用户名: 密码: 验证码:
水泥—乳化沥青—水性环氧复合胶结钢桥面铺装材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢箱梁具有自重轻、跨越能力大、架设方便等优点是我国桥梁建设,特别是大跨径桥梁建设的主要结构形式。然而,普通沥青基材料存在高温稳定性不良、与钢板粘结性差等问题,易产生推移、拥包等病害。因此,钢箱梁桥面铺装层材料一直是研究的热点和难点。针对钢箱梁桥面铺装材料需要具有良好的柔韧性、高温稳定性及与钢板粘结强度的要求,本文开发出一种水泥-乳化沥青-水性环氧树脂(cement-asphalt-epoxy, CAE)复合胶结钢箱梁桥面铺装材料,围绕材料的组成、结构、性能展开研究,取得了如下成果:
     本文提出了水泥-乳化沥青-水性环氧树脂复合胶结钢箱梁桥面铺装层材料的设计原理:在固化剂分子中引入醚基、羟基,与环氧树脂混合搅拌乳化成水性环氧树脂。水泥颗粒既吸附乳化沥青形成结构沥青,又与水性环氧树脂发生化学键合,被沥青与环氧树脂包裹,起连接介质作用,调控水泥、乳化沥青、水性环氧树脂的种类、颗粒尺寸及掺配比例,使之硬化后形成以水泥为连接介质的沥青与环氧树脂互穿网络结构。该结构以沥青为连续相,使材料具良好的柔韧性,可与钢板协调变形;环氧树脂为改性相,形成网络穿插于沥青中,提高了材料的高温稳定性和与钢板的粘结强度;水泥作为连接介质提高了材料的匀质性及水稳定性能,克服了环氧树脂(极性)与沥青(非极性)相容性差而分层离析的问题,并能够常温下拌合、浇注施工,改善了环氧沥青需要高温拌合碾压施工,固化速度快,施工可操作时间短的问题。
     分析研究了水泥的矿物组成、细度、种类,乳化沥青、水性环氧树脂的电荷类型、颗粒尺寸以及水泥、乳化沥青、水性环氧树脂三者间的掺配比例等因素,对CAE胶浆匀质性、水稳定性能、固结时间、回弹模量、与钢板的粘结强度、高低温性能的影响规律,确定了原材料的选配原则,提出了CAE胶浆及混凝土的设计与制备方法。运用XRD、IR、SEM、EDXA、水化热分析等测试手段,系统研究了CAE胶浆硬化机理及界面特性。CAE胶浆硬化过程主要包括沥青胶结、环氧树脂交联固化和水泥水化三个部分,在该体系中水泥水化速率水化放热量以及水化程度受沥青和环氧树脂的影响均较低。CAE胶浆硬化后形成了水泥-沥青、水泥-环氧树脂、沥青-环氧树脂三个界面。水泥-沥青、沥青-环氧树脂界面间主要靠物理吸附和机械啮合作用;水泥-环氧树脂界面间粘结主要依靠化学键合和环氧树脂极性基团的强吸附作用。水泥颗粒被环氧树脂和沥青包裹,与集料相隔离,CAE胶浆与集料界面组成主要为沥青和环氧树脂。
     CAE混凝土属于粘弹性材料,其静态模量与SMA沥青混凝土接近,抗剪强度、拉伸强度优于SMA沥青混凝土,与钢板的粘结性能、抗疲劳性能达到了环氧沥青混凝土的水平。采用蠕变试验,解析出CAE混凝土伯格斯方程中各力学参数,并根据参数的变化规律,探讨了水泥和水性环氧树脂对于CAE混凝土粘弹性力学的影响规律:水泥和环氧树脂均有利于降低材料的流动变形、延迟变形及提高温度稳定性,且水泥较环氧树脂作用更为明显。研究了不同温度、频率、材料组成对CAE混凝土的动态模量的影响规律,建立了CAE混凝土动态模量预测模型;基于现象力学法,建立了CAE混凝土弯曲疲劳方程,探讨了材料组成变化对弯曲疲劳寿命的影响规律;通过热氧老化和光氧老化试验,分析了材料组成与老化性能之间的关系;研究成果为新型钢箱梁桥面铺装材料的设计与制备提供了参考依据。
     系统研究了CAE混凝土的使用性能,在A/C=2、A/E=5/3时,80℃动稳定度达到22600次/mm-10℃低温弯曲应变达到2873με,浸水残留稳定度、冻融劈裂强度比大于90%,与钢板界面抗剪强度可以达到1.1MPa,具有优异的路面使用性能。
     根据线弹性理论和层状体系理论,采用ANSYS有限元分析了钢箱梁桥面铺装层弹性模量及厚度的变化对其受力特性的影响规律:随着CAE混凝土铺装厚度的增加,.横向最大拉应力、横向最大拉应变、竖向最大位移显著下降,纵向最大拉应力、纵向最大拉应变变化不明显;铺装层材料与钢板顶面之间的剪应力先增大后减小。满足铺装层结构受力要求,且有较高安全系数的CAE混凝土合适铺装厚度为60mm。综合考虑铺装层的经济性、抗滑特性及抗疲劳性能,针对依托工程,提出了水性环氧树脂粘结层+40mmCAE混凝土+高粘沥青防水粘结应力吸收层+40mm高粘SMA钢箱梁桥面铺装层的结构优化设计方案,并制定了其施工工艺。
Steel box girder has become the main form of the long-span bridge construction in our country which has the advantages of light-weight, great ability of span, convenient erection etc. However, general asphalt-based materials has poor stability in the high temperature, poor adhesion of the steel plate, and extremely easy to produce the transposition and upheaval problem. Therefore, the research of steel bridge deck pavement materials has become one of the most focuses in the world. In this paper, for the requirement of flexibility, high temperature stability and cohesiveness to steel plate on Steel bridge deck pavement materials, Cement-Emulsified asphalt-Waterborne epoxy (CAE)composite cemented materials has been developed, and the composition, structure, properties of the materials has also been studied. The following results are achieved:
