用户名: 密码: 验证码:
太湖岸带湿地种子库及土壤动物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地土壤种子库和土壤动物作为湿地生态系统的重要组成部分,在物质循环、受损湿地恢复过程中起着极其重要的作用;而其多样性是土壤生物多样性的重要组成部分。但是,地表覆被类型、湿地恢复的不同阶段都对土壤种子库及土壤动物多样性有一定影响。通过对太湖岸带湿地种子库及土壤动物的研究,旨在揭示不同覆被条件下土壤种子库变化规律及其与主要环境因子间的关系和不同覆被条件下土壤动物变化规律及其与土壤环境的关系,以及芦苇湿地不同恢复时期在其岸带湿地种子库及土壤动物的变化情况。研究表明:
     (1)采用种子萌发法研究了太湖岸带湿地种子库的时间动态。结果表明,试验中共萌发了30种植物,其中以一年生和多年生草本植物为主。2010年4月、8月、11月分别萌发了21种、16种、18种。随着土层的加深,3个调查时期内A、B、C、D(A区酸模岸带、B区乔灌岸带、C区农作物岸带、D区天然芦苇岸带)4种类型土壤种子库密度大多呈下降趋势。在3个调查时期内的种子库储量之间无显著差异。太湖岸带湿地种子库密度季节动态表现为春季(4月份)最多,夏季(8月份)次之,秋季(11月份)最少。
     (2)研究了太湖岸带湿地的种子库和地表植被的物种组成,并分析了两者之间的关系。结果表明,地表植被的物种数(39种)多于种子库中的物种数(21种);地表植被和种子库中植物物种的相似性比较小(0.143-0.333)。种子库中优势物种的生活型以一年生草本和多年生草本为主,其中物种荠、砂引草、田麻和针蔺在土壤各层次中均有分布。应用典范对应分析(CCA)研究种子库分布格局及其与环境因子的关系。结果表明,土壤pH、含水率、电导率、植被盖度和土壤容重等5个环境因子对种子库分布格局均有一定的影响,其中种子库受土壤水分含量的影响最大。根据不同环境因子的特征,可将土壤种子库中第Ⅰ层的18种植物分为3个组,第Ⅱ层的16种植物分为2个组,第Ⅲ层的11种植物分为3个组,其分别对应于不同的环境变化梯度。
     (3)研究了太湖岸带湿地的土壤动物群落结构和多样性。4次调查共分离到土壤动物3575只,隶属4门12纲,共有105类,土壤动物群落密度达到2794.49-67766.39个/m2。土壤动物的整体数量表现为春季最多(2010年4月),秋季(2010年11月)跟夏季(2010年8月)次之,冬季最少(2011年2月)。节肢动物门和线虫动物门构成了该区土壤动物的主体,对土壤动物群落特征起着决定性作用。太湖岸带湿地土壤动物类群数量和个体数量在垂直分布上均有一定的表聚性,但不同季节表聚性程度不同。太湖岸带湿地不同类群的土壤动物对环境因子的响应不同,不同类群的土壤动物对不同的环境因子的要求各有偏好,各土壤因子对土壤动物分布的影响也存在较大差异。
     (4)采用种子萌发法研究了太湖岸带湿地不同芦苇恢复期湿地种子库的特征,分析3种芦苇岸带区(A长期芦苇恢复岸带、B短期芦苇恢复岸带、C天然芦苇岸带)的种子库和地上植被的物种组成及两者之间的关系。结果表明,地表植被的物种数(24种)多于土壤种子库中的物种数(20种),种子库和地上植被的相似性比较小(0.143-0.303)。3个时期内地上植被分别为13种、19种和7种,土壤种子库的物种种类分别出现了8种、14种和7种。太湖岸带湿地不同芦苇恢复期种子库密度表现为天然芦苇湿地(4773±1387.57ind/m2)>短期芦苇恢复湿地(3760±530.71ind/m2)>长期芦苇恢复湿地(1813±654.80ind/m2)。
     (5)研究了太湖岸带芦苇湿地恢复后对土壤动物的影响。结果表明:太湖岸带湿地各个芦苇恢复期土壤动物共有93类群。其中,长期芦苇恢复湿地、短期芦苇恢复湿地、天然芦苇湿地三种类型的土壤动物类群数分别为71、51、63。长期芦苇恢复湿地以线蚓科(22.44%)、倍足纲(21.01%)和线虫动物门(19.35%)为优势类群。短期芦苇恢复湿地以线虫动物门为优势类群(23.02%),其次为蜱螨亚纲Acari(7.22%)。天然芦苇湿地以线虫动物门为优势类群(33.83%)。太湖岸带湿地不同芦苇恢复期土壤动物的垂直分布较为明显,表现出较强的表聚性。湿地恢复对土壤动物的影响首先体现在土壤动物类群的演替上,太湖岸带湿地不同芦苇恢复期土壤动物群落密度除2011年2月外,都满足长期芦苇恢复湿地>天然芦苇湿地>短期芦苇恢复湿地的规律。不同类群的土壤动物对不同的环境因子的响应程度不同。
Wetland seed banks and soil animals are an important part of the wetland ecosystem. They play a vital role in the circulation of materials and wetland restoration process. Research on the diversity of wetland seed bank and soil animals is important for soil biodiversity. We designed to reveal the soil seed bank and soil animal variation at lake Tai lakeshore wetland and its relationship with the major environmental factor and different vegetation cover. We also analyzed the impact on seed banks and soil animals in different reed wetland restoration period.
