用户名: 密码: 验证码:
变量配肥施肥精准作业装备关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究综合应用变量作业、机电一体化控制、传感器信号采集与处理、系统分析集成等技术思想和方法,设计可实现三种不同肥料变量施用的变量配肥施肥机械装置,在此基础上,研究开发变量配肥施肥作业控制系统。通过对系统进行静态标定试验、动态试验和田间试验,进行系统控制精度分析研究。研究土壤采样策略,对土壤进行合理采样并生成处方图,变量配肥施肥作业系统根据处方图进行实际田间作业,并与常规施肥作业结果进行了比较分析。主要研究内容包括:
     1.提出了氮、磷、钾三种主要肥料的自动配比技术方案,并开发了变量配肥施肥装置。设计安装了三个独立的肥料箱,三个肥箱的排肥轴能够独立控制,使得三个肥箱中不同的肥料能够按照不同配比施肥,达到变量配肥的目的。
     2.提出了基于称重反馈的伺服电机控制排肥机构方案,达到自动调节施肥量的目的。设计开发了变量配肥施肥控制系统以及机具前进速度检测模块。对伺服电机控制的排肥机构进行性能试验,试验结果表明:控制电机的转速对排肥机构的排肥性能有显著影响。对于尿素、磷酸二铵和硫酸钾等三种颗粒肥料而言,随着排肥轴转速加大,排肥量呈线性增加,说明改变电机转速是调节排肥量的有效措施。对伺服电机的控制精度进行了检测试验,试验结果表明:当肥箱中肥料称量值达到施肥量值时,变量配肥施肥控制器能控制电机自动停止运行,且施肥精度≥95%。
     3.开发基于X86架构的Atom主板为核心,集成存储、显示、输入输出等外设功能部件,扩展CAN总线通信接口的嵌入式农机机载作业控制终端设备。按照面向对象的设计思想,结合变量配肥施肥作业控制系统的需要,设计开发了变量配肥施肥作业控制软件。构建了远程数据管理平台,实现用户通过网络访问该数据管理平台,了解农田作业机械的作业情况和信息。
     4.通过分析影响采样密度的因素,结合试验地的地块情况,制定了一个适合本论文研制的变量配肥施肥装置的土壤采样策略,即按照10m*10m间隔进行栅格采样。对土壤养分数据进行常规分析,从均值来看,试验地块碱解氮含量超过了高量指标(150mg/kg),为1级肥力水平;有效磷为2级肥力水平(20-40mg/kg);速效钾含量较低,为6级肥力水平(<30mg/kg).从变异系数看,碱解氮、有效磷和速效钾的变异系数都不高,属于中等变异强度,说明试验地块的养分含量相对稳定。采用Kriging方法对未测点参数值进行最优估值,然后采用ArcGIS进行绘图,获得了各养分含量在田间的空间变化图。根据黑龙江农垦对红星农场的玉米和大豆施肥的指导意见,结合土壤养分分布数据,得出配肥施肥指导处方,生成了变量配肥施肥处方图。
     5.对变量配肥施肥作业系统进行了田间作业试验,选择9个不同的施肥量等级和不同的N、P、K配肥比,进行了施肥试验。各次施肥误差都比较低,对每个肥箱按配比施肥的控制精度大于90%。对以上施肥试验还进行了重复性试验,每次施肥试验的平均误差都比较低,变异系数也不大,说明施肥试验的可重复性很好。在黑龙江红星农场进行了大豆和玉米的变量配肥施肥试验,按照配方施肥的方法种植玉米面积1.89hm2,种植大豆面积10.23hm2。在同一地号的田地上,按照常规种植模式,种植大豆面积10hm2,剩余面积种植玉米。精准农业测土配方施肥,磷酸二铵和硫酸钾的总体施肥量稍高于常规施肥量,但尿素的施用量基本节省一半。精准农业变量配肥施肥模式大豆总产量20930kg,单产2045.9kg/hm2;常规种植的大豆总产量19440kg,单产1997.9kg/hm2.精准农业玉米总产量24630kg,单产9735.2kg/hm2:常规种植的玉米总产量80770kg,单产8905.2kg/hm2.