     This paper puts forward a suggestion of CAE composite binding steel bridge deck pavement materials. Introduce the hydroxyl, ether groups to curing agent molecules, mixing and stirring with epoxy resin to emulsify the waterborne epoxy resin. The cement particles adsorbed emulsified asphalt to form the structure asphalt and chemical bonding with the water-based epoxy resin, play a connecting role of media which wrapped in asphalt and epoxy resin. Control the type, particle size and blending proportion of cement, emulsified asphalt and water-based epoxy resin, to form the asphalt and epoxy interpenetrating network structure which connect with cement when the paste harden. The asphalt is the continuous phase of the structure, make the material with good flexibility, and consistent deformation ability with the steel plate; epoxy resin is the modify phase and forming network structure insert with asphalt; cement as the connection medium improve the material Homogeneity and water stability, overcome the epoxy resin (polar) and asphalt (nonpolar) compatibility sent to the problem of layered segregation, and could mix and pouring construction under normal temperature. Improve the problem of rapid curing speed and short time of operation in epoxy asphalt high temperature construction.
     The principle of Raw material selection, the design and preparation method of CAE was presented, based on researching the rules of the minerals, the fineness and the kinds of cement, the charge and the size of Emulsified Asphalt and Waterborne Epoxy Resin, and the ratio among cement, Emulsified Asphalt and Waterborne Epoxy Resin on the homogeneity, the water stability, the consolidation time, modulus of resilience and the cohesive strength with steel plate of CAE. CAE mortar hardening mechanism and interface characteristics was systematically researched, by using XRD, IR, SEM, EDXA and hydration heat analysis. CAE mortar hardening process mainly includes cementation of asphalt, solidification of epoxy and hydration of cement. The rate of cement hydration, heat release and the degree of hydration is low for the influencing of asphalt and epoxy. Interface of cement-asphalt, cement-epoxy, and asphalt-epoxy is forming after hardening of CAE mortar. Cement-asphalt, asphalt-epoxy interface depend mainly on the physical adsorption and mechanical engagement effect; the bond between the cement-epoxy interface mainly relay on the strong adsorption of the chemical bonding and epoxy polar groups. Cement particles are isolated from aggregate and packed with epoxy and asphalt, the interface of CAE mortar and aggregate is mainly composed of asphalt and epoxy.
