, Chow S S, et al. Potential for17beta-estradiol and estrone degradation in a recharge aquifer system. Journal of Environmental Engineering,2007,133(8):819-826.
    [171]Lawrence P W, Hershberger C D(著),沈德中(译).生物催化和生物降解.北京:化学工业出版社,现代生物技术与医药科技出版中心,2005.
    [172]Hanada S, Liu W T, Shintani T, et al. Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology,2002,52:883-887.
    [173]Wang X, Zhang K, Ren N, et al. Monitoring microbial community structure and succession of an A/O SBR during start-up period using PCR-DGGE. Journal of Environmental Sciences,2009,21(2):223-228.
    [174]Nalin R, Simonet P, Vogel T M, et al. Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. International Journal of Systematic Bacteriology,1999,49:19-23.
    [175]Kanaly R A, Harayama S, Watanabe K. Rhodanobacter sp. Strain BPC1in a Benzo[a]pyrene-Mineralizing Bacterial Consortium. Applied and Environmental Microbiology,2002,68(12):5826-5833.
    [176]Klankeo P, Nopcharoenkul W, Pinyakong O. Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. Journal of Bioscience and Bioengineering.2009,108(6):488-495.
    [177]崔丽虹,郭萍,李宝明,等.石油烃降解菌的筛选与鉴定.生物技术通报,2009,9:143-147.
    [178]http://www.ncbi.nlm.nih.gov/nuccore/AM403240.1
    [179]贾玉红.菌株Dyella sp.LA-4降解底物广谱性及其在土壤修复中的应用.大连理工大学硕士学位论文.2009.
    [180]Quan Z X, Im W T, Lee S T. Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology,2006,56:1043-1046.
    [181]Zhou H W, Wong A H Y, Yu R M K, et al. Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microbial Ecology,2009,58:153-160.
    [182]Pauwels B, Wille K, Noppe H, et al.17α-ethinylestradiol cometabolism by bacteria degrading estrone,17β-estradiol and estriol. Biodegradation,2008,19:683-693.
    [183]Kim M K, Im W T, In J G, et al. Thermomonas koreensis sp. nov., a mesophilic bacterium isolated from a ginseng field. International Journal of Systematic and Evolutionary Microbiology,2006,56(PT7):1615-1619.
    [184]Clouzot L, Marrot B, Doumenq P, et al.17α-Ethinylestradiol:An endocrine disrupter of great concern. analytical methods and removal processes applied to water purification. a review. Environmental Progress,2008,27(3):383-396.
    [185]Carvalho F R S, Nastasi F R, Gamba R C, et al. Occurrence and diversity of Legionellaceae in polar lakes of the Antarctic Peninsula. Current Microbiology,2008,57(4):294-300.
    [186]Legionella-Like Amebal Pathogens—Phylogenetic Status and Possible Role in Respiratory Disease. Emerging Infectious Diseases.1996,2(3):225-230.(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626797/pdf/8903235.pdf)
    [187]Holthaus K I E, Johnson A C, Jurgens M D, et al. The potential for estradiol and ethinylestradiol to sorb to suspended and bed sediments in some English rivers. Environmental Toxicology&Chemistry,2002,21:2526-2535.
    [188]Yu Z and Huang W. Competitive sorption between17α-ethinylestradiol and naphthalene/phenanthrene by sediments. Environmental Science&Technology,2005,39:4878-4885.
    [189]刘桂芳,李旭春,马军,等.活性炭吸附水中酚类内分泌干扰物试验研究.中国给水排水,24(21):52-56.
    [190]www.jlindquist.net/generalmicro/102dil3a.html
    [191]马放,魏利.油田硫酸盐还原菌分子生态学及其活性生态调控研究.北京:科学出版社,2009.
    [192]Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods.2001,44,253-262.
    [193]Lee J, Kaletunc G. Evaluation of the heat inactivation of E.coli and Lactobacillus plantarum by differential scanning calorimetry. Applied and Environmental Microbiology,2002,68:5379-5386.
    [194]Lee L S, Strock T J, Sarmah A K, Rao P S C. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment. Environmental Science&Technology,2003,37(18):4098-4105.
    [195]Hahn M W, Kasalicky V, Jezbera J, et al. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. International Journal of Systematic and Evolutionary Microbiology,2010,60:1358-1365.
    [196]Hahn M W, Kasalicky V, Jezbera J, et al. Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology,2010,60:2946-2950.
    [197]王炳锋,许旋,曾宪栋,等.16α-取代雌二醇与雌激素受体ER结合活性的量子化学研究.华南师范大学学报(自然科学版),2004,2:104-109.
    [198]Wurtz J M, Egner U, Heinrich N, et al. Three-Dimensional Models of Estrogen Receptor Ligand Binding Domain Complexes, Based on Related Crystal Structures and Mutational and Structure-Activity Relationship Data. J. Med. Chem.1998,41:1803-1814.
    [199]Zhang K. Occurrence, microbial, and photochemical degradation of endocrine disrupting estrogens in surface water. For the degree of doctor of philosophy in chemistry. University of Massachusetts Lowell.2006.
    [200]姜标,罗军,黄浩,等Baeyer-Villiger单加氧酶在有机合成中的应用.有机化学,2005,25(10):1198-1207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700