     (1) Soil seed bank temporal and spatial heterogeneity under4different vegetation cover types (A:Rumex acetosa lakeshore wetland, B:Tree and shrub lakeshore wetland, C:Crop lakeshore wetland, D:Natural reed lakeshore wetland) was analysed with a germination method. The results showed that the number of soil seed bank species was30in the four different vegetation cover types, most belonging to therophyte and perennial plants.The species number of the seed bank in April, August and November was21,16and18, respectively. With the increase of soil depth, the vertical distribution of the seed bank showed a decreasing trend. No significant differences were observed in the soil seed bank between the three periods. Seasonal dynamics of lakeshore wetland seed bank density were in decreasing order from Spring (April) to Summer (August) and then Autumn (November) in Lake Tai.
     (2) Relationship between standing vegetation and soil seed bank with4different vegetation cover types (A:Rumex acetosa lakeshore wetland, B:Tree and shrub lakeshore wetland, C:Crop lakeshore wetland, D:Natural reed lakeshore wetland) were determined in lakeshore, Lake Tai. The results showed that the number of the standing vegetation species (39) was more than the soil seed bank species (21). Sorensen similarity coefficients between the seed bank and standing vegetation species composition was relatively small (0.143-0.333). Life form of the dominant species in the seed bank was therophyte and perennial plants. In order to analyze the spatial pattern of soil seed bank and its relation to environmental factors in Taihu lakeshore wetland,4different lakeshore wetlands were established, which were mainly consisted with perennial plants. Seedling germination experiment was carried out and ordination technique (Canonical Correspondence Analysis, CCA) was used in the study areas. Results showed that soil pH, soil moisture content, electric conductance, vegetation cover and soil bulk density influenced the distribution of the seed bank. According to the characteristics of different environmental factors,18species of seed bank in soil layer I were divided into three groups,16species of seed bank in soil layer II level were divided into two groups,11species of seed bank in soil layer III were divided into three groups,corresponding to a different environment gradient. Seed bank was mainly affected by soil moisture, which had relatively more hygrophilous plants. Species Capsella bursa-pastoris, Messerschmidia sibirica, Corchoropsis tomentosa and Eleocharis valleculosa were distributed at all levels in the soil, which were mainly affected by the impact of soil moisture in lakeshore wetland, Lake Tai.
     (3) The soil animal community structure and diversity were analysed under4different vegetation cover types (A:Rumex acetosa lakeshore wetland, B:Tree and shrub lakeshore wetland, C:Crop lakeshore wetland, D:Natural reed lakeshore wetland). Tullgren and Baermann's methods were used to extract3575soil fauna individuals and classified into four phyla, twelve classes, and105taxonomic groups.The density of soil animal communities was2794.49-67766.39ind/m2. Combining the four kinds of cover types as a whole, the overall reserves of the soil animals were in decreasing order, April2010> November2010> August2010> February2011. Arthropoda and Nematoda phylum constituted the main body of the soil fauna. The number of individuals and groups of soil fauna vertical distribution had a certain degree of accumulation, but not the same at different seasons. Different groups of soil animals in response to different environmental factors, and various soil factors on the impact of the distribution of soil fauna were different. In April2010,Geophilomorpha had a significantly relationship to soil organic matter (SOM), Entomobryidae and Onychiuridae were mainly influenced by available phosphorous (A-P). In August2010, total phosphorous (TP) had a strong impact on the larva of Carabidae, Lygaeidae and Liocranidae, while electric conductance (Cond) had strong impact on Gastropoda. In November2010, Isopoda was mainly influenced by toal phosphorous (TP), while Culicidae was mainly influenced by pH, and Lygaeidae was mainly influenced by temperature. In February2011, the larvae of Lepidoptera and Pselaphidae was mainly influenced by pH, while the larvae of was mainly influenced by available phosphorous (A-P).