     CAE concrete belong to the viscoelastic material, which static modulus is approached to SMA asphalt concrete. The shear strength, tensile strength is better than SMA asphalt concrete. The anti-fatigue performance and adhesive property with steel plate are equal to the epoxy asphalt concrete level. According to the results of creep test, the Burgers parameters were calculated. Through analyzing the law of the Burgers parameters, the influencing rule of waterborne epoxy resin and cement on sticky elastic mechanics of CAE was researched. Waterborne epoxy resin and cement are good for reducing the flow deformation, delay deformation and increasing temperature stability, and the role of the cement is more marked. Through researching the influencing rule of different temperature, frequency and material composition on the dynamic modulus of CAE, the prediction model of CAE concrete dynamic modulus was established. Based on the phenomenon mechanics method, the CAE concrete bending fatigue equation was established, and the influencing rule of the materials composition on bending fatigue life was analyzing. Through the hot oxygen aging and light oxygen aging test, the relationship between the material composition and the aging performance was analyzed. Research achievements provide a reference for the design and preparation of the new steel box girder bridge deck pavement materials.
     CAE concrete usability performances were researched. When A/C=2, A/E=5/3,80℃, the CAE, dynamic stability reaches22600times/mm,-10℃low-temperature bending strain reaches2873με, soaking remnants stability and the ratio of freeze-thaw split intensity ratio are greater than90%, shear strength of steel interface reaches1.1MPa, provided with excellent pavement performance.
     According to the linear-elastic theory and elastic multilayer theory (Muti-layer elastic system), the influencing law of mechanical characteristic were analyzed by ANSYS finite element, which include elastic modulus and thickness changes of steel box girder bridge deck pavement:Along with the increase of in laying thickness of CAE concrete, the maximum transverse tensile stress, maximum transverse tensile strain, vertical maximum displacement are decreased, but the maximum longitudinal tensile stress and maximum longitudinal strain do not changed significantly; The shear stress between paving materials and steel deck surfacing are increasing firstly and then decreasing. For the higher safety, the fit laying thickness of CAE is60mm. On this basis, considering the economic, skid resistance and anti-fatigue performance of the pavement, steel box girder bridge deck pavement structural optimization design program has proposed:Water-based epoxy resin adhesive layer+40cm CAE concrete layer+High viscosity bitumen waterproofing bond stress absorbing layer+40cm high viscosity SMA layer. And the process of CAE construction is drawing up.
引文
[1]郝培文,胡磊,陈志一,黄成造.大跨径钢箱梁桥面铺装研究与发展[J].筑路机械与施工机械化,2008,25(6):12-16.
    [2]曹海波,钱振东,李智.环氧沥青混凝土在大跨径悬索桥钢箱梁桥面铺装中的应用[J].现代交通技术,2009,6(1):11-14.
    [3]薛听,王民,张华,高博.浇筑式沥青混凝土在桥面铺装中的应用与发展现状[J].公路交通技术,2011,(5):98-100.
    [4]Robert W. Gaul. Epoxy Asphalt Concrete--a Polymer Concrete with 25 years'Experience[J]. American Concrete Institute Publication,1996,166(13):233-252.
    [5]关占祥,郭伟.浅谈环氧沥青混凝土铺装施工中常见质量隐患及处理方法[J].天津市政工程,2008,(1):37-39.
    [6]姚文斌.大跨径钢箱梁桥面铺装病害成因分析及防治措施[J].建筑科技与管理,2011,(6):37-38.
    [7]樊叶华,程刚,王建伟.浇注式沥青混凝土钢桥面铺装施工工艺试验研究[J].公路,2003,(12):13-15.
    [8]阳仁力,胡丽琴,黄文红.浇筑式沥青混凝土在钢箱梁桥面铺装中的应用研究[J].山西建筑,2010,36(5):319-320.
    [9]Yang Jun, Gharabaghy Cyrus, Steinauer Bernhard. Study on High Temperature Behaviour of Gussasphalt[J]. Journal of Southeast University,2002,18(4):297-301.
