用户名: 密码: 验证码:
地下水硝酸盐污染的固相反硝化原位修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究依托于国家水体污染控制与治理科技重大专项——“南水北调中线总干渠水质安全保障关键技术与工程示范课题”,以保障地下水水质安全为目标,研发地下水硝酸盐污染修复应用技术。研究显示,利用核桃壳、褐煤、陶粒作为固相有机碳源载体,对地下水硝酸盐污染进行原位修复是可行的。
     本文首先通过收集国内不同产地褐煤(1#、2#、3#、4#)、无烟煤及焦炭半惰性有机碳源载体并进行分子结构分析,采用静态试验和柱试验对其反硝化效能进行对比,运用16S rDNA基因序列分子生物学分析方法,解析反应器内的微生物群形态。发现褐煤对硝酸盐的去除率随着HRT缩短呈现下降趋势。反硝化速率随着温度的升高而增加。4种褐煤反应柱的反硝化速率从高到低依次为3#褐煤>1#褐煤>2#褐煤>4#褐煤。进水NO_3~--N浓度与反硝化速率呈线性关系。且3#褐煤反应柱内的优势菌种为假单胞菌和伯克氏菌,其中假单胞菌占85.3%,伯克氏菌占6.9%。
     对已遴选出的3#褐煤与高效挂膜轻质生物陶粒、核桃壳进行对比。在无外加碳源条件下,陶粒反应柱对硝酸盐没有明显的去除率;在投加碳源而未加营养物质条件下,3#褐煤与核桃壳对硝酸盐去除率可以达到90~100%,而陶粒则只能获得25~35%的硝酸盐去除率;在投加碳源及营养物质条件下,陶粒可获得比3#褐煤与核桃壳更好的效果;引入黄孢原毛平革菌后,3#褐煤反应柱去除率最高;通过发光细菌试验检测,3种载体的反应柱出水毒理学检验合格。
     将核桃壳、3#褐煤、以及适于长生物膜的陶粒,结合实际硝酸盐污染地下水,进行不同复配形式的生物修复槽试验模拟研究,在进水NO_3~--N浓度为29mg/L左右,C槽(1/2核桃壳+1/2陶粒)、E槽(1/3核桃壳+1/33#褐煤+1/3陶粒)、B槽(3#褐煤)对硝酸盐去除率分别为63%、53%、32%。确定最佳HRT为48h,C槽、E槽、B槽硝酸盐去除率分别为82%、73%、45%。
     最后将选定的核桃壳、陶粒、3#褐煤进行复配应用于长春双阳地下水硝酸盐污染原位修复模拟试验研究,原水NO_3~--N浓度为30mg/L左右,出水中硝酸盐最低可达7.09mg/L。同时将槽试验的不同复配组合应用到河南焦作进行现场中试放大研究,其原水NO_3~--N浓度为80mg/L左右,填充有1/3核桃壳+1/33#褐煤+1/3陶粒的系统出水中硝酸盐稳定在17mg/L左右。最终在南水北调中线总干渠焦作段建设地下水硝酸盐污染原位修复示范工程,其原水NO_3~--N浓度为50mg/L左右,稳定运行后其出水中硝酸盐最低可达6.55mg/L,满足《地下水质量标准》GB/T14848-93中的Ⅲ类水体标准。
This study relies on Major Science and Technology Program for Water PollutionControl and Treatment–“the project of key technology and engineering demonstrationfor safety guarantee of water quality of the main channel in middle route of theSouth-to-North Water Diversion Project”, in order to guarantee the groundwaterquality. Groundwater remediation technology on nitrate pollution was studied. Theresultes indicates that using walnut shell, lignite and ceramisite as carrier forsolid-phase carbon source is practically feasible for in situ remediation ofgroundwater contaminated by nitrate.
