用户名: 密码: 验证码:
草莓连作根腐病发生机制与微生物及化学修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连作障碍是限制世界草莓产业持续发展的瓶颈。本研究从根际微生态角度出发,通过连作草莓病健株根区土壤化学性质及微生物区系组成的比较研究,揭示了草莓连作根腐病害发生的土壤微生态机制,探索利用植物病健株根区土壤微生物区系比较法快速筛选高效广谱且有实际防病促生作用生防微生物的可行性。同时采用盆栽与日光温室试验,探索了利用微生物菌剂及硅肥对草莓连作障碍的修复效应,并从抑病促生、促进养分吸收及土壤微生态修复等角度探讨了其作用机理,以期为草莓连作障碍的综合修复提供理论依据。主要研究结果如下:
     1.草莓连作根腐病害发生的根域土壤微生态机制研究。
     本研究表明,草莓连作根腐病害的发生与根区土壤化学性质及微生物区系组成及其多样性变化密切相关。
     (1)连作草莓病株根区土壤水溶性盐分含量较健株提高了50.6%~156.5%,有机质,速效磷及速效钾含量较健株分别下降22.2%~27.5%,15.3%~17.6%及10.9%~37.9%。
     (2)病株根表土壤细菌与真菌数量比值B/F降低了2.9%~50.0%,微生物群落结构趋向“真菌型”发展,细菌、真菌多样性指数H及丰富度指数S呈降低趋势。病健株根区、根表优势真菌种类、数量及比例差异明显,其中健株以具较强拮抗性的2株青霉(Penicillium oxalicum,P. griseofulvum)及1株土曲霉(Aspergillus terreus)为主,而病株则以枝孢霉(Cladosporium sp.)和大双孢柱孢(Cylindrocarpon macrodidyma)等有害病原菌为主。大双孢柱孢C. macrodidyma CF9对草莓根系具有强烈侵染致病作用。
     2.草莓根腐病原真菌分离及其拮抗真菌筛选
     本研究采用病健株根区及根表土壤微生物区系比较法获得对草莓根系具有强烈侵染致病作用的根腐病原真菌大双孢柱孢C. macrodidyma CF9,同时筛选到2株广谱拮抗真菌灰黄青霉(P. griseofulvum CF3)和土曲霉(A. terreus CF7)。证明此法是快速锁定植物根腐病病原有害微生物及有益拮抗微生物可靠与可行的方法。
     3.硅酸钾对病原真菌抑菌作用及其机理研究
     硅酸钾对病原真菌菌丝生长具有较强抑制作用,其抑菌机理是通过硅酸钾提高培养基pH实现的,该结果否定了现有研究提出的硅对病原真菌具有类似抗生素作用的观点。
     4.微生物及化学防治措施对连作草莓的修复效应研究。
     (1)微生物活菌制剂对连作草莓具有明显的防病促生作用。2株拮抗真菌CF3和CF7可使盆栽草莓根腐发病率分别降低52.4%和48.7%,根鲜重分别增加15.2%和19.6%,果实产量分别提高26.7%和31.3%;放线菌Act12活菌制剂可使日光温室草莓根鲜重增加135.5%,开花提前6d,果实产量提高47.5%,同时改善了果实品质,盛果期可溶性固形物和糖酸比分别增加了11.6%和11.3%。
     (2)硅酸钾和粉煤灰对连作草莓也有明显的防病促生作用。施用3.33mmol·kg-1硅酸钾对第3年盆栽草莓根腐病的防效为36.5%,开花提前5d,根鲜重和果实产量增加了31.3%和47.4%。日光温室每株施用60mg硅酸钾草莓开花提前6d,根鲜重和果实产量增加了118.0%和102.3%。盆栽施用100g·kg-1粉煤灰对第3年草莓根腐病的防效为36.2%,开花提前6d,根鲜重和果实产量增加了95.5%和50.5%。。
     (3)硅酸钾及粉煤灰与菌剂配施除具有三者单独施用的效果外,在部分处理中,硅肥与放线菌剂配施具有增效作用。硅酸钾与菌剂配施可使日光温室草莓植株死亡率降低至0%,开花提前10d,植株总鲜重,根鲜重及单株产量分别提高73.7%,71.3%及126.2%,同时盛果期果实可溶性固形物含量,糖酸比及维生素C含量分别提高21.7%,36.2%及27.0%。盆栽试验表明,3.33mmol·kg-1硅酸钾与菌剂配施对第3年草莓根腐病的防效为58.6%,开花提前8d,根鲜重及单株产量分别提高73.6%和76.6%;100g·kg-1粉煤灰与菌剂配施对第3年草莓根腐病的防效为56.2%,开花提前6d,根鲜重及单株产量分别提高105.0%和91.0%。
     5.微生物及化学修复措施对草莓连作障碍的修复机理研究。
     (1)抗生及溶菌作用。2株拮抗真菌及放线菌Act12均可产生抗菌活性产物,通过抗菌活性代谢产物抑制草莓连作土传病原真菌菌丝生长,其中CF3对大双孢柱孢CF9菌丝具有重寄生和溶菌作用。
     (2)放线菌制剂能刺激草莓根系生长,促进植株对土壤养分的吸收利用。Act12菌剂单施或与2种硅肥配施均可促进连作草莓对氮、磷、钾元素吸收。
     (3)提高根系硅元素含量,增强根系抗病性。施用硅肥增加了土壤有效硅含量,促进草莓植株根系硅素的吸收积累,增加了根系含硅量,增强了草莓对根腐病的抗病性。
     (4)改善根系生理功能,增强植物的诱导抗性。Act12菌剂、硅酸钾及粉煤灰均可影响草莓根系生长发育,增强在根腐病原真菌胁迫下草莓的根系活力;诱导草莓产生抗病性,提高草莓叶片超氧化物歧化酶活性(SOD)、过氧化物酶活性(POD)、多酚氧化酶活性(PPO)及苯丙氨酸解氨酶(PAL)主要防御酶活性。
     (5)恢复草莓根区、根表土壤微生物区系平衡。Act12菌剂、硅酸钾及粉煤灰均可增加土壤细菌、放线菌数量,减少土壤真菌数量,同时提高B/F和A/F值,提高土壤细菌、真菌及放线菌的多样性;硅肥与菌剂配施可有效提高Act12菌剂在草莓根区土壤的定殖数量。即本研究采用微生物与化学修复措施可促进草莓根区土壤微生态环境向健康协调性方向发展。