    [10]Cheng Gang,Chen Xianhua, Wang Xiao. Analysis on cracking of deck pavement on Jiangyin Bridge[J]. Journal of Southeast University,2005,21(4):490-494.
    [11]余梁蜀,王春燕.浇筑式沥青混凝土施工流动性试验研究[J].水资源与水工程学报,2010,21(3):145-147.
    [12]王威.浇筑式沥青混凝土施工关键工艺[J].黑龙江交通科技,2006,29(8):77.
    [13]卢辉,胡玲玲.几种典型钢桥面铺装类型的对比[J].科学技术与工程,2009,9(17):5234-5237.
    [14]张磊.江阴大桥钢箱梁桥面铺装病害研究[D].南京:东南大学,2004.
    [15]邓学钧.中国江阴长江大桥桥面沥青铺装层高温稳定性[J].交通运输工程学报,2002,2(2):1-7.
    [16]王晓,程刚,黄卫.环氧沥青混凝土性能研究[J].东南大学学报,2001,31(6):21-24.
    [17]饶俊.钢桥面环氧沥青混凝土铺装层的性能及工艺[J].西部探矿工程,2011,23(11):202-204.
    [18]Dai Tadashi, Takahashi Harumi. Process for preparing of asphalt epoxy resin composition. United States Patent,4162998[P].1979.
    [19]李继果.环氧沥青混合料及其在桥面铺装上的应用研究[D].西安:长安大学,2008.
    [20]王晓磊.特大桥沥青混凝土桥面铺装结构和材料设计研究[D].南京:东南大学,2007.
    [21]向源,邵强.鄂东长江公路大桥环氧沥青混凝土施工技术[J].石油沥青,2011,25(2):62-64.
    [22]李兴龙,黄卫.环氧沥青混凝土钢箱梁桥面铺装的施工质量控制[J].施工技术,2005,34(5):59-61.
    [23]Chen Xianhua, Huang Wei, Qian Zhendong. Interfacial behaviors of epoxy asphalt surfacing on steel decks[J]. Journal of Southeast University,2007,23(4):594-598.
    [24]朱义铭.国产环氧沥青混凝土钢箱梁桥面铺装施工适用性研究[J].交通运输工程与信息学报.2011,9(3):37-41.
    [25]王娜,申爱琴.SMA沥青混合料改性沥青玛蹄脂的性能[J].长安大学学报,2006,26(6):28-32.
    [26]吴永.改性沥青SMA路面的施工工艺及质量控制[J].黑龙江科技信息,2009,(26):255.
    [27]杨明忠.SMA路面中各种纤维应用现状及发展趋势[J].湖南城市学院学报(自然科学版),2006,15(2):29-31.
    [28]Serfass J P, Samanous J. Fiber-modified Asphalt Concrete Characteristics, Application and Behavior[J]. Journal of the Association of Asphalt Paving Technologists,1996,65 (1): 193-230.
    [29]岳红波,陈筝,叶群山,等.混杂纤维沥青胶浆及其混合料性能研究[J].武汉理工大学学报,2007,29(9):31-34.
    [30]梁寿国.SMA技术理论定位与发展应用[J].交通世界,2010,(7):253-255.
    [31]申爱琴,付箐.SMA混合料组成结构强度机理及影响因素分析研究[J].西安公路交通大学学报,1998,18(3B):171-176.
    [32]交通部公路科学研究所.JTG F40-2004.公路沥青施工技术规范[S].北京: 大民交通出版社,2004.
    [33]王祺.钢箱梁桥面SMA铺装技术及试验研究[D].重庆:重庆交通大学,2007.
    [34]李闯民,李宇峙WesTrack环道试验及期中研究成果[J].国外公路,1998,18(3):49-52.
    [35]丁庆军,张锋,黄修林,等.防止钢箱梁桥面推移开裂的技术方案[J].公路,2007,(1):78-82.
    [36]叶家军,王小磊,丁庆军,等.钢箱梁桥面铺装层材料梯度设计[J].武汉理工大学学报,2009,31(10):32-35.