     Firstly, semi-inertia carriers for organic carbon source as lignite (1#,2#,3#,4#),anthracite and coke were collected from different domestic producing areas. And thedenitrification efficiency of these carriers were compared. The molecular structureswere analysed. And16S rDNA gene sequence analysis method of molecular biologywas used to analyse microbiota morphology in the reactor. The removal efficiency ofnitrate by lignite decreases when the HRT becomes shorter. And with the increase oftemperature, the denitrification efficiency also increases. The denitrificationefficiencies of four lignite columns are3#>1#>2#>4#. The relationship of inflowNO_3~--N concentration and denitrification efficiency obeys to zero order reaction. Thedominant bacteria in3#column are pseudomonas and Burkholderia, withpseudomonas accounting for85.3%and Burkholderia accounting for6.9%.
     The selected3#lignite were compared with lightweight bio-ceramic of highbiofilm-culturing efficiency and walnut shell. The column with bio-ceramic has noremoval efficiency without the external carbon source. In condition of having additivecarbon source but no nutrition, removal rate of walnut shell and#3lignite can reach90~100%, and ceramic is only25~35%. When adding carbon source and nutrition,ceramic performs better than walnut shell and3#lignite. After introducing inPhanerochete chrysosporium,3#lignite reaction column obtains the highest removalrate. And through the photobacteria test, the effluent of three kind carriers response noacute toxicity, so they are qualified for toxicology inspection.
     Then, different complex formulations of walnut shell,3#lignite, and ceramsite of suitable for biomembrane’s grow were used in biological repair trough test simulationresearch with real nitrate-bearing groundwater. The influent nitrate concentration wasabout29mg/L. The results showed that each index of the effluent of C trough (1/2walnut shell+1/2ceramsite)、E trough (1/3walnut shell+1/33#lignite+1/3ceramsite) and B trough (3#lignite) could reach the standard and the nitrate removalefficiency were63%,53%and32%respectively. When48h was determined as thebest HRT, the effluent of C、E and B trough could also reach the standard and theremoval efficiency were increased to82%,73%and45%respectively.
     Finally, complex formulation of walnut shell, ceramsite,3#lignite was used asthe solid-phase organic carbon-source of simulation experimental research to removethe nitrate from groundwater in situ in Shuangyang, Changchun Province, where theinflow concentration of nitrate was about30mg/L and the effluent concentrationcould even reach7.09mg/L. Meanwhile, different complex formulations in troughtest were investigated to site pilot in Jiaozuo, Henan Province. The nitrateconcentration of raw water was about80mg/L, and the effluent concentration couldstay at the level of17mg/L after treatment system of1/3walnut shell+1/33#lignite+1/3ceramsite. At last, when the above solid-phase organic carbon-source wasapplied in Jiaozuo section of the middle route of the South-to-North water transferproject, the stable effluent concentration of nitrate in site could decrease from50mg/L to even6.55mg/L.
引文
Almasri M.N., Kaluarachchi J.J. Implications of on-ground nitrogen loading and soiltransformations on ground water quality management[J]. Journal of the AmericanWater Resources Association,2004,40(1):165-185.
    Abduirahman I. Alabdula Aly. Nitrate concentrations in Riyadh. Saudi Arabiadrinking water supplies. Environmental Monitoring and Assessment,1997,47:315-324.
    Bae B.U.,Jung Y.H.,Han W.W.,et al.Improved brine recycling during nitrate removalusing ion exchange[J].Water Research,2002,36:3330-3340.
    Bae B.U.,Kim C.H.,Kim Y.I.Treatment of spent brine from a nitrate exchange processusing combined biological denitrification and sulfate precipitation[J].WaterScience and Technology,2004,49(5-6):413-419.
    Bikem Ovez. Batch biological denitrification using Arundo donax, Glycyrrhizaglabra, and Gracilaria verrucosa as carbon source[J]. Process Biochemistry,2006,41(6):1289-1295.
    Bohdziewicz J.,Bodzek M.,Wqsik E.The application of reverse osmosis andnanofiltration to the removal of nitrates from ground-water [J]. Desalination,1999,121:139-147.