In this study, many ideas and methods such as variable operations, electromechanical integration control, sensor signal acquisition and processing, systematical analysis and integration were used. The fertilizer machine allows for variable application of three different fertilizer was designed. On this basis, variable fertilizer operating control system was developed. By the system static calibration tests, dynamic tests and field trials, the system control accuracy was analyzed. After doing research of sampling strategy, the soil was sampled reasonably and then a prescription map was generated. Variable fertilizer operating system was used to do the actual field work according to the prescription map, and a comparative analysis of operating results was done with conventional fertilization. Main results are as follows:
     1. According to crop demand for three main fertilizer nitrogen, phosphorus, potassium, the variable fertilizer device which has three separate manure containers was designed. The three fertilize axises can be independently controlled, so the different fertilizer in three manure containers can be fertilized in accordance with the different ratio.
     2. A program about using the servo motor to control the fertilize axis based on the weighing of fertilizer was proposed. The servo motor control system was processed and trial-produced. A variable manure fertilization control system and equipment forward speed detection module were designed and developed. Performance test on the institutions of the servo motor control system was done. The results showed that:Controlling the motor speed has a significant effect of fertilize performance. For the three granular fertilizer as urea, diammonium phosphate and potassium sulfate, the fertilizing amount increased linearly with the fertilize axis speed increase. That means changing the motor speed is an effective measure to adjust the fertilizing amount. Experiments were done to test the servo motor control accuracy. The results showed that: When the fertilizer measured value reaches the preset fertilization value, the variable manure fertilization controller can control the motor automatically stops running, and fertilization accuracy≥95%.
     3. The embedded agricultural airborne operations control terminal equipment which taking the Atom motherboard based on X86architecture as the core, integrating storage, display, input and output peripheral features and extending the CAN bus communication interface was developed. In accordance with the design of object-oriented thinking, combined variable fertilizer operation control system needs, the variable fertilization control software was designed and developed. The remote data management platform based on Spring3.0MVC framework was developed. Through the network to access the data management platform, users can learn about the mechanical operation of agricultural operations and information.
     4. Through the analysis of the sampling density factors, combined with the condition of plots, an appropriate soil sampling strategies was developed in accordance with the10m*10m interval grid sampling. After doing routine analysis of soil nutrient data, from the mean we know that the test plots nitrogen content than high-volume index (150mg/kg), is one fertility level; available phosphorus fertility level is two (20-40mg/kg); potassium content is low, for the six fertility levels (<30mg/kg). See from the coefficient of variation, the coefficients of variation of nitrogen, available phosphorus and potassium are all not high, belong to the moderate degree. It indicates that the nutrient content of the test plots is relatively stable. The Kriging method was used to do optimal valuation of unmeasured point parameter values, and then the ArcGIS software was used to plot. A nutrient content map in the space of the field was getted. According to the corn and soy fertilization direction of hongxing farm given by heilongjiang agricultural reclamation, combining with the soil nutrient distribution data, fertilization guidance prescription was concluded, and a variable fertilizer fertilization prescription map was generated.
     5. Variable manure fertilization operating system was used to do the field operation test. The fertilization experiments selected nine different fertilizer levels and different N, P, K fertilization ratio. Various fertilization errors are relatively low, each fertilizer box control precision of the fertilization ratio is more than90%. Those fertilization experiments were done repeatability. The results showed that the average error of each fertilization test were relatively low, the coefficient of variation was not large. Variable fertilization experiments of soybeans and corn were done in Heilongjiang Hongxing Farm. Accordance with the method of variables fertilization we growed corn area of1.89hectares and planted soybean area of10.23hectares. Fields in the same place, in accordance with the conventional cropping patterns, we planted soybean area of10hectares and planted corn on the remaining area. The diammonium phosphate and potassium sulfate fertilizer amount according to the precision agriculture variable fertilization method were slightly higher than the conventional fertilization amount, but the application rate of urea basic saved half. The soybean total output was41,860pounds, the yield was2045.9kg/ha on the precision agriculture variable fertilization mode. The soybean total output was38,880pounds, the yield was1997.9kg/ha on the conventional fertilization mode. The corn total output was24,630pounds, the yield was9735.2kg/ha on the precision agriculture variable fertilization mode. The corn total output was80,770pounds, the yield was8905.2kg/ha on the conventional fertilization mode.