     (4) Relationship between standing vegetation and soil seed bank in the Taihu lakeshore reed wetland (Middle and long-term reed restoration lakeshore, Short-term reed restoration lakeshore, Natural reed lakeshore) with a germination method. The results showed that the number of the standing vegetation species (24) was more than the soil seed bank species (20). Sorensen similarity coefficients of species composition between the seed bank and standing vegetation was relatively small (0.143-0.303). The species number of the standing vegetation in3types was13,19and7respectively. The species number of the seed bank in3types was8,14and7species respectively. Overall, the average seed bank density in Natural reed lakeshore (4773±1387.57ind/m2)> Short-term reed restoration lakeshore (3760±530.71ind/m2) Middle and long-term reed restoration lakeshore (1813±654.80ind/m2).
     (5) The effect of reed wetland restoration (Middle and long-term reed restoration lakeshore, Short-term reed restoration lakeshore, Natural reed lakeshore) on soil animals in Lake Tai was analysed. A total of93groups of soil animals were found in reed restoration lakeshore wetland, Lake Tai. Among them, the number of Middle and long-term reed restoration lakeshore, Short-term reed restoration lakeshore, Natural reed lakeshore soil animal groups was71,51,63respectively. The results showed that Enchytraeidae, Diplopoda and Nematoda were the dominant groups in the middle and long term reed restoration wetlands, accounting for the total number of individuals22.44%,21.01%and19.35%respectively. Nematoda was the dominant group in short-term reed restoration wetlands, which were23.02%of the total number of individuals, followed by7.22%of the Acari. Nematoda was the dominant group in natural reed wetlands, accounting for33.83%of the total number of individuals. Vertical distribution of reed restoration wetland soil animals showed a strong surface gathering trend. The impact on soil animals of wetland restoration first reflected in the succession of soil fauna groups, while had a little effect on the number of individuals in the short term.The average density was in the middle and long-term reed restoration lakeshore> natural reed lakeshore> short-term reed restoration lakeshore, except for February2011. Different groups of soil animals had different response to different environmental factors.
引文
Albrecht H, Eder E, Langbehn T, et al. The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape and Urban Planning,2011,100(1-2):87-97.
    Amiaud B, Touzard B. The relationships between soil seed bank, aboveground vegetation and disturbances in old embanked marshlands of Western France. Flora,2004,199(1):25-35
    Anderson J T, Smith L M. Invertebrate Response to Moist-Soil Management of Playa Wetlands. Ecological Applications,2000,10(2):550-558
    Andresa P, Mateos E. Soil mesofaunal response to post-mining restoration treatments. Applied Soil Ecology, 2006,33(1):67-78
    Andrew H B, Karin M K, Dennis F. Seed banks of Phragmites australis-dominated brackish wetlands: Relationships to seed viability, inundation, and land cover. Aquatic Botany,2010,93(3):163-169
    Andrew H B. The seed bank of a restored tidal freshwater marsh in Washington, D C. Urban Ecosystems, 1999,3(5):5-20
    Anke H, Rosenzweig S. Multivariate statistics as a tool for model-based prediction of floodplain vegetation and fauna. Ecological Modelling,2003,169(1):73-87
    Arroyo M T K, Chacon P, Cavieres L A. Relationship between seed bank expression, adult longevity and aridity in species of Chaetanthera (Asteraceae) in central Chile. Annals of Botany,2006, 98(3):591-600.