    Boley, W.-R. Muller, G. Haider. Biodegradable polymers as solid substrate andbiofilm carrier for denitrification in recirculated aquaculture systems[J].Aquacultural Engineering,2000,22:75-85.
    Bouchard DC, Willams MK, Suranpalli, RY. Nitrate contamination of groundwater:sources and potential health effects[J]. Water Assoc,1992,84(9):85-90.
    B. Ovez, S. Ozgen, M. Yuksel. Biological denitrification in drinking water usingGlycyrrhiza glabra and Arunda donax as the carbon source[J]. ProcessBiochemistry,2006,41(7):1539-1544.
    BROADBENT F E,TYLER K B.Effect of pH on nitrogen immobilization in two Californiasoils[J].Plant and Soil,1965,23:314-412.
    Canter.LW. Nitrates in Groundwater. Lewis Publishers, New York,1997
    Cevaal J.N.,Suratt W.B.,Burke J.E.Nitrate removal and water quality improvementswith reverse osmosis for Brighton,Colorado[J]. Desalination,1995,103(1-2):101-111.
    Choe S.,Liljestrand H.M.,Khim J.Nitrate reduction by zero-valent iron underdifferent pH regimes[J].Application Geochemistry,2004,19(3):335-342.
    Clark L D, Fritz P. Environmental isotopes in hydrogeology[M]. Lewis Publishers,Boca Raton,1997:148-186.
    COHEN M S, GABRIELE P D. Degradation of coalby the fungi polyporous versicolor andporia placenta[J].Applied and Environmental Microbia,1982,44(1):23-27.
    Comly, H. H. Cyanosis in Infants Caused by Nitrates in Well Water[J], Journal ofthe American Medical Association,1987,257:2788-2792.
    Darbi A. Biological Removal of Nitrate from Drinking Water[D].Canada: Universityof Regina,2003.
    Dorsch M.M., Scragg Rkr, Mcmichael Aj. et al. Congential malformation and maternaldrinking water supply in rural South Australia:a case-control study[J]. Am.J. Epidemiol,1984,119(4):473-486.
    Environmental Protection Agency. National primary and secondary drinkingrecommendations.1984,2:290-292.
    European Chemical Industry Ecology&Toxicology Center.Technical Report#27:Nitrateand Drinking Water. European Chemical Industry Ecology&Toxicology Center,Beigium.1988
    Fabbricino M.,Petta L.Drinking water denitrification in membrane bioreactor/membrane contactor systems[J].Desalination,2007,210(1-3):163-174.
    Fan AM, Steinberg V. Nitrate in drinking water: Methemoglobinmia and reproductivedevelopmental toxicity. Toxicologist,1995,15(l):36.
    FERNANDO T, WAKIDAA D N L. Non-agricultural sources of groundwater nitrate: a reviewand case study [J]. Water Research,2005,39:3-16.
    Finley, B., Well-water Nitrates Endanger N[M]. Colorado, Denver (Colorado) Post,1990.
    FM. Anayah, M N. Almasri. Trends and occurrences of nitrate in the groundwater ofthe West Bank, Palestine[J]. Applied Geography,2009:1-14.
    Gibert O.,Pomierny S.,Rowe I.,et al.Selection of organic substrates as potentialreactive materials for use in a denitrification permeable reactive barrier(PRB)[J].Bioresource Technology,2008,99(16):7587-7596.
    Gomez M.A.,Gonzalez-Lopez J.,Hontoria-Garcia E.Influence of carbon source onnitrate removal of contaminated groundwater in a denitrifying submergedfilter[J].Journal of Hazardous Materials,2000,80(1-3):69-80.
    Graham Law, Roger Parslow, Patricia Mckinney, et al. Non-Hodgkin’s lymphoma andnitrate in drinking water: a study in Yorkshire[J]. United Kingdom. J.Epidemiology Community Health.1999,53:383-384.
