用户名: 密码: 验证码:
高温相变蓄热过程流动与传递规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是世界上最丰富、清洁、可广泛获取的可再生能源,太阳能的高效利用将改变我国能源短缺和不合理的消费结构。太阳能在利用中具有热流密度间歇性和不稳定性的特点,这给太阳能的大规模工业化应用增加了难度。因此需要把太阳辐射的热量储存起来以使系统能连续高效地运行。但目前蓄能装置和技术是太阳能利用中较为薄弱的环节之一,本文建立的高温熔盐球型填充床显热和潜热蓄热方法和系统,减少了蓄热成本、提高了蓄热效率和蓄热容量,既可用于太阳能高温热发电中的热能存储,又可用于工业生产过程中的高温热能存储。
     本文对高温熔盐球型填充床蓄热过程中的流动与传递现象进行了深入地理论与实验研究。建立了熔盐球型填充床显热蓄热系统的两相双温度非热平衡模型,研究了熔盐热物性参数、固体蓄热材料热物性参数、孔隙率、颗粒尺寸等对蓄热性能的影响,获得了蓄热过程中温度分布、蓄热量、蓄热熵产和蓄热效率等变化规律,探悉了不同物性参数所导致的不同蓄热规律的内在机理原因,确定了影响蓄热性能的主要参数。建立了评价蓄热系统综合性能的准则,即根据蓄热系统的蓄热量、蓄热系统的熵产、基于出口温度定义的蓄热效率和基于斜温层厚度定义的蓄热效率等评价标准来确定蓄热性能和蓄热效率。结果显示,当固体蓄热材料具有较大单位体积热容时,系统蓄热量较大、蓄热效率较高,但完成蓄热所需要的时间较长,系统熵产较大;当固体蓄热材料具有较小的导热系数的时候,系统蓄热效率较大,系统熵产较小;孔隙率对蓄热系统性能的影响较小,当孔隙率较低时,蓄热量较大,但系统的熵产较高且蓄热效率较低;当固体蓄热材料的颗粒直径较小时,蓄热效率较大,系统熵产值较小。高温熔盐和多孔蓄热材料在蓄热过程中存在着一定的温差。开始蓄热时候,温差的最大峰值较大,随着蓄热时间的增加,温差的最大值逐渐减小,但是存在温度差的轴向长度增加了。温差随着熔盐流速和固体蓄热材料颗粒直径的增大而增大。
     建立了熔盐球型填充床潜热蓄热的传热模型,采用导热油作为传热蓄热介质,亚硝酸钠作为高温相变蓄热材料密封于不锈钢球中,利用数值计算方法对相变蓄热过程中的传热特性进行了分析。得到了不同蓄热时刻下轴向高度相变材料的温度分布、不同位置处相变材料的温度随着时间的变化、不同蓄热时刻下相变材料和传热流体的温度变化、蓄热量随着时间的变化等一般规律。对影响潜热蓄热系统性能的传热流体的比热、进口温度、进口速度、相变颗粒直径和相变材料的潜热值等参数等进行了分析,确定系统最佳运行参数。
     开展了熔盐球型填充床显热和潜热蓄热系统在特定工况下的实验研究,对蓄热系统进行了整体性能测试,研究了蓄热过程中的温度分布、蓄热效率、蓄热量、相变过程等传热特性的规律。结果表明实验值和数值计算值的变化趋势基本保持一致,偏差较小,验证了数学模型的准确性,为蓄热系统的设计提供理论和实验依据。
Solar energy is the most abundant, clean and widely available renewable energy, andhigher efficient use of solar energy will change existing China’s energy shortage andunreasonable energy resources structure. The heat flux of solar energy has the characteristicsof intermittent and instability, the sunlight hours just less than half of a day and the cloudcovering which increase the difficulty of large-scale industrial application of solar energy.Therefore, the solar radiation energy needs to be stored in order to make the system runing inlonger time. However, the mechanism of thermal storage process and devices design is stilllack of investigation in the utilization of solar energy. This paper established the thermalstorage method and system using spherical packed bed to restore sensible and latent heat ofmolten salts (phase change material) in higher-temperature. It can reduce the thermal storagecosts, improve the efficiency and thermal storage capacity, and it can be used not only forthermal storage in solar thermal power generation, but also for the high temperature thermalstorage in the industrial production process.