引文
[1]刘爱民,封志明,于格.基于农作物需求的中国化肥资源供求平衡研究(Ⅰ)--中国氮肥资源.资源科学,2005,27(3):41-46
    [2]中国农业年鉴(1981-1998),北京:中国农业出版社,1982-1999
    [3]张福锁,陈新平。马文奇.“现代农业”时代谈化肥.磷肥与复肥,2003,18(1):1-3
    曾希柏,胡学玉,胡清秀.我国肥料的施用现状及发展趋势.科技导报,2002(8):36-39
    [4]FAO, World Fertilizer Yearbook [M] 1961-2000
    [5]中国农业统计资料(1999),北京:中国农业出版社,1999
    [6]曾希柏,李菊梅.中国不同地区化肥施用及其对粮食生产的影响.中国农业科学,2004,37(3):387-392
    [7]Blake L, Goulding K W T, Mott C J B, et al. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station[J]. European Journal of Soil Science,1999,50:401-412
    [8]李军,黄敬峰,程家安.我国化肥施用量及其可能污染的时空分布特征.生态环境,2003,12(2):145-149
    [9]汤炎,张海林,常志洲.美国化肥使用概况.磷肥与夏肥,2003,18(6):72-74
    [10]谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321-390
    [11]崔玉亭,化肥与生态环境保护,北京:化学工业出版社,2000
    [12]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社,1998:3-5
    [13]赵建宁,左腾云,胡元盛.土壤肥料与我国粮食安全.河北农业科学,2009,13(1):116-118
    [14]刘爱民,封志明,徐丽明.现代精准农业及我国精准农业的发展方向.中国农业大学学报,2000,5(2):20-25
    [15]卢良恕.21世纪我国农业科学技术发展趋势与展望.中国农业科学,1998,31(2):1-7
    [16]白由路,金继运.我国精准农业的技术体系与研究领域.金继运,白由路编著.精准农业与土壤养分管理.中国大地出版社,2001,9
    [17]李亚芹,夏峰.我国发展精准农业的必要性.农机化研究,2006,(6):4-6
    [18]李家康,林葆,粱国庆,沈桂芹.对我国化肥使用前景和剖析.植物营养与肥料学报,2001,7(1):1-10
    [19]BLACKMOILES. The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture,2000(26):37-51
    [20]汪懋华.“精细农作”技术发展与农业装备技术创新系列讲座(1-11).农业机械,1999,No.2-12.
    [21]王光龙,许秀成,谷守玉.中国化学肥料市场的研究.化肥工业,2003,30(6):38
    [22]杨俐苹,金继运,白由路,黄绍文.土壤养分综合评价法和平衡施肥技术及其产业.金 继运,白由路编著,精准农业与土壤养分管理,中国大地出版社,2001,9
    [23]喻歌农,周泳.试论精确农业及我国行动对策.自然资源学报,1999,14(1):69-74
    [24]刘世洪.精准农业的发展现状.农业科技通讯,1999,(10):1-5
    [25]杨印生,吴才聪,冯传平.日本精确农业的研究现状.农业机械学报,2001,32(2):107-110
    [26]罗锡文,张泰岭,洪添胜.“精细农业”技术体系及其应用.农业机械学报,2001,32(2):103-106
    [27]徐可英.国内外精确农业发展现状与对策.中国农业资源与区划,2002,2(21):53-56
    [28]赵春江,薛绪掌,王秀等.精准农业技术体系的研究进展与展望.农业工程学报,2003,19(4):7-12
    [29]The Precision-Farming Guide for Agriculturists. An Agricultural Primer. USA.1997
    [30]Michihisa lida, Assodiate Professor, Dr. Mikio Umeda, Professor, Dr.etc.Variable Rate Fertilizer Applicator for Paddy Field. ASAE Paper NO.01-1111.
    [31]H. Auernharraner.2004. Off-Road Automation Technology In European Agriculture—State of the Art and Expected Trends. Pp 184-191 in Automation Technology for Off-Road Equipmant, Conference Proceedings.2004(Kyoto, Japan)
    [32]Mikio UMEDA, Toshikazu KAHO, Michhisa IIDA, Choung Keun LEE. Effect of Variable Rate Fertilizing for Paddy Field. AS AE Paper No.01-1111.
    [33]张晓辉,李汝莘.法国的精确农业研究及应用现状.农机化研究,2002,2(1):12-15
    [34]蔡德利,王熙,庄伟东,等.精准农业变量施肥技术要点及试验初报.黑龙江八一农垦大学学报,2004,16(3):45-48
    [35]林昌华,唐群峰,唐树梅.自动变量施肥技术的研究与应用现状.华南热带农业大学学报,2006,12(2):76-79
    [36]王秀,赵春江,孟志军,等.精准变量施肥机的研制与试验.农业工程学报,2004,20(5):114-117
    [37]张书慧,马成林,吴才聪,等.一种精确农业自动变量施肥技术及其实施.农业工程学报,2003,19(1):129-131.