    Gustafson, D. I., Pesticides in Drinking Water[J], Van Hostrand Reinhold, New York,1993:241
    Hell F.,Lahnsteiner J.,Frischherz H.,et al.Experience with full-scaleelectrodialysis for nitrate and hardness removal[J].Desalination,1998,117(1-3):173-180.
    Hoek J.P.,Hoek W.F.,Klapwijk A.Nitrate removal from groundwater use of a nitrateselective resin and a low concentrated regenerant[J].Water,Air,&SoilPollution,1988,37(1):41-53.
    INSAF S, MOHAMED A A, MOHAMED H, et al. Assessment of groundwater contaminationby nitrate leaching from intensive vegetable cultivation using geographicalinformation system[J]. Environment International,2004,29:1009-1017.
    Jan M.S, Van Maaxen, Harma J. et al. Nitrate in drinking water and risk of childhooddiabetes in the Netherlands[J]. Diabetes Care,1999,22(10):1750
    Janos Sandor, lstvan Kiss, Orsolya Farkas, et al. Association between gastriccancer mortality and nitrate content of drinking water: Eeologocal study onsmall area inequalities[J]. European Journal of Epidemiology,2001,17:443-447.
    Jennifer H Barrett, Roger C Parslow, Particia A mckinney, et al. Nitrate in drinkingwater and the incidence of gastric, esophageal, and brain cancer in Yorkshire,Engand[J]. Cancer Causes and Control,1998,9:153-159.
    Johnson, C. J., Bonrud, P. A., Dosch, T. L., et al. Fatal Outcome ofMethemoglobinemia in an Infant [J], Journal of the American Medical Association,1987,257:2796-2797.
    Kobus H.Soil and Groundwater Contamination and Remediation Technology inEurope.Sato K. Iwasa Y.Groundwater Updates,Best-set Typesetter Ltd.,2000,Hongkong,3-8
    Kostraba J.N., Gay E.C., Reviewrs M., et al. Nitrate levels in community drinkingwaters and risk of IDDM. Diabetes Care1992,15:1505-1508.
    Kross, B. C., Hallberg, G. R., Bruner, R., et al. The Nitrate Contamination ofPrivate Well Water in Iowa[J], American Journal of Public Health,1993,83:270-272.
    K S teindorf,B S ch lehofe,rH B echer,et al. Nitrate in drinking water A Case-Controlstudy on prinary brain tumors with an embedded drinking water survey inGermany[J].International Journal of Epidemiology,1994,23(3):451-457.
    Louis A. Schipper, Gregory F. Barkle and Maja Vojvodic Vukovic. Maximum rates ofnitrate removal in a denitrification wall[J]. Journal of Environmental Quality,34(4),2005:1270-1276.
    Mansell B.O.,Schroeder E.D.Biological denitrification in a continuous flowmembrane reactor[J].Water Research,1999,33(8):1845-1850.
    McAdam E.J.,Judd S.J.Denitrification from drinking water using a membranebioreactor:Chemical and biochemical feasibility [J].Water Research,2007,41(18):4242-4250.
    Michal Volokita, Aharon Abehovich, M. Inês M. Soares. Denitrification ofgroundwater using cotton as energy source[J]. Water Science and Technology,1996,34(1-2):379-385.
    Michal Volokita, Shimshon Belkin, Aharon Abeliovich,et al. Biologicaldenitrification of drinking water using newspaper[J]. Water Research,1996,30(4):965-971.
    Midkiff W.S.,Weber W.J.,Jr.Operating characteristics of strong-base anionexchange reactors[J].Engineering Bulletin Purdue University,EngineeringExtension Series,1970,137(2):593-604.
    Neeteson, J.J., D.J. Greenwood., A. Draycott. Model calculations of nitrateleaching during the growth period of potatoes[J]. Neth. J. Agric. Sci,1987,37:237-256.
    Nolan B.T., Ruddy B.C., Hitt K.J., et al. Risk of Nitrate in Groundwaters of theUnited States-A National Perspective[J].Environmental Science andTechnology,1997,31(8):2229-2236.