Replant disease is the key limiting factor in perennial strawberry (Fragaria x ananassaDuch.) production worldwide. In order to elucidate reasons for the occurrence of strawberryreplant root rot disease, changes of rhizosphere soil chemical properties and microbialcommunity composition between healthy and diseased strawberry plants were determined byroutine soil agro-chemistry analysis and culture-depended method, respectively. Meanwhile, arapid screening program for biological control agents based on the rhizosphere microfloradifferentiae between healthy and diseased plants were established and evaluated. Experimentin greenhouse or under pot conditions were conducted respectively to investigate thealleviating effect of antagonistic microbial agents and silicon fertilizer on the strawberryreplant disease, and the possible alleviating mechanisms were investigated from view point ofdisease suppression, plant growth and nutrition absorption promotion as well as soilmicrobial-ecology restoration. Related results and conclusions are listed as follows:
     1. The strawberry root rot disease in monoculture system was associated with thechanges of rhizosphere soil chemical properties and microbial community composition.Comparing to the healthy plant, rhizosphere soil salt content in diseased plants increased witha range of50.6%-56.5%, content of organic matter, available phosphorus and availablepotassium decreased with range of2.2%-27.5%,15.3%-17.6%and10.9%-37.9%,respectively. The ratio of bacteria to fungi (B/F) in rhizoplane soil decreased with a range of2.9%-50.0%, the microbial community tended to a fungi dominant group system. Diversityindex (H) and richness index (S) of bacteria and fungi decreased. The fungi community andstructures in diseased rhizoshpere and rhizoplane soil was significant difference from thehealthy plant soil. Antagonistic fungi Penicillium spp. and Aspergillus sp. dominated inhealthy plant, while soil-borne fungi including Cladosporium sp. and Cylindrocarponmacrodidyma dominated in the root rot strawberry.
     2. The strawberry root rot causal agent C. macrodidyma CF9was identificated and twopromising biological control fungi P. griseofulvum CF3and A. terreus CF7were obtainedfrom rhizsphere through a rapid screening program based on the root-zone mycobiotadifferentiae between healthy and diseased strawberry plants. This method is a simple and reliable way to seek for biological control agents against root rot disease.
     3. In vitro test showed that potassium silicate inhibited the mycelial growth of fourstrains of soil-borne pathogenic fungi. However, when the pH of potassium silicate amendedPDA was reduced so that it was equivalent to unamended control PDA, there was nodifference in fungal growth between the two treatments. This indicated that the inhibition offungal growth on potassium silicate amended PDA was due to a pH effect.