    [37]王小磊.基于高韧性轻集料混凝土钢箱梁桥面铺装研究与应用[D].武汉:武汉理工大 学,2009.
    [38]王小磊,丁庆军,付军.新型钢箱梁桥面铺装方案影响因素分析[J].交通科技,2009,(1):2-4.
    [39]丁庆军,王发洲,黄绍龙,等.桥面铺装层材料设计[J].武汉理工大学学报,2002,24(4):55-58.
    [40]KAZUYOSI O, YOSIO I. Compressive strength of the CA mortar and its temperature susceptibility [J]. Memoirs of the Faculty of Technology,1976,10(2):1-13.
    [41]Seref Oruc., Fazil Celik.M, Vefa Akpinar. Effect of Cement on Emulsified Asphalt Mixtures [J]. Journal of Materials Engineering and Performance,2007,16(5):578-583.
    [42]欧阳剑CRTS_型CA砂浆使用性能及其影响因素研究[D].哈尔滨:哈尔滨工业大学,2011.
    [43]谭忆秋,欧阳剑,王金凤,等.CA砂浆强度影响因素及强度机理研究[J].哈尔滨工业大学学报,2011,43(10):81-83.
    [44]王涛.高速铁路板式无碴轨道CA砂浆的研究与应用[D].武汉:武汉理工大学,2008.
    [45]王涛,胡曙光,王发洲.沥青乳液加料顺序影响CA砂浆早期强度的机理研究[J].铁道建筑技术,2008,(1):1-3.
    [46]王涛,胡曙光,王发洲.CA砂浆强度主要影响因素的研究[J].铁道建筑,2008,(2):109-111.
    [47]胡登华,官仕龙,陈协,等.水性环氧树脂的研究进展[J].武汉工程大学学报,2011,33(10):9-12.
    [48]王涛,许仲梓.环氧水泥砂浆的改性机理[J].南京化工大学学报,1997,19(2):26-31.
    [49]Etsuo Sakai, Jun Sugita. Composite Mechanism of Polymer Modified Cement[J]. Cement and Concrete Research,1995,25(1):127-135.
    [50]陈友治,李方贤,王红喜.水乳环氧对水泥砂浆强度的影响[J].重庆大学学报,2003,26(12):48-50.
    [51]Chen Youzhi, Wang Hongxi, Ma Zhiyong, etc.The Properties of Cement Mortars Modified by Emulsified Epoxy and Micro-fine Slag[J]. Journal of Wuhan University of Technology-Mater,2003,18(3):83-85.
    [52]陈友治,马志勇,王红喜.水乳环氧改性水泥砂浆研究[J].化学建材,2002,18(2):38-40.
    [53]黄政宇,田甜.水性环氧树脂乳液改性水泥砂浆性能的研究[J].国外建材科技,2007,28(1):20-23.
    [54]秦卫,舒武炳,明杜.水性环氧树脂乳化型固化剂固化特性研究[J].中国胶粘剂,2011,20(2):9-12.
    [55]赵永利.沥青混合料的结构组成机理研究[D].南京:东南大学,2005.
    [56]陆锡铭,汪会帮,吕伟民,等.沥青混凝土抗滑面层组成结构的研究[J].公路,2003,(12):59-62.
    [57]周晓军,沈丽娟.沥青混合料结构与强度的认识[J].民营科技,2008,(2):156.
    [58]Barnes H A, Hut ton J F, Walters K. An introduction to rheology [M]. Netherlands:Elsevier Science,1989:1,37-54.
    [59]刘立新.沥青混凝土路面使用过程中沥青迁移现象的粘弹性力学机理[J].公路.2006,(12):143-145.
    [60]Yufeng Cong, Kejian Liao, Wei Huang, etc. Performance of SBR-Modified Asphalt [J]. Petroleum Science and Technology,2006,24(10):1187-1194.
    [61]锁利军.沥青混合料强度理论与应用研究[D].西安:长安大学,2008.
    [62]Waddah S. Abdullah, M.ASCE, Mohammed Taleb Obaidat, etc. Influence of Aggregate Type And Gradation on Voids of Asphalt Concrete Pavements[J]. Journal of Materials in Civil Engineering,1998,10(2):76-85.