    Bakker J P, Esselink P, Dijkema K S, et al. Restoration of salt marshes in the Netherlands. Hydrobiologia, 2002,478(1-3):29-51
    Baldwin A H, Egnotovich M S, Clarke E. Hydrologic change and vegetation of tidal freshwater marshes: field, greenhouse, and seed bank experiments. Wetlands,2001,21(4):519-531
    Baldwin A H, DeRico E F. The seed bank of a restored tidal freshwater marsh in Washington, D.C. Urban Ecosystems,1999,3(1):5-20
    Bengtsson J. Disturbance and resilience in soil animal communities. European Journal of Soil Biology,2002, 38(2):119-125
    Bossuyt B, Honnay O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science,2009,19(6):875-884
    Brady V J, Cardinale B J, Gathman J P, et al. Does facilitation of faunal recruitment benefit ecosystem restoration? An experimental study of invertebrate assemblages in wetland mesocosms. Restoration Ecology,2002,10(4):617-626
    Brown S C. Remnant seed banks and vegetation as predictors of restored marsh vegetation. Canadian Journal of Botany,1998,76(4):620-629
    Bruelheide H, Udelhoven P, Hemerik L, et al. Diversity of soil macro-invertebrates in grasslands under restoration succession. European Journal of Soil Biology,2002,38(2):145-150
    Burger J C, Redak R A, Allen E B, et al. Restoring arthropod communities in coastal sage scrub. Conservation Biology,2003,17(2):460-467
    Capon S J, Brock M A. Flooding, soil seed bank dynamics and vegetation resilience of a hydrological variable desert floodplain. Freshwater Biology,2006,51(2):206-223
    Chen H L, Li B, Fang C M, et al. Exotic plant influences soil nematode communities through litter input. Soil Biology and Biochemistry,2007,39(7):1782-1793
    Clements D R, Krannitz P G, Gillespie S M. Seed bank responses to grazing history by invasive and native plant species in a semi-desert shrub steppe environment. Northwest Science,2007,81(1):37-49
    Cole L, Buckland S M, Bardgett R D. Relating micro-arthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology & Biochemistry,2005,37(9):1707-1717
    Combroux I C S, Bornette G, Amoros C. Plant regenerative strategies after a major disturbance:the case of a riverine wetland restoration. Wetlands,2002,22(2):234-246
    Davis C A, Austin J E, Buhl D A. Factors influencing soil invertebrate communities in riparian grasslands of the central platte river floodplain. Wetlands,2006,26(2):438-454
    Diane D S, Sharitz R R, Singer J H, et al. Testing a passive revegetation approach for restoring coastal plain depression wetlands. Restoration Ecology,2006,14(3):452-460
    Fenner M. Ecology of soil seed banks. Seed Science Research,1991,1(1):73-74
    Gauch H G. Multivariate analysis in community ecology.Cambridge University Press,Cambridge.1982,7-50
    Grandin U, Rydin H. Attributes of the seed bank after a century of primary succession on islands in Lake Hjalmaren, Sweden. Journal of Ecology,1998,86(2):293-303
    Grelsson G, Nilsson C.Vegetation and seed-bank relationships on a lakeshore.Freshwater Bilogy,1991,26(2):199-207
    Guisan A, Weiss S B, Weiss A D. GLM versus CCA spatial modeling of plant species distribution Plant Ecology,1999,143(1):107-122
    Harper J L. Population Biology of Plants. London:Academic Press,1977,1-53
    Hartmut K. Secondary succession of soil mesofauna:A thirteen year study. Applied Soil Ecology,1998, 9(1-3):81-86
    Hunt H W, Wall D H. Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology,2002,8(1):33-50
    Kenkel N C, Derksen D A, Thomas A G, et al. Review:Multivariate analysis in weed science research. Weed Science,2002,50(3):281-292
    Kim K D, Lee E J. Soil seed bank of the waste landfills in South Korea. Plant and Soil,2005,271(122): 109-121
    Leck M A. Seed bank and vegetation development in a created tidal freshwater wetland on the Delaware River, Trenton, New Jersey, USA. Wetlands,2003,23(2):310-343
    Lemauviel S, Roze F, Clement B. A Study of the Dynamics of the Seed Banks in a Complex Dune System, with the Aim of Restoration. Journal of Coastal Research,2005,21(5):991-999
    Li E H, Liu G H, Li W, et al. The seed-bank of a lakeshore wetland in Lake Honghu:implications for restoration.Plant Ecology,2008,195(1):69-76
    Liu G H, Zhou J, Li W, et al. The seed bank in a subtropical freshwater marsh:Implications for wetland restoration. Aquatic Botany,2005,81(1):1-11
    Longcore T. Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, USA). Restoration Ecology,2003,11(4):397-409
    Lu J, Wang H B, Pan M, et al. Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China. Ecological Engineering,2012,39:95-103
    Ma M J, Zhou X H, Du G Z. Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau. Plant and Soil,2011,346(1-2):19-28
    Middleton B A. Hydrochory, seed banks, and regeneration dynamics along the landscape boundaries of a forested wetland.Plant Ecology,2000,146(2):167-181
    Middleton B A. Soil seed banks and the potential restoration of forested wetlands after farming. Journal of Applied Ecology,2003,40(6):1025-1034
    Mitsch W J, Wang N M. Large-scale coastal wetland restoration on the Laurentian Great Lakes: Determining the potential for water quality improvement. Ecological Engineering,2000,15(3): 267-282.