    Ovez B.,Ozgen S.,Yuksel M.Biological denitrification in drinking water usingGlycyrrhiza glabra and Arunda donax as the carbon source[J].ProcessBiochemistry,2006,41(7):1539-1544.
    Payne, M. R. Farm waste and nitrate pollution, in Jones, J. G., ed., Agricultureand the Environment, Ellis Horwood Limited, New York,1993:63-73.
    P.F. Hudak. Regionaltrends in nitrate content of Texas groundwater[J]. Journal ofHydrology,2000,228(1-2):37-47.
    Prosnansky M.,Sakakibara Y.,Kuroda M.High-rate denitrification and SS rejectionby biofilm-electrode reactor(BER)combined with microfiltration[J].WaterResearch,2002,36(19):4801-4810.
    Prusse U.,Hahnlein M.,Daum J.,et al.Improving the catalytic nitrate reduction[J].Catalysis Today,2000,55(1/2):79-90.
    Rademacher J.J., Young T.B., Kanarek M.S. Gastric cancer mortality and nitratelevels in Wisconsin drinking water[J].Archive of Environmental Health,1992,47(4):292-297.
    Rail, C. D., Groundwater Contamination: Sources, Control, and PreventiveMeasures[J]. Technomic, Lancaster, PA,1989:139.
    R.F.Spalding and M.E.Exner. Oceurrence of nitrate in groundwater-a review[J].Journal of Environmental Quality,1993,22:392-402
    R K. Majumder, M A. Hasnat., et al. An exploration of nitrate concentrations ingroundwater aquifers of central-west region of Bangladesh[J]. Journal ofHazardous Materials,2008(159):536-543.
    Robinson-Lora M.A.,Brennan R.A.The use of crab-shell chitin for biologicaldenitrification:Batch and column tests[J].Biore source Technology,2009,100(2):534-541.
    Rocca C.D.,Belgiorno V.,Meri S.Heterotrophic/autotrophic denitrification(HAD) ofdrinking water:prospective use for permeable reactive barrier[J].Desalination,2007,210(1-3):194-204.
    Rodriguez-Maroto J.M.,Garcia-Herruzo F.,Garcia-Rubio A.,et al.Kinetics of thechemical reduction of nitrate by zero-valent iron[J]. Chemosphere,2009,74(6):804-809.
    Sakakibara Y.,Nakayama T.A novel multi-electrode system for electrolytic andbiological water treatments:electric charge transfer and application todenitrification[J].Water Research,2001,35(3):768-778.
    Salem K.,Sandeaux J.,Molenat J.,et al.Elimination of nitrate from drinking waterby electrochemical membrane processes[J]. Desalination,1995,101(2):123-131.
    SCOTTC D,STRANDBERG G W, LEWIS S N.Microbial solubilization of coal [J].Biotechnology Progress,1986,2(3):131-139.
    Sierra-Alvarez R.,Beristain-Cardoso R.,Salazar M.,et al. Chemolithotrophicdenitrification with elemental sulfur for groundwater treatment[J].WaterResearch,2007,41(6):1253-1262.
    Steindorf K, Schlehofer B, Becher H, et al. Nitrate in drinking water. Acase-control study on primary brain tumours with an embedded drinking watersurvey in Germany. International Journal. Epidmilogy,1994,23:451-457.
    Su C.,Puls R.W.Nitrate Reduction by Zerovalent Iron:  Effects of Formate,Oxalate,Citrate,Chloride,Sulfate,Borate,and Phosphate[J]. EnvironmentalScience and Technology,2004,38(9):2715-2720.
    Van Maanen J, Van Dijk A, Mulder K, et al. Consumption of drinking water with highnitrate levels causes hypertrophy of the thyroid. Toxicol. Lett,1994,72:365-374.
    World Health organization. Guidelines for drinking water quality[R]. World Health0rganization: Geneva,1996.