    [63]彭波.沥青混合料集料几何特性与结构研究[D].西安:长安大学,2008.
    [64]阚文广,张娇娜,庞会杰.公路沥青混凝土路面车辙分析[J].黑龙江交通科技.2010,33(7):45-47.
    [65]温树生.普通公路沥青路面常见病害的分析研究[D].大连:大连理工大学,2009.
    [66]李静,袁建,郝培文,等.沥青混合料低温抗裂性能研究[J].公路交通科技,2005,22(4):9-12.
    [67]葛折圣,黄晓明.沥青混合料应变疲劳性能的试验研究[J].交通运输工程学报,2002,2(1):34-37.
    [68]孙娜.浅析沥青路面的破坏类型[J].黑龙江交通科技,2011,34(3):5-6.
    [69]马晓莉.浅谈沥青路面破坏原因[J].科技信息,2011,(16):310.
    [70]王长安,吴育良,郭敏怡,陈鸣才.乳化沥青及其乳化剂的发展与应用[J].广州化学.2006,31(1):54-59.
    [71]姜云焕.阳离子乳化沥青的分类及质量要求[J].公路,1988,(1):36-38.
    [72]刁克,蒋玮,马月明,等.阳离子乳化沥青与聚合物改性乳化沥青概述[J].浙江建筑,2007,24(10):59-63.
    [73]曹诺,肖卫东.水性环氧树脂体系的制备及研究进展[J].上海涂料,2005,43(7):36-43.
    [74]周继亮,涂伟萍.非离子型自乳化水性环氧固化剂的合成与性能[J].高校化学工程学报,2006,20(1):94-99.
    [75]熊远钦,邓红霞,彭桦,等.一种水性环氧固化剂的合成与性能研究[J].湖南大学学报(自然科学版),2009,36(11):53-56.
    [76]李桂林.环氧树脂与环氧涂料[M].北京:化学工业出版社,2003:163-164.
    [77]王振军,李顺勇.水泥乳化沥青砂浆CAM的微观结构特征[J].武汉理工大学学报. 2009.31(14):23-26.
    [78]Rossignolo Joao A, Agnesini Marcos V.C. Mechanical properties of polymer-modified lightweight aggregate concrete[J]. Cement and Concrete Research,.2002,32(3):329-334.
    [79]杨进波,阎培渝,孔祥明,等.水泥沥青胶凝材料的硬化机理研究[J].中国科学(技术科学版).2010,40(8):959-964.
    [80]王冬梅,陈佳宁,武梦笔,等.粘弹性材料应力应变关系的简化处理[J].西南工学院学报.2002,17(2):31-34.
    [81]杜修力,王阳,路德春,等.水泥砂浆材料的静动态应力应变关系研究[J].土木工程学报,2010,(S2):119-126.
    [82]Tang junwu, wang jianguo, xu shiping, etc. Discussion of the constitutive relation on cyclic stress-strain of engineering materials[J]. Journal of university of science and technology Beijing,1989, (6):611-615.
    [83]胡海涛,叶知满.掺F矿粉或粉煤灰高强混凝土应力应变全曲线试验研究[J].青岛建筑工程学院学报,1996,17(1):1-9.
    [84]王桂茵.低温状态下沥青路面结构应力应变特性研究[D].西安:长安大学,2011.
    [85]陈志源,李启令.土木工程材料[M].武汉:武汉理工大学出版社,2003:4-5.
    [86]吴金荣,马芹永.沥青混合料应力-应变关系的试验研究[J].路基工程,2009,143(2):66-67.
    [87]王为标,吴利言.沥青含量影响沥青混凝土应力应变关系的探讨[J].西安理工大学学报,1995,11(2):129-133.
    [88]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21(2):21-24.
    [89]白卫峰.混凝土损伤机理及饱和混凝土力学性能研究[D].大连:大连理工大学,2008.
    [90]叶国铮.沥青混合料的粘弹性质[J].长沙交通学院学报,1986,2(1):45-48.
    [91]张肖宁.沥青与沥青混合料的粘弹性力学原理及应用[M].北京:人民交通出版社,2006:31-40.