    Murray P J, Cook R, Currie A F, et al. Interactions between fertilizer addition, plants and the soil environment:implications for soil faunal structure and diversity. Applied Soil Ecology,2006,33(2): 199-207
    National Research Council. Riparian Areas. National Academy Press:Washington, DC,2002,7-13
    Neff K P, Rusello K, Baldwin A H. Rapid seed bank development in restored tidal freshwater wetlands. Restoration Ecology,2009,17(4):539-548
    Neher D. Role of nematodes in soil health and their use as indicators. Journal of Nematology,2001,33(4): 161-168
    Nishihiro J, Nishihiro M A, Washitani I. Restoration of wetland vegetation using soil seed banks:lessons from a project in Lake Kasumigaura, Japan. Landscape and Ecological Engineering,2006,2(2): 171-176
    Peterson J E, Baldwin A H. Seedling emergence from seed banks of tidal freshwater wetlands:response to inundation and sedimentation. Aquatic Botany,2004,78(3):243-254
    Richter R, Stromberg J, Stromberg C. Soil seed banks of two montane riparian areas:implications for restoration. Biodiversity & Conservation,2005,14(4):993-1016
    Roberts H A. Seed banks in soils. In:Coaker TH.(ed). Advances in Applied Biology. London:Academic Press,1981,1-55
    Robertson H A, James K A. Plant establishment from the seed bank of a degraded floodplain wetland:a comparison of two alternative management scenarios. Plant Ecology.2007,188(2):145-164
    Rossell I, Wells M, Wells C, et al. The seed banks of a southern Appalachian fen and an adjacent degraded wetland/Wetlands,1999,19(2):365-371
    Schneider R L, Sharitz R R. Hydrochory and regeneration in a bald cypress water tupelo swamp forest. Ecology,1988,69(4):1055-1063
    Takagawa S, Washitani I, Uesugi R, et al. Influence of inbreeding depression on a lake population of Nymphoides peltata after restoration from the soil seed bank. Conservation Genetics,2006,7(5): 705-716.
    Tekle K, Bekele T. The role of soil seed banks in the rehabilitation of degraded hill slopes in southern Wello, Ethiopia. Biotropica,2000,32(1):23-32
    Thompson K, Grime J P. Seasonal variation in the seed bank of herbaceous species in ten contrasting habitats. Journal of Ecology,1979,67(3):893-921
    Van Der Valk A G, Verhoeven J T A. Potential role of seed banks and understory species in restoring quaking fens from floating forests. Vegetatio,1988,76(1-2):3-13
    Van Der Valk A G,Pederson R I,Davis C B.Restoration and creation of freshwater wetlands using seed banks.Wetlands Ecology and Management,1992,1(4):191-197
    Vecrin M P, Grevilliot F, Muller S. The contribution of persistent soil seed banks and flooding to the restoration of alluvial meadows. Journal for Natural Conservation,2007,15(1):59-69
    Vivian-Smith G, Handel S N. Freshwater wetland restoration of an abandoned sand mine:Seed bank recruitment dynamics and plant colonization. Wetlands,1996,16(2):185-196
    Volkmar W. Biodiversity of soil animals and its function. European Journal of Soil Biology,2001,37(4): 221-227
    Wang C, Wang P F. Hydraulic resistance characteristics of riparian reed zone in river. Journal of Hydrologic Engineering,2007,12(3):267-272
    Wardle D R, Bardgett R D, Klironomos J N, et al. Ecological Linkages between aboveground and belowground biota. Science,2004,304(5677):1629-1633
    Warren M W, Zou X M. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management,2002,170(1-3):161-171
    Wellstein C, Otte A, Waldhardt R. Seed bank diversity in mesic grasslands in relation to vegetation type, management and site conditions. Journal of Vegetation science,2007,18(2):153-162
    Wetzel P R, Van Der Valk A G, Toth L A. Restoration of wetland vegetation on the Kissimmee River Floodplain:Potential role of seed banks. Wetlands,2001,21(2):189-198
    Yuan L Y, Liu G H, Li W, et al. Seed bank variation along a water depth gradient in a subtropical lakeshore marsh, Longgan Lake, China. Plant Ecology,2007,189(1):127-137.