     The flow and heat transfer phenomenon was studied by theoretical and experimentalmethod during thermal charging process for the high-temperature molten salt spherical packedbed storage system. The transient two-phase non-equilibrium heat transfer model of thepacked-bed sensible storage system is established. The model of temperature distribution,thermal storage capacity, entropy generation, and efficiency were analysed and tested. Theinternal mechanism and reason of different change law led by different parameters was foundout and the main physical parameters of different filler materials that affect the thermalstorage performance were also determined. This paper set up the evaluation criteria accordingto thermal storage capacity, entropy generation, efficiencyη1based on outlet temperature,and efficiencyη2based on thermocline thickness to describe the charging efficiency andperformance of the thermal storage system. The results show that when the filler material haslarger volumetric heat capacity, the storage system has higher storage capacity and chargingefficiency, but the time for finishing the charging process is longer and the entropy generationis also larger; when the filler material has lower thermal conductivity, the charging efficiencyis higher and the entropy generation of the system is smaller; the porosity has little effect onthe thermal storage system, when the porosity is lower, the storage capacity is higher, but thecharging efficiency is lower and the entropy generation of the system is larger; when thediameter of filler material is smaller, the charging efficiency is higher and the entropy generation of the system is smaller. There is a certain temperature difference between the hightemperature molten salt and the porous filler material. The maximal value of temperaturedifference is bigger at the initial charging time, with the increase of charging time, themaximal value of temperature difference decreases gradually,but the axial length oftemperature difference is increased. The temperature difference increases with the increase ofmolten salt flow rate and fill material particle diameter.
     The heat transfer model of high-temperature molten salt spherical packed bed latentstorage system was established using the heat transfer oil and sodium nitrite as the heattransfer fluid and the phase change storage material separately. The heat transfercharacteristics during the phase change process were analyzed using the numerical simulationmethod. The temperature distributions of molten salts (phase change material) in packed-bedchanges along the axial height in different charging time, the temperature change of phasechange material over time at different positions, the temperature changes of phase changematerial and heat transfer fluid at different charging time and the change of thermal storagecapacity over time were obtained. The specific heat, inlet temperature and inlet velocity ofheat transfer fluid, the particle diameter of phase change ball and latent heat value of phasechange material which affect the performance of latent heat storage system were analyzed todetermine the optimum operating parameters of the system.
     The experimental study about the high-temperature molten salt spherical packed bedsensible and latent storage system in specific conditions was carried out and the overallperformance of the thermal storage system was tested. The heat transfer laws of thetemperature distribution, charging efficiency, thermal storage capacity and phase changeprocess were studied during the charging process. The results show that the trend of theexperimental data and numerical calculation values are basically consistent, and the error issmaller. After verifying the accuracy of the mathematical model, the results can providetheoretical and experimental basis for the design of thermal storage system.