    [92]Christensen R.M, Lo K.H. Solution for effective shear properties in a three phase sphere and cylinder models[J]. Journal of the Mechanics and Physies of Solids,1979,27(4): 315-330.
    [93]向叔田.沥青混疑土抗剪稳定性指标的测定[J].西南公路,1994.58(2):48-50.
    [94]鲍飞剑,赵辉.沥青混合料抗剪强度影响因素的试验研究[J].科技信息(建筑与工程版),2011,5:283-284.
    [95]W.G. Wong, Haifeng Han, Guiping He. Rutting response of hot-mix asphalt to generalized dynamic shear moduli of asphalt binder[J]. Construction and Building Materials,2004, 18(6):399-408.
    [96]吕文江,韩君良,郭平,等.沥青混合料抗剪强度的影响因素分析[J].公路,2010,11: 81-85.
    [97]崔鹏,邵敏华,岳雷,等.沥青混合料抗剪试验标准研究[J].建筑材料学报,2008,11(3):299-305.
    [98]岳雷,黄曼,刘黎萍,等.沥青混合料抗剪性能试验研究[J].公路工程,2009,34(1):13-16.
    [99]K. Sokolov, R. Gubler, M. N. Part1. Extended numerical modeling and application of the coaxial shear test for asphalt pavements[J]. Materials and Structures,2005,38(279): 512-522.
    [100]交通部公路科学研究所.JTJ 052-2000.公路工程沥青及沥青混合料实验规程[S].北京:人民交通出版社,2000.
    [101]羊明.沥青混合料动态模量研究[D].长沙:长沙理工大学,2007.
    [102]胡霞光,李德超,田莉.沥青混合料动态模量研究进展[J].中外公路,2007,27(1):132-136.
    [103]罗桑,钱振东,HARVEY J.环氧沥青混合料动态模量及其主曲线研究[J].中国公路学报,2010,23(6):16-19.
    [104]Wu Shaopeng, Ye Qunshan, Li Ning, Yue Hongbo. Effects of Fibers on the Dynamic Properties of Asphalt Mixtures[J]. Journal of Wuhan University of Technology (Materials Science Edition),2007,22(4):733-736.
    [105]赵延庆,潘友强,黄荣华.基于动态模量的沥青路面力学响应分析[J].重庆交通大学学报,2008,27(1):57-59.
    [106]甄晓霞.大跨径钢桥桥面铺装体系力学行为研究[D].南京:东南大学,2010.
    [107]胡磊,陈志一,欧阳阳,等ChemCo Systems环氧沥青粘结剂应用研究[J].筑路机械与施工机械化,2008,25(6):17-20.
    [108]张思桐.环氧沥青在桥面铺装中的应用研究[D].西安:长安大学,2010.
    [109]于力.环氧沥青在大跨径钢桥面粘结层中的应用研究[J].公路,2004,(3):56-60.
    [110]吉加兵.苏通大桥南引桥双层SMA混合料性能试验研究[J].山西建筑,2008,34(18):168-169.
    [111]刘新权,丁庆军,姚永永,等.高粘度改性沥青配制钢箱梁桥面SMA铺装层的研究[J].公路,2007,(9):97-100.
    [112]Chen Zheng, Wu Shao peng, Zhu Zu-huang, etc. Experimental evaluation on high temperature rheological properties of various fiber modified asphalt binders[J]. Journal of Central South University of Technology,2008,15 (1):135-139.
    [113]王小平.如何提高钢箱梁桥面铺装在高温地区的热稳性[J].湖南交通科技,2001,27(3):65-67.
    [114]高金岐,罗晓辉,徐世法,等.沥青粘结层抗剪强度试验分析[J].北京建筑工程学院 学报,2003,19(1):66-71.
    [115]王姣兰,大跨径钢桥桥面铺装问题研究[J].国外建材科技,2007,28(6):51-54.
    [116]逯彦秋,陈宜言,孙占琦,等.钢桥桥面铺装层的温度场分布特征[J].华南理工大学学报.2009,37(8):116-121.