    Zedler J B. Restoring a Dynamic Ecosystem to Sustain Biodiversity. Ecological Restoration,2011,29(1-2): 152-160
    《土壤动物研究方法手册》编写组.土壤动物研究方法手册.北京:中国林业出版社,1998,1-50
    暴晓,吕宪国,张帆.三江平原湿地岛状林土壤节肢动物多样性.东北林业大学学报,2010,38(1):81-83
    陈德来,马正学,普布等.拉萨拉鲁湿地夏季土壤动物的群落特征.动物学杂志,2011,46(5):1-7
    陈鹏.土壤动物的采集和调查方法.生态学杂志,1983,2(3):46-51
    陈中义,雷泽湘,周进等.梁子湖优势沉水植物冬季种子库的初步研究.水生生物学报,2001,25(2):52-158
    崔丽娟,Stephane Asselin湿地恢复手册一原则·技术与案例分析.中国建筑工业出版社,2006,1-50
    崔丽娟,李伟,赵欣胜等.湿地岸坡功恢复技术研究.世界林业研究,2011,24(3):16-21
    崔丽娟,张曼胤,李伟等.湿地基质恢复进展.世界林业研究,2011,24(3):11-15
    崔丽娟,张曼胤,赵欣胜等.湿地恢复监测与管理方法探讨.世界林业研究,2011,24(3):1-5
    崔巍,李伟,张曼胤等.湿地土壤生态功能研究概述.中国农学通报,2011,27(20):203-207
    崔巍,李伟,张曼胤等.湿地生态系统中的土壤动物研究进展.中国农学通报,2011,32(12):200-204
    冯伟,吴新民,潘根兴等.皖江湿地及其开垦为稻田后土壤种子库结构比较.生态学杂志,2008,27(6):874-879
    付秀芹,张志罡,胡波等.洞庭湖湿地土壤动物群落特征与土壤质量的关系探讨.农业现代化研究,2007,28(6):685-687
    傅必谦,陈卫,高武等.百花山山杨桦木林土壤动物群落及其季节动态.动物学杂志,1997,32(2):10-15
    高润梅,郭晋平,郭跃东.山西文峪河上游河岸林的土壤种子库与树种更新特征.植物科学学报,2011,29(5):580-588
    葛斌杰,杨永川,李宏庆.天童山森林土壤种子库的时空格局.生物多样性,2010,18(5):489-496
    葛宝明,孔军苗,程宏毅等.不同利用方式土地秋季大型土壤动物群落结构.动物学研究,2005,26(3):272-278
    韩立亮,王勇,王广力等.洞庭湖湿地与农田土壤动物多样性研究.生物多样性,2007,15(2):199-206
    何云核,强胜.安徽沿江水稻田杂草种子库研究.武汉植物学研究,2007,25(4):343-349
    侯志勇,陈心胜,谢永宏等.洞庭湖湿地土壤种子库特征及其与地表植被的相关性.湖泊科学,2012,24(2):287-293
    侯志勇,谢永宏,于晓英等.洞庭湖青山垸退耕地不同水位土壤种子库特征.应用生态学报,2009,20(6):1323-1328
    黄旭,文维全,张健等.川西高山典型自然植被土壤动物多样性.应用生态学报,2010,21(1):181-190
    廖崇惠,李健雄,杨悦屏等.海南尖峰岭热带林土壤动物群落-群落的组成及其特征.2002,22(11):1866-1872
    廖崇惠,李健雄,杨悦屏等.海南尖峰岭热带林土壤动物群落-群落结构的季节变化及其气候因素.2003,23(1):139-147
    金相灿,刘树坤,意宗涉等.中国湖泊环境(第二册).北京:海洋出版社,1995,108-149
    李吉玫,徐海量,张占江等.河水漫溢对塔里木河下游荒漠河岸林地表植被与土壤种子库的影响.应用生态学报,2008,19(8):1651-1657
    李吉玫,徐海量.塔里木河下游土壤种子库分布格局及其与环境因子的关系.水土保持通报,2009,29(3):88-93
    李守淳,刘文治,刘晖等.蚌湖湖滨带的土壤种子库特征.植物科学学报,2011,29(2):164-170
    李守淳,卢蓓,刘晖等.鄱阳湖湿地土壤种子库特征及其与地表植被的关系.江西师范大学学报(自然科学版),2011,35(4):431-436