    [38]梁春英,王熙,赵军,等.变量施肥播种机机电控液压驱动控制系统设计.黑龙江八一农垦大学学报,2003,15(3):47-50
    [39]张书慧,马成林,吴才聪,等.变量施肥机空间数据采集与处理方法.农业机械学报,2004,35(4):93-96
    [40]汪懋华.精细农作与现代农业科技革命.农业科技参考,1999,(12):1-4
    [41]汪懋华.“精细农业”发展与工程科技创新.农业工程学报,1999,15(1)
    [42]高连兴,王和平,李德洙.农业机械概论.北京:中国农业出版社,2000
    [43]李宝筏.农业机械学.北京:中国农业出版社,2003
    [44]马旭,马成林,桑国旗,等.变量施肥机具的设计.农业机械学报,2005,36(1):50-53
    [45]张波屏.现代种植机械工程.北京:机械工业出版社,1997,9
    [46]王玉顺,郭俊旺,聂永芳,等.外槽轮排种器性能检测及分析.山西农业大学学报,2004,24(3):257-259
    [47]史久根,张培仁,陈真勇.CAN现场总线系统设计技术.北京:国防工业出版社,2004
    [48]邬明宽.CAN总线原理和应用系统设计.北京:北京航空航天大学出版社,1996
    [49]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术.北京:北京航空航天大学出版社,2003
    [50]Bernard. J. w.1986. Electronic communication protocol for agriculture—Can we avoid a crisis. ASAE Paper No.86-5528. St. Joseph, Mieh.:ASAE
    [51]Artman,R,1986. A proposal for physical link and data link control for computer systems on farm. In Proceedings of the Agri-mation 2 Conference, ASAE/SME.3-5 March 1986, Chicago, Illinois. ASAE,St. Joseph, Mich
    [52]Stone, M., k McKee, C. Formwalt,and R. Benneweis.1999b. ISO 11783:an electronic communications protocol for agricultural equipment. ASAE Distinguished Lecture #23. Agricultural Equipment Technology Conference. Louisville, Kentucky.
    [53]Schueller, J. k 1988. A proposed scheme for integrated tractor implement communications and control. ASAE Paper No.881533. St. Joseph. Mich.:ASAE
    [54]白龙.CAN总线在车载测产系统中的应用与研究[硕士学位论文].东北农业大学,2009,6
    [55]陈立平,黄文倩,孟志军,等.基于CAN总线的变量施肥控制器设计.农业机械学报,2008,39(8):101-104,185
    [56]李红岩,王秀,侯媛彬,等.基于ARM微处理器的田间变量施肥控制系统.微计算机信息(嵌入式与SOC),2006,22(4-2):104-106
    [57]徐大诚,邹丽新,丁建强.微型计算机控制技术及应用.北京:高等教育出版社,2003
    [58]李红岩.精准农业田间变量施肥控制系统研究[硕士学位论文].西安科技大学,2006,4
    [59]郭树满.智能控制变量施肥技术的研究[硕士学位论文].河南农业大学,2006,6
    [60]张萌,柳旭.称重传感器高精度自动检测系统设计.厦门大学学报(自然科学版),2005,44(2):206-209
    [61]罗家佳.电子定量包装秤动态称量系统及数据处理方法的研究[硕士学位论文].厦门大学,2007,4
    [62]王美胜.称重传感器的选用.仪器仪表标准化与计量,2003(1):26,46
    [63]姚玉明.称重传感器并联技术及误差分析.衡器,2007,36(z1):42,44
    [64]杨国宇,顾威.基于PIC18F458单片机的数据采集和通讯系统.工业控制计算机,2006,19(9):3-4[65]李华栋,刘和平,邱文彬,等.基于PIC18F458单片机的转矩转速测量仪.电子测量技术,2006,29(4):48-50[66]雷印胜,孙同景,陈桂友.AD7706 ∑-△ A/D转换器在动态心电信号测量中的应用.电子产品世界,2001(12)B:23-25[67]夏燕兰.AD7706芯片在单片机测控系统中的应用.南京工业职业技术学院学报,2006,6(2):67-70[68]孙永,黄晓因.电阻应变式称重传感器噪声信号的分离.计算机测量与控制,2005,16(2): 291-293
    [69]张小超,胡小安,张爱国,等.基于称重法的联合收获机测产方法.农业机械学报,2010,26(3):125-129
    [70]陶永华.新型PID控制及其应用.北京:机械工业出版社,2003,7
    [71]张扬,魏莹,刘新力,等.PIC单片机CAN总线模块的应用.自动化技术与应用,2007,vo1.26(6):115-117