     4. The alleveling effect of biological control agent and silicon fertilizer on the replantdisease of monoculture strawberry.
     (1) The pot experiment results showed that two antagonistic fungi isolate P.griseofulvum CF3and A. terreus CF7were effective for the control of strawberry root rotdisease and plant growth promotion and yield enhancement. Root disease incidence ininoculation treatment decreased by52.4%and48.7%, respectively. The root fresh weight andyield increased15.2%,19.6%and26.7%,31.3%respectively. A biological control agentStreptomyces pactum Act12showed significant enhancement on strawberry plant growth andfruit yield in greenhouse. The blooming time of inoculation plant was antedated for6dayscompared with the control. The root fresh weight and fruit yiled also increased by135.5%and47.5%, respectively. The fruit total soluble solids and sugar-to-acid ratio at full fruit stageincreased by11.6%and11.3%.
     (2) Individual application with potassium silicate or coal fly ash used as two differentsilicon sources showed better growth and higher yield for replanting strawberry. Applicationwith3.33mmol·kg-1potassium silicate into soil decreased the root rot by36.5%in the thirdyear, antedated blooming for5days, enhanced root fresh weight and fruit yield by31.3%and47.4%. Application with60mg potassium silicate per plant promoted strawberry plant growthin greenhouse. The blooming time was antedated for6days, root fresh weight and fruit yieldincreased with118.0%and102.3%. Application with100g·kg-1fly ash into soil decreased theroot rot by36.2%the third year, antedated blooming for6days, root fresh weight and fruityield was increased by95.5and50.5%.
     (3) Combined appilication of silicon fertilizer with Act12agent exhibited synergiesactions both under pot and greenhouse mononculture conditions. Potassium silicate combinedwith Act12agent decreased plant death rate to0%, and antedated blooming for10days ingreenhouse. The plant fresh weight, root fresh weight and fruit yield also increased by73.7%,71.3%and126.2%. Compared with the control, fruit contents of total soluble solid,sugar-to-acid ratio and vitamin C at full fruit stage increased by21.7%,36.2%and27.0%,respectively. Combined appilication of3.33mmol·kg-1potassium silicate with Act12agentinto soil decreased the root rot by58.6%in the third year, antedated blooming for8days, enhanced root fresh weight and fruit yield by73.6%and76.6%. Appilication of100g·kg-1flyash combined with Act12agent into soil decreased the root rot by56.2%in the third year,antedated blooming for6days, enhanced root fresh weight and fruit yield by105.0%and91.0%.
     5. The research on mechanism of biological control agents and silicon fertilizer foralleviating replant disease of strawberry
     (1) Antagonistic and cell-destroy action. Two antagonistic fungi and S. pactum Act12produced antibiotics against the myceial growth of strawberry soil-borne pathogenic fungi.The antagonistic fungi P. griseofulvum CF3had hyperparasite against root rot cause agent C.macrodidyma CF9.
     (2) The Act12agent could stimulate root growth, and promote soil nutrients absorptionand utilization strawberry plant. Combined application of Act12agent with two kind ofsilicon fertilizer enhanced nitrogen, phosphorus, potassium content in strawberry plant.
     (3) Strawberry root silicon content improved and root resistance enhancement.Application with silicon fertilizer improved the available silicon in soil, increased the siliconcontent in strawberry root as physical barrier against root rot pathogen.
     (4) Root physiological function enhancement and induced host plant resistance. TheAct12agent, potassium silicate and fly ash could contribute to plant root growth anddevelopment, increase root activity and induce the system resistance reaction of strawberryinfected with root rot pathogens by improving plant defense related enzymes activity such asSuperoxide dismutase (SOD), Peroxidase (POD), Polyphenol oxidase (PPO) andPhenylalanine ammonia lyase (PAL).
     (5) Modifying rhizosphere microbial community composition. The Act12agent,potassium silicate and fly ash could increase population of soil bacteria and actinomyces, anddecrease soil fungi population, enhance the ratio of bacteria to fungi (B/F) and the ratio ofactinomyces to fungi (A/F), increase the microbial biodiversity. In addition, combinedapplication of potassium silicate with Act12agent encouraged the proliferation of S. pactumAct12. In conclusion, the biological control agents and silicon fertilizer applied were effectivestrategies to engineer the strawberry replant rhizosphere ecology.