    李伟,刘贵华,周进等.淡水湿地种子库研究综述.生态学报,2002,22(3):395-402
    李伟成,盛海燕,钟哲科等.杭州西溪湿地中不同土地利用类型的种子库特性.林业科学,2007,43(11):163-169
    廖庆玉,章金鸿,李玫等.海南东寨港红树林土壤原生动物的群落结构特征.生态环境,2008,17(3):1077-1081
    林英华,张夫道,杨学云等.农田土壤动物与土壤理化性质关系的研究.中国农业科学,2004,37(6):871-877
    刘贵华,李伟,王相磊等.湖南茶陵湖里沼泽种子库与地表植被的关系.生态学报,2004,24(3):450-456
    刘贵华,刘幼平,李伟.淡水湿地种子库的小尺度空间格局.生态学报,2006,26(8),2739-2743
    刘贵华,肖蒇,陈漱飞等.土壤种子库在长江中下游湿地恢复与生物多样性保护中的作用.自然科学进展,2007,17(6):741-747
    刘贵华.长江中下游湿地的种子库研究.中国科学院研究生院(武汉植物园)博士论文,2005,1-50
    刘吉平,杨青,吕宪国等.三江平原典型环型湿地生物多样性.农村生态环境,2005,21(3):1-5
    刘满强,胡锋,李辉信等.退化红壤不同人工林恢复下土壤节肢动物群落特征.生态学报,2002,22(1):54-61
    刘扬,张岸,严莹等.崇明岛不同土地利用类型下土壤动物群落多样性研究.复旦学报(自然科学版),2011,50(3):288-295
    马克平.生物多样性的测度方法(Ⅰ).生物多性性,1994,2(2):162-168
    马克平.生物多样性的测度方法(Ⅱ).生物多性性,1994,2(4):231-239
    莫训强,李洪远,蔡喆等.天津滨海盐碱湿地土壤种子库特征研究.环境科学与技术,2010,33(1):52-57
    潘林,焦德志,王文峰等.扎龙湿地苔藓群落土壤动物的分布及多样性.土壤,2010,42(4):536-540
    钱复生,田继凤.当涂县水稻土大型土壤动物和水稻害虫的初步研究.国土与自然资源研究,1998,20(2):51-56
    上官铁梁,许念,贾志力等.汾河太原段河漫滩草地土壤种子库研究.草业科学,2002,19(3):30-33
    邵元虎,傅声雷.试论土壤线虫多样性在生态系统中的作用.生物多样性,2007,15(2):116-123
    史国鹏,洪剑明,谭月臣等.北京野鸭湖湿地不同植被退化区的土壤种子库特征.湿地科学,2011,9(2):163-172
    太湖流域管理局.http://www.tba.gov.cn/,2010
    唐樱殷,谢永贵,余刚国等.黔西北喀斯特土壤种子库季节动态及种子库对策.生态学杂志,2011,30(7):1454-1460
    田家怡,潘怀剑,傅荣恕.黄河三角洲土壤动物多样性初步调查研究.生物多样性,2001,9(3):228-236
    王超,王沛芳,唐劲松等.河道沿岸芦苇带对氨氮的削减特性研究.水科学进展,2003,14(3):311-317
    王大力,尹澄清.植物根孔在土壤生态系统中的功能.生态学报,2000,20(5):869-874
    王广力,王勇,韩立亮等.洞庭湖区不同土地利用方式下的土壤动物群落结构.生态学报,2005,25(10):2629-2636
    王金凤,由文辉,易兰.上海宝钢工业区凋落物中土壤动物群落结构及季节变化.生物多样性,2007,15(5):463-469
    王邵军,阮宏华,汪家社等.武夷山典型植被类型土壤动物群落的结构特征.生态学报,2010,30(19):5174-5184
    王天乐,李伟,丁洁等.退化湿地恢复中土壤节肢动物的群落结构.南京林业大学学报(自然版).2011,35(2):51-55
    王相磊,周进,李伟等.洪湖湿地退耕初期种子库的季节动态.植物生态学报,2003,27(3):352-359
    王移,卫伟,杨兴中等.我国土壤动物与土壤环境要素相互关系研究进展.应用生态学报,2010,21(9):2441-24481
    王正文,祝廷成.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系.生态学报,2002,22(9):1392-1398