    [72]陈育中.霍尔传感器测速系统的设计.科学技术与工程,2010,10(30):7529-7532
    [73]孙成.变量施肥机控制系统的研究[硕士学位论文].吉林农业大学,2008,6
    [74]曲桂宝.变量施肥机的试验研制[硕士学位论文].吉林农业大学,2006,5
    [75]李金刚,刘永鸿.基于AT89C51型单片机的CAN总线智能节点设计.国外电子元器件,2006(8):26-29
    [76]韩党群.CAN控制器SJA1000及其应用.电子技术应用,2003(1):66-69
    [77]陆前锋,陈明昭.基于CAN控制器SJA1000的智能高速控制系统设计.电子设计应用,2003(1):42-44
    [78]张和平,陶珂.利用CAN控制器SJA1000构成最小系统节点的设计.黄石高等专科学校学报,2001,17(4):8-10
    [79]侯方安.小麦播种(施肥)机作业性能的对比试验与评价.农业机械学报,2002,33(1):130-131
    [80]孟志军,赵春江,等.基于GPS的农田多源信息采集系统的研究与开发.农业工程学报,2003,19(4):13-18
    [81]孟志军,赵春江,陈立平,等.GPS技术在精准农业中的应用.高技术通讯,2000(增刊):79-81
    [82]杨春园.智能施肥机控制系统的设计与实现[硕士学位论文].中国农业大学,2007,5
    [83]龚明,王毅.远程数据传输的研究.现代电子技术,2005(5):52-55
    [84]林梅金,罗飞,李如雄.GPRS网络的远程监测系统.计算机工程,2006,32(3):240-241,247
    [85]谭薇,胡捍英.WCDMA与GPRS技术浅析.通信技术,2002(5):78-80
    [86]Sawyer. J E,1994 Concepts of variable rate technology with considerations for fertilizer application. J. Prod. Agric 7:195-201
    [87]梁春英.变量施肥机自动控制系统设计研究[硕士学位论文].黑龙江八一农垦大学,2005,4
    [88]Gotway, C, A., R. A Ferguson, G. W Hergeot,sod et al., Comparison of Kriging and Inverse-Distance Methods for Mapping Soil Parameters,Soil SeJ Soc. Am Journal 1996,60:1237-1247
    [89]吴才聪,马成林,张书慧,等.精确农业倾斜网格划分及其应用.农业工程学报,2003,19(1):137-140
    [90]Hayden G Lawrence, Ian J Yule.2005. Accessing Spreader Performance for Variable Rate Fertiliser Application. ASAE Paper No:051117
    [91]Hunner G., H. Todd Mowrer,Robin M. Reich, An Accuracy Comparison of Six Spatial Interpolation Methods for Modeling Forest Stand Structure on the Fraser Experimental Forest,Colorado.
    [92]王珂,沈掌泉,JohnS. Bmley,等.精确农业土壤空间变异与采样方式研究.农业工程学报,2001,17(2):33-36
    [93]Burrough P A. Soil variability:a later 20th century view. Soils and Fertilizers.1993,56(5): 529-562
    [94]孟志军.基于处方图的变量施肥作业系统关键技术研究[博士学位论文].中国农业大学,2007,6
    [95]王建军,王长松,殷朝珍,等.不同采样密度对土壤养分空间插值结果的影响.江西农业学报,2010,22(7):87-90
    [96]胡慧萍.土壤特性的空间差异及其空间插值方法研究.湘潭师范学院学报(自然科学版),2001,23(3):99-101,115
    [97]孙强,薛雷,王媛媛.克里金参数估值法及其在参数估计分析中的应用.岩土力学,2009,30(z2):371-373
    [98]房俊杰.黑龙江大豆施肥智能决策支持系统设计与实现[硕士学位论文].东北农业大学,2006,6
    [99]苗孝可,王秀,孟志军,等.精准农业变量施肥处方图生成系统.中国科技成果,2004(12):
    [100]陈立平.精准农业变量施肥理论与试验研究[博士学位论文].中国农业大学,2003,6
    [101]顾峰.我国农业信息化发展现状及存在的问题.农业科学研究,2005,26(3):93-95
    [102]梁红.我国“精准农业”现状及发展对策.农业与技术,2002,22(3):55-59
    [103]周国祥,苗玉彬,周俊,等.基于现场总线计算的农业机械控制系统研究.农业机械学报,2005,36(8):93-97
    [104]赵军,于洁,王熙,等.机械驱动式精密变量施肥播种机的研制.黑龙江八一农垦大学学报,2006,18(2):49-52
    [105]张涛,赵洁.变量施肥技术体系的研究进展.农机化研究,2010(7):233-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700