引文
鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    蔡德龙,钱发军,邓挺,赵华,董玉枝.1999.草莓施用硅肥效果研究.地域研究与开发,(2):69~70
    蔡艳,薛泉宏,陈占全,常显波,司美茹,孙小凤,来航线.2007.青海高原东部土壤辣椒疫霉生防菌的初步筛选.西北农业学报,16(2):241~244
    陈慧,郝慧荣,熊君,齐晓辉,张重义,林文雄.2007.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报,18(12):2755~2759
    陈进红,毛国娟,张国平,郭恒德.2002.硅对杂交粳稻干物质与养分积累及产量的影响.浙江大学学报(农业与生命科学版),28(1):24~28
    陈秦,薛泉宏,申光辉,段春梅,赵娟,王玲娜,薛磊,毛宁.2010a.放线菌制剂对番茄PPO活性及生物量的影响.西北农林科技大学学报(自然科学版),38(3):184~188
    陈秦,薛泉宏,申光辉,薛磊,段春梅,王玲娜,赵娟,毛宁.2010b.放线菌对棉花幼苗生长及抗旱能力的影响.西北农业学报,19(8):84~89
    陈孝仁,王振荣,徐敬友,童蕴慧, Brurberg M B.2011.恶疫霉侵染的草莓SSH文库的构建及分析.扬州大学学报(农业与生命科学版),32(4):64~69
    陈义群,董元华,王辉,黄冠燚,霍恒志.2011.不同农业措施对草莓连作土壤微生物群落特征的影响.安徽农业科学,39(25):15286~15289,15294
    陈毓荃.2002.生物化学实验方法和技术.北京:科学出版社
    程丽娟,薛泉宏.2000.微生物学实验技术.西安:世界图书出版公司
    邓明琴,孙宝贵,黄桂菊.1984.草莓两种土壤真菌病害的发现及调查研究.中国果树,(3):46~47,50
    邓晓,李勤奋,侯宪文,洪葵.2011.香蕉枯萎病区土壤可培养微生物生态特征.热带作物学报,32(2):283~288
    邓阳春,黄建国.2010.长期连作对烤烟产量和土壤养分的影响.植物营养与肥料学报,16(4):840~845
    段春梅,薛泉宏,呼世斌,赵娟,魏样,王玲娜,申光辉,陈秦.2010a.连作黄瓜枯萎病株、健株根域土壤微生物生态研究.西北农林科技大学学报(自然科学版),38(4):143~150
    段春梅,薛泉宏,赵娟,呼世斌,陈秦,王玲娜,申光辉,薛磊.2010b.放线菌剂对黄瓜幼苗生长及叶片PPO活性的影响.西北农业学报,19(9):48~54
    段佳丽,舒志明,孙群,魏良柱,傅亮亮,薛泉宏,于妍华.2012.放线菌剂对丹参生长及有效成分的影响.西北农林科技大学学报(自然科学版),40(2):195~200
    范君华,龚明福,刘明,张利莉.2009.南疆干旱区连作棉田土壤养分及生物活性的初步研究.棉花学报,21(2):127~132
    方中达.1998.植病研究法(第三版).北京:中国农业出版社
    冯东昕,李宝栋.1998.可溶性硅在植物抵御病害中的作用.植物病理学报,28(4):293~297
    冯跃华,胡瑞芝,云惊奇,张杨珠,邹应斌.2005.粉煤灰理化性质与硅素释放规律的研究.中国生态农业学报,13(3):48~50
    高丹,陈基宁,蔡昆争,骆世明.2010.硅在植物体内的分布和吸收及其在病害逆境胁迫中的抗性作用.生态学报,30(10):2745~2755
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版公司
    高志华,葛会波,李青云,张学英,李学营.2004. Mycokick菌剂对连作草莓的影响.果树学报,21(2):188~190
    高志华,张学英,葛会波,郑丽锦.2008.草莓根系分泌物障碍效应的模拟研究.植物营养与肥料学报,14(1):189~193
    高子勤,张淑香.1998.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应.应用生态学报,9(5):549~554
    郭彬,娄运生,梁永超,张杰,华海霞,奚云龙.2004.氮硅肥配施对水稻生长、产量及土壤肥力的影响.生态学杂志,23(6):33~36
    郭玉蓉.2003.硅化物对甜瓜抗真菌病害的生理机理研究.[博士学位论文].兰州:甘肃农业大学
    郭志英,薛泉宏,张晓鹿,杨斌,许英俊,周永强.2008.生防菌苗床接种对辣椒根域微生态及产量的影响.西北农林科技大学学报(自然科学版),36(4):159~165,170