    吴鹏飞,杨大星.若尔盖高寒草甸退化对中小型土壤动物群落的影响.生态学报,2011,31(13):3745-3757
    武海涛,吕宪国,姜明等.三江平原典型湿地土壤动物群落结构及季节变化.湿地科学,2008,6(4):459-465
    武海涛,吕宪国,杨青等.三江平原湿地岛状林土壤动物群落结构特征及影响因素.北京林业大学学报,2008,30(2):50-58
    武海涛,于少鹏,吕宪国等.三江平原乌拉苔草-毛苔草湿地土壤动物多样性及其枯落物分解功能.湿地科学,2008,6(2):285-292
    夏继红,严忠民.生态河岸带的概念及功能.水利水电技术,2006,37(5):14-17,24
    萧蒇,刘文治,刘贵华.丹江口库区滩涂与入库支流植被与土壤种子库:水传播潜力探讨.植物生态学报,2011,35(3):247-255
    邢福,王莹,许坤等.三江平原沼泽湿地群落演替系列的土壤种子库特征.湿地科学,2008,6(3):351-358
    徐海量,李吉玫,王增如等.塔里木河下游土壤种子库的空间分布特征分析.水土保持学报,2007,21(6):183-186
    徐海量,李吉玫,张占江等.塔里木河下游退化荒漠河岸林地上植被与土壤种子库关系初探.中国沙漠,2008,28(4):657-664
    徐凌翔,程玉,刘帆等.尕海湖滨湿地种子库初探.植物科学学报,2011,29(5):589-598
    徐洋,刘文治,刘贵华.生态位限制和物种库限制对湖滨湿地植物群落分布格局的影响.植物生态学报,2009,33(3)546-554
    叶春,刘杰,于海婵等.东太湖3种沉水植物群落区底泥种子库与幼苗库.生态环境,2008,17(3):1091-1095
    殷秀琴,安静超,陶岩等.拉萨河流域健康湿地与退化湿地大型土壤动物群落比较研究.资源科学,2010,32(9):1643-1649
    殷秀琴,顾卫,董炜华等.公路边坡人工恢复植被后土壤动物群落变化及多样性.生态学报,2008,28(9):4295-4305
    殷秀琴,宋博,董炜华等.我国土壤动物生态地理研究进展.地理学报,2010,65(1),91-102
    尹文英.中国土壤动物.北京:科学出版社,2000,1-50
    尹文英.中国土壤动物检索图鉴.北京:科学出版社,1998,31-150
    尹文英.中国亚热带土壤动物.北京:科学出版社,1992,1-50
    于顺利,陈宏伟,郎南军.土壤种子库的分类系统和种子在土壤中的持久性研究进展.生态学报,2007,27(5),2099-2108
    张建春,彭补拙.河岸带及其生态重建研究.地理研究,2002,21(3):373-383
    张金屯.植被数量生态学方法.北京:中国科学技术出版社,2004,1-100
    张龙龙,鲍毅新,胡知渊等.溪源湿地秋季不同植被类型土壤动物群落特征初步研究.浙江师范大学学报(自然科学版),2009,32(4):453-459
    张守攻,朱春全,肖文发等.森林可持续经营导论.中国林业出版社,2001,1-50
    张秀娟,杨晨利,倪向利等.洞庭湖湿地小型节肢土壤动物群落组成及其特征.湖南理工学院学报(自然科学版),2005,28(3):62-65
    张宇博,杨海军,王德利等.受损河岸生态修复工程的土壤生物学评价.应用生态学报,2008,19(6):1374-1380
    章超斌,马波,强胜.江苏省主要农田杂草种子库物种组成和多样性及其与环境因子的相关性分析.植物资源与环境学报,2012,21(1):1-13
    章家恩,秦钟,李庆芳.不同土地利用方式下土壤动物群落的聚类与排序.生态学杂志,2011,30(12):2849-2856
    赵建刚,杨琼,陈章和等.几种湿地植物根系生物量研究.中国环境科学,2003,23(3):290-294
    中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,2001,10-50
    朱永恒,赵春雨,王宗英等.我国土壤动物群落生态学研究综述.生态学杂志,2005,24(12):1477-1481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700