引文
[1]熊焰.低碳之路:重新定义世界和我们的生活[M].北京:中国经济出版社,2010
    [2] BP Statistical Review of world Energy[R]. June,2007
    [3]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005
    [4]张希良.风能开发利用[M].北京:化学工业出版社,2005
    [5]中国电力科学研究院生物质能研究室.生物质能及其发电技术[M].北京:中国电力出版社,2008
    [6]中华人民共和国国家发展和改革委员会文件,可再生能源中长期发展规划[R],发改能源[2007]2174号,2007,中国
    [7]李柯,何凡.能中国陆地太阳能资源开发潜力区域分析.地理科学进展[J],2010,29(9):1049-1054
    [8]岑幻霞.太阳能热利用[M].北京:清华大学出版社,1996
    [9] H.Müller-Steinhagen. Application of Solar Heat for Temperatures Ranging from50-2000°C [C].5th European Thermal-Sciences Conference, The Netherlands,2008
    [10] D.Mills. Advances in solar thermal electricity technology [J]. Solar Energy,2004,76:19-31
    [11] Kolb, Gregory, Solar power tower [R], SAND:9998-915,Sandia National Laboratories,Livermore, CA
    [12] H. Price,Assessment of Parabolic Trough and Power Tower Solar Technology Cost andPerformance Forecasts[R],October2003,NREL/SR-550-34440
    [13] R. Forristall. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar ReceiverImplemented in Engineering Equation Solver[R]. NREL Technical report, October2003,NREL/TP-550-34169
    [14] Richard B. Diver,Charles E. Andraka,K. Scott Rawlinson,Timothy A. Moss,Statusof the advanced dish development system project[C],Proceedings of ISEC2003:2003International Solar Energy Conference,Hawaii,15-18March2003
    [15] Heller, P., Reinalter, W., Martinez, D.. Status of Development of the Dish/StirlingSystems at Plataforma Solar de Almeria[C], Proceeding of10th International StirlingEngine Conference2001, Osnabruck, Germany
    [16] Romero Manuel,Buck Reiner,Pacheco James E.An update on solar central receiversystems,projects and technologies [J].ASME Journal of Solar Energy Engineering,2002,124:98–108
    [17] James E. Pacheco. Final test and evaluation results from the Solar Two project [R],SAND2002-0120,Sandia National Laboratories, Livermore, CA
    [18]郭茶秀,魏新利.热能存储技术与应用[M].北京:化学工业出版社,2005
    [19]樊栓狮,梁德青,杨向阳.储能材料与技术[M].北京:化学工业出版社,2004
    [20]崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用[J].化工进展,2002,21(1):23-25
    [21] Antoni Gil, Marc Medrano, Ingrid Martorell, et al. State of the art on high temperaturethermal energy storage for power generation.Part1—Concepts, materials andmodellization [J]. Renewable&Sustainable Energy Reviews,2010(14):56–72
    [22] Belén Zalba, José M Marín, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications [J]. Applied Thermal Engineering,2003,23(3):251–283
    [23] Tamme, R., Steinmann, W-D., Laing, D. High temperature Thermal Energy StorageTechnologies for Parabolic Trough [J]. Journal of Solar Energy Engineering,2004,126,(2):794–800
    [24]杨小平,杨晓西,丁静等.太阳能高温热发电蓄热技术研究进展[J].热能动力工程,2011,26(1):1-6
    [25] Herrmann U, Geyer M, Kearney D. Overview on thermal storage systems[R].Workshopon Thermal Storage for Trough Power Plants. FLABEG Solar International GmbH,2006
    [26] Markus Eck, Klaus Hennecke. Heat transfer fluids for future parabolic trough solarthermal power plants [C]. Proceedings of ISES solar world congress2007: Solar Energyand Human Settlement
    [27] Sena-Henderson L. Advantages of using molten salts, national solar thermal test facilities.SANDIA Laboratories internal report;2006.
    [28] HITEC. Transfer salt. www.coastalchem.com/PDFs/HITECSALT/HITEC%20Heat%20Transfer%20Salt.pdf
    [29] Moens L,Blake D M,Rudnicki D L,et al.Advanced thermal storage fluids for solarparabolic trough systems [J].ASME,2003,(125):112–116.
    [30] Zalba B, Marin JM, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications[J]. Applied Thermal Engineering,2003,23:251-283
    [31] Atul Sharma, V.V. Tyagi, C.R. Chen, et al. Review on thermal energy storage with phasechange materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13:318-345
    [32]张焘,张东.无机盐高温相变储能材料的研究进展与应用[J].无机盐工业,2008,40(4):11-14
    [33]陈思明,刘益才,陈凯等.高温相变换热材料的研究进展和应用.真空与低温,2010,16(3):125-130
    [34] Doug A. Brosseau, Paul F. Hlava, Michael J. Kelly. Testing Thermocline Filler Materialsand MoltenSaltHeat Transfer Fluids for Thermal Energy Storage Systems Used inParabolic Trough Solar Power Plants[R]. SAND2004-3207,2004
    [35]蔡作乾,王琏,杨根.陶瓷材料辞典[M].北京:化学工业出版社,2002.