    Xu F. X., Lu Y. S. On nitrate contamination of groundwater and setting waterconservation areas in China[J]. Pollution Control Technology,1999,12(1):20-23.
    Yamaguchi T.,Harada H.,Hisano T.,et al.Process behavior of UASB reactor treatinga wastewater containing high strength sulfate[J].Water Research,1999,33(14):3182-3190.
    Yang GCC,Lee H-L.Chemical reduction of nitrate by nanosized iron:kinetics andpathways[J].Water Research,2005,39:884-894.
    毕二平,李政红.石家庄市地下水中氮污染分析[J].水文地质工程地质,2001,28(2):31-34
    曹敬华.萃取膜生物反应器去除地下水硝酸盐研究[D].青岛:中国海洋大学,2006.
    陈建耀,王亚,张洪波,等.地下水硝酸盐污染研究综述[J].地理科学进展,2006,25(1):34-44.
    陈英旭.地下水硝酸盐去除方法的研究[D].浙江大学,2004.
    董克虞.畜禽粪便对环境的污染及资源化途径[J].农业环境保护,1998,17(6):281-283.
    范彬,黄霞.化学反硝化法脱除地下水中的硝酸盐[J].中国给水排水,2001,17(11):27-31.
    范彬.复三维电极—生物膜反应器脱除饮用水中的硝酸盐[J].环境科学,2001,21(1):39
    冯锦霞,朱建军,陈立.我国地下水硝酸盐污染防治及评估预测方法[J].地下水,2006,28(4):58-62.
    冯俊生,朱宏,李玲.饮用水除盐技术的研究与进展[J].环境科学与技术,2007,30(z1):209-211.
    浮海梅,金云霄.浅谈地下水硝酸盐污染[J].地下水,2009,31(3):85-88.
    郭蓉.煤表面的大豆蛋白质改性及其生物降解研究[D].西安:西安科技大学,2005.
    韩晓宝,方媛媛.反渗透和电除盐系统技术探讨[J].山西电力,2006,(2):70-72.
    郝志伟,李亮,马鲁铭.零价铁还原法脱除地下水中硝酸盐的研究[J].中国给水排水,2008,24(17):36-39.
    侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响[J].中国给水排水,2005,21(12):19-23.
    胡敩劼,禹保卫.反渗透技术的基本原理及发展趋势[J].化工之友,2007,(9):16-17.
    金速.辽宁省地下水硝酸盐污染成因分析及其防治对策探讨[J].辽宁地质,1997(1):63-39.
    金赞芳,陈英旭,小仓纪雄.以棉花为碳源去除地下水硝酸盐的研究[J].农业环境科学学报,2004,23(3):512-515.
    康志萍.膜分离技术的发展趋势[J].环境技术,2005,23(4):36-38.
    乐毅全,王士芬.环境微生物学(第二版)[M].化学工业出版社,2011
    冷家峰,崔丽英,肖美丽.济南市地下水硝酸盐污染研究[J].农村生态环境,1998,14(1):55-57.
    李海莹,王薇,金朝晖,等.纳米铁的制备及其对污染地下水的脱硝研究[J].南开大学学报(自然科学版),2006,39(1):8-13.
    李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2004.
    刘光栋,吴文良.华北农业高产粮区地下水面源污染特征及环境影响研究[J].中国生态农业学报,2005,13(2):125-129.
    刘广立,赵广英.膜技术在水和废水处理中的应用[M].北京:化学工业出版社,2003.
    刘宏斌,张云贵,李志宏,等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报,2005,42(3):411-418.
    刘江霞,罗泽娇,靳孟贵等.以麦秆作为好氧反硝化碳源的研究[J].环境工程,2008,26(2):94-96.
    刘书运.我国污水灌溉发展现状及存在问题研究[J].沿海企业与科技,2005(7):112-113.
    刘翔.氮对地下水的污染预测模型[J].环境科学,1991,12(6):8-11.