    [117]C. Y. Wu, Y. Li. Mechanical Study of Steel Bridge Pavement with Composite Asphalt Materials[C]. USA:ASCE, Proceedings of Selected Papers from the 2009 GeoHunan International Conference,2009:151-157.
    [118]伍朝晖,郝增恒.铺装温度差异规律的研究[J].中外公路,2008,28(5):178-181.
    [119]黄卫,胡光伟,张晓春.大跨径钢桥面沥青混合料特性研究[J].公路交通科技,2002,19(2):53-55.
    [120]Wang Hui, Zhang QI-sen, Tan Jiqing. Effect of Asphalt Pavement Layers on Rutting Development[C]. USA:ASCE, International Conference on Transportation Engineering, 2007:1915-1920.
    [121]王家主,吴少鹏.沥青路面车辙影响因素的研究[J].武汉理工大学学报,2006,30(3):463-466.
    [122]黎明镜.高等级公路车辙形成机理与防治措施[J].山西建筑,2008,34(23):302-303.
    [123]周岚,倪富健,赵岩荆.环境温度及荷载对沥青路面车辙发展的影响性分析[J].公路交通科技,2011,28(3):42-47.
    [124]关宏信,张起森,徐赐,等.沥青混合料中温车辙试验研究[J].公路交通科技,2010,27(11):38-42.
    [125]Chen Fu qiang, Chen Fujian, Bao Huiming. Comprehensive Analysis of High Temperature Performance of SBS-modified Asphalt Mixture [J]. Journal of Wuhan University of Technology (Materials Science Edition),2010,25 (6):1038-1043.
    [126]栗培龙,张争奇,李洪华,等.沥青混合料汉堡车辙试验条件及评价指标研究[J].武汉理工大学学报.2011,35(1):113-117.
    [127]黄晓明,吴少鹏.沥青与沥青混合料[M].南京:东南大学出版社,2001:227-240.
    [128]余梁蜀,王文进,许庆余,等.沥青混凝土低温线收缩系数试验研究[J].水力发电学报,2006,25(3):84-87.
    [129]TSENG K.H, LYTTON R.L. Fatigue Damage Properties of Asphaltic Concrete Pavement[R]. Transportation Research Record,1990:150-163.
    [130]周志刚张清平袁秀湘.沥青混凝土弯曲疲劳试验疲劳损伤分析[J].中南大学学报(自然科学版),2011,42(6):1741-1751.
    [131]高爽.沥青混合料疲劳损伤机理研究[D].重庆:重庆交通大学,2008.
    [132]梁子伟.高速公路沥青路面疲劳开裂的预测方法及影响因素分析[J].公路建设与养护,2011,(3):144-146.
    [133]单丽岩.基于粘弹特性的沥青疲劳-流变机理研究[D].哈尔滨:哈尔滨工业大学,2010.
    [134]葛折圣,黄晓明.根据疲劳性能优选沥青稳定基层的矿料级配[J].东南大学学报(自然科学版),2001,31(3):103-108.
    [135]王金刚.无机微粉改性沥青制备及其改性机理研究[D].武汉:武汉理工大学,2009.
    [136]庞凌.沥青紫外光老化特性研究[D].武汉:武汉理工大学,2008.
    [137]封基良.纤维沥青混合料增强机理及其性能研究[D].南京:东南大学,2006.
    [138]S. Joon Lee, Jon P. Rust, Hechmi Hamouda, etc. Fatigue Cracking Resistance of Fiber-Reinforced Asphalt Concrete[J]. Textile Research Journal,2005,75(2):123-128.
    [139]交通部公路司,中国工程建设标准化协会公路工程委员会.JTG B01-2003.公路工程技术标准[S].北京:人民交通出版社,2004.
    [140]黄绍龙.开机配沥青磨耗层级配和性能的研究[D].武汉:武汉理工大学,2004.
    [141]胡曙光,李潜,孙政,等.基于防水黏结应力吸收层的高黏高弹改性沥青的研制与性能研究[J].公路,2010,(2):134-137.
    [142]李潜.基于防水粘结应力吸收的桥面铺装技术研究[D].武汉:武汉理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700