    [36]沈君权,沈弘涛.蓄热燃烧技术及其在工业窑炉上的应用[J].陶瓷,2001(5):40-44
    [37]左远志熔融盐高温斜温层混合蓄热的热过程特性[D].广州:华南理工大学,2010
    [38]崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社,2004
    [39] Doerte Laing, Wolf-Dieter Steinmann, Rainer Tamme, et al. Solid Media ThermalStorage for Parabolic Trough Power Plants[J]. Solar Energy,2006,80(10):1283–1289
    [40] Doerte Laing, Dorothea Lehmann, et al. Test Results of Concrete Thermal EnergyStorage for Parabolic Trough Power Plants[J]. Journal of Solar Energy Engineering,2009,131(4):1007-1012
    [41] Tamme, R., Laing, D., Steinmann, W.D.. Advanced thermal energy storage technologyfor parabolic trough[J]. ASME Journal of Solar Energy Engineering,2004,126:794–800
    [42] Doerte Laing, Wolf-Dieter Steinmann,Michael Fi, Rainer Tamme. Solid Media ThermalStorage Development and Analysis of Modular Storage Operation Concepts for ParabolicTrough Power Plants[J]. Journal of Solar Energy Engineering,2008,130:011006(5pages)
    [43] Ulf Herrmann, Bruce Kelly, Henry Price. Two-tank molten salt storage for parabolictrough solar power plants[J]. Energy,2004,29:883–893
    [44] Reilly HE, Kolb WJ. Evaluation of molten salt power tower technology based on theexperience of solar two[R]. SANDIA report SAND2001-3674,2001
    [45] Planta Solar de Almeria. Annual Report2006,2007[R]
    [46] Ulf Herrmann, Michael Geyer, Rainer Kistner. The AndaSol Project[R]. Workshop onThermal Storage for Trough Power Systems. FLABEG Solar International GmbH;2002
    [47] Doug Brosseau, John W. Kelton, et al. Testing of Thermocline Filler Materials andMolten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in ParabolicTrough Power Plants[J]. Journal of Solar Energy Engineering,2004,127(1):109–117
    [48] Radosevich, L., Final Report on the Power Production Phase of the10MWe SolarThermal Central Receiver Power Plant, SAND87-8022, Sandia National Laboratories,Livermore, CA, March1988
    [49] James E Pacheco,Steven K S,Kolb W J,et al.Development of a molten–saltthermocline thermal storage system for parabolic trough plants[J].Journal of SolarEnergy Engineering,2002,124:153-159
    [50] Steinmann W, Eck M. Buffer storage for direct steam generation[J]. Solar Energy,2006,80:1277–1282
    [51] Eck M., Zarza E., et al. Applied research concerning the direct steam generation inparabolic troughs[J]. Solar Energy,2003,74:341-351
    [52] Zhifeng Wang, Zhihao Yao, Jun Dong, et al. The design of a1mw solar thermal towerplant in beijing, China[C],Proceedings of ISES Solar World Congress2007: SolarEnergy and Human Settlement, Beijing, China,2007,1729-1732
    [53]张仁元等.相变材料与相变储能技术[M].北京:科学出版社,2009
    [54]张寅平,胡汉平,孔祥冬等.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996
    [55] Shamsundar N, Sparrow EM. Analysis of multidimensionalconduction phase change viathe enthalpy model [J]. J HeatTransfer Trans ASME,1975,97:333-40
    [56] Gong Z X,Mujumdar A S.Finite-element analysis of cyclic heat transfer in ashell-and-tube latent heat energy storage exchanger [J].Applied thermal engineering,1997,17(6):583-591
    [57] Trp A. An experimental and numerical investigation of heat transfer during technicalgrade paraffin melting and solidification in a shell-and-tube latent thermal energy storageunit [J]. Solar Energy,2005,79:648-60
    [58] Ismail K A R,Alves C L F,Modesto M S.Numerical and experimental study on thesolidification of PCM around a vertical axially finned isothermal cylinder [J].AppliedThermal Engineering,2001,21:53-77