    陆彩霞,顾平.氢自养反硝化去除饮用水中硝酸盐的试验研究[J].环境科学,2008,29(3):671-676.
    罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质,2004(4):65-69.
    牛健南.硝酸盐的去除[J].中国给水排水,1995,11(4):51-52.
    乔光建,张均玲,唐俊智.地下水氮污染机理分析及治理措施[J].水资源保护,2004,20(3):9-12.
    任建新.膜分离技术及其应用[M].北京:化学工业出版社,2002.
    阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51-55.
    阮晓红,张瑛,黄林楠.微生物在湿地氮循环系统的效应分析[J].水资源保护,2004,20(6):1-7.
    邵留,徐祖信,金伟等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J].环境科学,2009,30(5):1414-1416.
    孙景云,左犀.地下水饮用水源地的保护[J].环境科学.1996,17(5):20-24.
    孙彭力等.氮素化肥的环境污染[J].环境污染与防治,1995,17(l):38-41.
    田廷山.地下水合理开发与保护的战略对策[J].国土论坛,2005,(7)
    童桂华.去除地下水硝酸盐PRB介质试验研究[D].青岛:中国海洋大学,2008.
    王海燕,曲久辉,雷鹏举.电化学氢自养与硫自养集成去除饮用水中的硝酸盐[J].环境科学学报,2002,22(6):711-715.
    王海燕等,介质粒径对复三维电极—生物膜脱硝反应器的影响.环境科学,2003,23(1):64-68.
    王龙贵,张明旭,欧泽深等.煤炭微生物转化技术研究状况与前景分析[J].洁净煤技术,2006,12(3):62~66.
    王英.煤的微生物溶解及液化机理的研究[D].山东:山东科技大学,2006.
    王允,张旭,张大奕,等.用于地下水原位生物脱氮的缓释碳源材料性能研究[J].环境科学,2008,29(8):2183-2188.
    尉元明,朱丽霞,康凤琴.甘肃不同生态区化肥施用量对农业环境的影响[J].干旱区研究,2004,21(1):59-63.
    易秀,薛澄泽.氮肥在Lou土中的渗漏污染研究[J].农业环境保护,1993,12(6):250-253.
    张立辉,曹国民,盛梅等.地下水硝酸盐去除技术进展[J].净水技术,2010,29(5):4-10.
    张明旭,王龙贵.煤炭生物转化技术研究及其进展[J].安徽理工大学学报:自然科学版,2005,25(4):64-65.
    张明旭,徐敬尧,欧泽深.几种真菌对煤炭的固体溶煤转化研究[J].安徽理工大学学报(自然科学版),2008,28(4):58-61.
    张庆乐,王浩,张丽青等.饮水中硝态氮污碳源材料研究[J].环境科学与技术,2008,(07)张庆乐,王浩,张丽青等.饮水中硝态氮污碳源材料研究[J].环境科学与技术,2008,(07).
    张蓉珍.论水资源的永续利用[J].国土与自然资源研究,1999,(2):1-3
    张思聪,沈子寅.唐山平原区地下水硝酸盐污染变化趋势的研究[J].水力发电学报,2002,(l):68-75.
    张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    张燕,陈英旭,刘宏远.地下水硝酸盐污染的控制对策及去除技术[J].农业环境保护,2002,21(2):183-184.
    张燕,陈余道,渠光华.乙醇对地下水中硝酸盐去除作用的研究[J].环境科学与技术,2008,31(12):72-76.
    张玉英.张家口市地下水的污染与防治[J].工程勘察.1993(6):21-23
    赵秀春,王成见,孟春霞.青岛市地下水中硝酸盐氮的污染及其影响因素分析[J].水文,2008,28(5):94-96.
    赵章元.地下水污染不容忽视[J].环境经济,2006,(4)
    周海红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐[J].清华大学学报(自然科学版),2006,46(3):434-436.
    朱济成.关于地下水硝酸盐污染原因的探讨[J].北京地质,1995(2):20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700