    [59] H. Shabgard, T.L. Bergman, N. Sharifi, et al. High temperature latent heat thermal energystorage using heat pipes International Journal of Heat and Mass Transfer[J].2010,53:2979–2988
    [60] Yimer B, AdamiM. Parametric study of phase change thermal energy storage systems forspace application[J]. Energy Conversion Manage,1997,38:253-262
    [61] Hoshi A, Mills DR, Bittar A, Saitoh TS. Screening of high melting point phase changematerials (PCM) in solar thermal concentrating technology based on CLFR[J]. SolarEnergy2005,79:332–339
    [62]侯欣宾,袁修干,崔海亭.组合相变材料换热管吸热器性能的数值分析[J].太阳能学报,2002,23(6):805-808
    [63]陈超.中温相变蓄热装置蓄放热性能数值分析与实验研究[J].太阳能学报,2007,28(10):1078-1084
    [64]郭茶秀,张务军,魏新利等.板式石蜡储热器传热的数值模拟[J].能源技术,2006,27(6):243-248
    [65]康艳兵,张寅平,江亿.板式相变贮能换热器传热模型和热性能分析[J].太阳能学报,2000,21(2):121-127
    [66] Tamme, R. The DISTOR Project. Consortium-objective-achievements. DISTORdissemination workshop. Energy storage for direct steam solar power plants[R]. Almeria,Spain;2007
    [67] Dinter, F., Geyer, M., Tamme, R.,1991. Thermal energy storage for commercialapplication (TESCA), a feasibility study on economic storage systems. Springer-Verlag,Berlin
    [68] Michels H, Pitz-Paal R. Cascaded latent heat storage for parabolic trough solar powerplants[J]. Solar Energy2007,81:829-837
    [69] Geyer M. Concrete thermal energy storage for parabolic trough plants. In: Proposal to the5th Framework Program of the European Union;1999
    [70] Van Berkel J. Storage of solar energy in chemical reactions. In: Jean-Christophe Hadorn,editor
    [71] Brown D,LaMarche J,Spanner G,et al.Chemical energy storage system for SEGS solarpower plant[R].Pacific Northwest Laboratory, PNL–7709,1991:23-24
    [72] Lovegrove K, Luzzi A, Soldiani I, et al. Developing ammonia based thermochemicalenergy storage for dish power plants[J]. Solar Energy,2004,76:331-337
    [73] Steinfeld A.Solar hydrogen production via a two–step water–splitting thermochemicalcycle based on Zn/ZnO redox reactions[J].International Journal of Hydrogen Energy,2002,27:611–619
    [74] Hui Hong,Hongguang Jin,Jun Ji,et al.Solar thermal power cycle with integration ofmethanol decomposition and middle-temperature solar thermal energy [J].Solar Energy,2005,78(1):49-58
    [75] Zarza E. Parabolic trough plants with direct steam generation[R]. Almeria (Spain):DISTOR Dissemination Workshop;2007
    [76]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006
    [77]黄晓明.多孔介质相变传热与流动及其若干应用研究[D].武汉:华中科技大学,2004
    [78]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995
    [79] Bear J著,李竞生等译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [80] R.A.Wooding. Steady state free thermal convection of liquid in a saturated permeablemedium [J]. Journal of Fluid Mechanics,1957,2(3):273-285
    [81] D.A.Nield. Modelling high speed flow of a compressible fluid in a saturated porousmedium [J].Transport in Porous Media,1994,14(1):85-88
    [82] J.P.Pascal. H.Pascal. Non-linear effects on some unsteady non-Darcian flows throughporous media[J]. International Journal of Non-Linear Mechanics,1997,32(2):361-376
    [83] C. W. Somerton, I. Catton. On the Thermal Instability of Superposed Porous and FluidLayers[J]. Journal of Heat Transfer,1982,104(1):160-165
    [84] Vafai K,Tien C L.Boundary and inertia effects on flow and heat transfer in porousmedia [J].International Journal of Heat Transfer,1981(24):195-203
    [85] Jiang P X,Ren Z P.Numerical simulation of forced Convection heat transfer in porousplate channels using thermal equilibrium or non-thermal equilibrium models[J].Numerical heat transfer:Part A Applications,1998,35(1):99-113.
    [86]李明春,田彦文,翟玉春.非热平衡多孔介质内反应与传热传质耦合过程.化工学报,2006,57(5):1079-1083
    [87]张志军,杜建华,王补宣.多孔介质强迫对流传热中粘性耗散的影响.上海交通大学学报,1999,33(8):979-982
    [88]闫晓,肖泽军,黄彦平等.多孔介质中流动换热特性的研究进展.核动力工程,2006,27(1):77-82
    [89]吴金随.多孔介质里流动阻力分析[D].武汉:华中科技大学,2007
    [90] Simon Ievers, Wenxian Lin. Numerical simulation of three-dimensional flow dynamicsin a hot water storage tank[J]. Applied Energy,2009,86:2604-2614
    [91] M.A. Abdoly, D. Rapp. Theoretical and experimental studies of stratified thermoclinestorage of hot water[J]. Energy Conversion and Management,1982,22:275-285
    [92] A. Castell, M. Medrano, C. Solé, et al. Dimensionless numbers used to characterizestratification in water tanks for discharging at low flow rates[J]. Renewable Energy,2010,35:2192-2199
    [93]于航,邓育涌,孙斌等.温度分层型水蓄冷罐的仿真研究能源技术[J].2006,27(3):120-126
    [94] A. Mawire, M. McPherson. Experimental and simulated temperature distribution of anoil-pebble bed thermal energy storage system with a variable heat source[J]. AppliedThermal Engineering,2009,29:1086–1095
    [95] Doug A. Brosseau, Paul F. Hlava, Michael J. Kelly. Testing Thermocline Filler Materialsand MoltenSaltHeat Transfer Fluids for Thermal Energy Storage Systems Used inParabolic Trough Solar Power Plants[R]. SAND2004-3207,2004
    [96] Zhen Yang, Suresh V. Garimella. Thermal analysis of solar thermal energy storage in amolten-salt thermocline[J]. Solar Energy,2010,84:974–985
    [97] Chao Xu, Zhifeng Wang, Yaling He, Xin Li, Fengwu Bai. Sensitivity analysis of thenumerical study on the thermal performance of a packed-bed molten salt thermoclinethermal storage system[J]. Applied Energy,2011,92:65-75
    [98]张华.冰球蓄冷罐蓄冷过程的动态特性.真空与低温[J],2000,6(4):221-224
    [99]黄文先.相变蓄冷球体堆积床传热模型及热性能研究[D].南昌:南昌大学,2006
    [100]刘赟.冰球式蓄冷系统蓄冰特性分析和实验研究[D].北京:北京工业大学,2010
    [101]彭培英,崔海亭.相变潜热储能堆积床蓄热放热性能的数值分析[J].河北大学学报(自然科学版).2009,29(2):146-149
    [102]崔海亭,王振辉,郭彦书等.圆柱形相变蓄热器蓄/放热性能实验研究[J].太阳能学报,2009,30(10):1188-1192
    [103] A. Felix Regin, S.C. Solanki, J.S. Saini. An analysis of a packed bed latent heat thermalenergy storage system using PCM capsules: Numerical investigation[J]. RenewableEnergy,2009,34:1765–1773
    [104] A. Felix Regin, S.C. Solanki, J.S. Saini. Heat transfer characteristics of thermal energystorage system using PCM capsules: A review[J]. Renewable and Sustainable EnergyReviews,2008,12:2438–2458
    [105]陶文铨,杨世铭.传热学[M].北京:高等教育出版社,2006,第4版
    [106]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001
    [107]张德良.计算流体力学教程[M].北京:高等教育出版社,2010
    [108] C.Y.Wang. Exact Solutions of the Steady-State Navier-Stokes Equations[J]. AnnualReview of Fluid Mechanics,1991,23:159-177
    [109]郭宽良,孔详谦,陈善年.计算传热学[M].合肥:中国科学技术出版社,1988.
    [110] G.D.Smith. Numerical solutions of partial differential equations(finite differencemethods)[M].3rded. Oxford: Clarendon Press,1985
    [111] Manole D M. Lage J L. Nonunifrom grid accuracy test applied to the natural convectionflow within a porous medium cavity[J]. Numer Heat Transfer. Part B,1993,23:351-168
    [112]孔详谦.有限单元法在传热学中的应用[M].第3版.北京:科学出版社,1998
    [113] Chen C J. Bernatz R, Carlson K D, Lin W L. Finite analytic method in flows and heattransfer[M]. New York: Taylor&Francis,2000
    [114]苏金明,阮沈勇. MATLAB实用教程[M].第2版.北京:电子工业出版社,2008
    [115]周开利,邓春晖. MATLAB基础及其应用教程[M].北京:北京大学出版社,2007
    [116]莫勒,喻文健. MATLAB数值计算[M].北京:机械工业出版社,2006
    [117] Khan M.A, Robatgi P.K. Numerical Solution to a Moving Boundary Problem inComposite Medium. Numerical Heat Transfer,1994,25(205):209-221
    [118] Mettawee ES, Assassa GMR.Thermal conductivity enhancement in a latent heat storagesystem[J]. Solar Energy,2007,81:839-845
    [119] Hisham M. Ettouney, Imad Alatiqi, Mohammad Al-Sahali, et al. Heat transferenhancement by metal screens and metal spheres in phase change energy storagesystems[J]. Renewable Energy,2004,29(6):841-860
    [120]崔海亭,刘凤青,朱金达等.高孔隙率泡沫金属对相变蓄热的强化研究.河北科技大学学报,2010,31(2):93-96
    [121]沈斌.相变蓄热换热强化及蓄热器性能实验[D].重庆:重庆大学,2009
    [122] Eftekhar J, Sheikh A.H, Lou D.Y.S. Heat Transfer Enhancement in a ParaffinThermalStorage System. Solar Energy Engine,1984,106(3):299-306
    [123] Velraj.R, Seeniraj R.V, et al. Experimental Analysis and Numerical Modeling of InvardSolidification on a Finned Vertical Tube for a Latent Heat Storage Unit. SolarEnergy,1997,31(600):281-290
    [124]栗文银,王启杰.水平光管及肋管外融化换热及固液界面运动规律的实验研究[J].工程热物理学报,1988,9(4):353-358
    [125]廖海蛟,凌样.高温肋板式蓄热器蓄/放热特性的数值模拟.太阳能学报,2010,31(3):345-350
    [126]左远志,杨晓西,丁静.高温熔融盐壳管式相变换热器的传热特性.华南理工大学学报(自然科学版),2011,39(1):42-47
    [127]刘凤青.泡沫金属对相变蓄热强化性能的数值模拟及实验研究[D].石家庄:河北科技大学,2010
    [128] Coastal Chemical Co..HITEC heat transfer salt [OB/EL]. http://www.coastalchem.com/PDFs/HITECSALT/HITEC%20Heat%20Transfer%20Salt.pdf,2009-04–15
    [129]彭强,魏小兰,丁静等.三元硝酸熔盐导热系数的计算[J].无机盐工业,2009,41(2):56–58
    [130]陈镜泓,李传儒编著.热分析及其应用[M].北京:科学出版社,1985
    [131]张玉辉,刘海波,赵丰东.探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J].测试技术,2006,04:35-37
    [132]钱政,王中宇,刘桂礼编著.测试误差分析与数据处理.北京:北京航空航天大学出版社,2008
    [133]王跃科,叶湘滨,黄芝平等.现代动态测试技术[M].北京:国防工业出版社,2003.
    [134] Pitam Chandra, D.H. Willits. Pressure drop and heat transfer characteristics ofair-rockbed thermal storage systems[J], Solar Energy,1981,27:547–553
    [135] N. Wakao, S. Kaguei, T. Funazkri. Effect of fluid dispersion coefficients onparticle-to-fluid heat transfer coefficients in packed beds: Correlation of nusseltnumbers[J]. Chemical Engineering Science,1979,34:325-336
    [136] Y. H. Zurigat, A. J. Ghajar, P. M. Moretti. Stratified thermal storage tank inlet mixingcharacterization[J]. Applied Energy,1988,30:99–111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700