    韩晓日,侯玉慧,姜琳琳,战秀梅,王玲莉.2006.硅对盐胁迫下黄瓜幼苗生长和矿质元素吸收的影响.土壤通报,37(6):1162~1165
    何璐,纪明山,王勇,徐洪波,齐补坤.2011.一株苦参内生真菌的抑菌特性及活性成分的结构鉴定.中国农业科学,44(15):3127~3133
    胡燕梅,杨龙.2006.利用微生物防治植物病害的研究进展.中国生物防治,22(S1):190~193
    胡宇,郭天文,张绪成.2009.旱地马铃薯连作对土壤养分的影响.安徽农业科学,37(12):5436~5439,5610
    扈金丽,尹宝重,甄文超,刘盼.2011.防治草莓连作障碍的复合生防制剂的筛选.中国农学通报,37(13):249~252
    黄海荣,徐林, Bokhtiar S M, Manoj K S,李杨瑞,杨丽涛.2011.硅肥对蔗地土壤性状、甘蔗叶片营养及产量的影响(英文).南方农业学报,42(7):756~759
    黄明勇,杨剑芳,路福平,王怀锋.2007.海湾泥、碱渣和粉煤灰作为园林种植基质的微生物学特性研究.农业环境科学学报,26(3):1159~1163
    黄亚丽,甄文超,张丽萍,张根伟,田连生,程辉彩,史延茂,李书生.2005.草莓重茬病菌的分离及其生物防治.生物技术,15(6):74~76
    霍云霞,何其瑞,魏国荣,康振生,黄丽丽.2009.两株内生放线菌发酵液防治黄瓜白粉病机理初探.西北农业学报,18(6):295~300
    姜钰,董怀玉,徐秀德,刘志恒,樊慧梅.2005.放线菌在植病生防中的研究进展.杂粮作物,25(5):329~331
    蒋继志,梁宁.2005.植物提取物对草莓根腐病病原真菌的抑制作用.河北大学学报(自然科学版),25(4):399~404
    靳朋勃,吴春笃.2007.粉煤灰农业利用现状.安徽农业科学,35(18):5544~5545
    鞠会艳,韩丽梅,王树起,丛登立.2002.连作大豆根分泌物对根腐病病原菌的化感作用.应用生态学报,13(6):723~727
    孔华忠.2007.中国真菌志.第三十五卷.北京:科学出版社:160~162
    孔祥如,姜卓俊.2009.草莓连作障害发生及生态土壤消毒.当代生态农业,(Z1):134~135
    李保会,李青云,李建军,葛会波.2007.复合微生物菌肥对连作草莓产量和品质的影响.河北农业科学,11(1):15~17
    李合生.2000.植物生理生化实验原理与技术.北京:高等教育出版社
    李晶,阮维斌,陈永智,许华,刘思蕴,吴建波,郑连斌,高玉葆.2008.天然脂肪酸类物质对温室连作黄瓜和番茄幼苗生长的影响.农业环境科学学报,27(3):1022~1028
    李俊喜,刘润进.2007.菌根真菌菌剂防治作物土传病害潜力分析.植物病理学报,37(1):1~8
    李林齐李徐.2001.主要辣椒品种对疫病、根腐病的抗性鉴定.山东农业科学,(2):29~30
    李明月,常敏,张庆华,何仁发,叶波平.2010.木榄内生真菌菌株ZD6及其代谢产物的抑菌活性.菌物学报,29(5):739~745
    李清芳,马成仓.2003.土壤有效硅对棉花幼苗营养代谢的影响.中国农业科学,36(6):726~730
    李胜华,谷丽萍,刘可星,廖宗文.2009.有机肥配施对番茄土传病害的防治及土壤微生物多样性的调控.植物营养与肥料学报,15(4):965~969
    李双喜,沈其荣,郑宪清,朱毅勇,袁大伟,张娟琴,吕卫光.2012.施用微生物有机肥对连作条件下西瓜的生物效应及土壤生物性状的影响.中国生态农业学报,20(2):169~174
    李文娟,何萍,金继运.2010.钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系.中国农业科学,43(4):729~736
    李英梅,曹红梅,徐福利,任武婷,刘建利,张淑莲,张锋,陈志杰.2010.土壤消毒措施对土壤物理特性及黄瓜生长发育的影响.中国生态农业学报,18(6):1189~1193
    李志强,梁永超,褚贵新,冶军,张波,刘倩.2011.粉煤灰对加工番茄生长与养分吸收的影响及对春小麦残效研究.新疆农业科学,48(6):988~995
    梁军锋,薛泉宏,牛小磊,李增波.2005.7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响.西北植物学报,25(10):2118~2123
    梁银丽,陈志杰,徐福利,张成娥,杜社妮,严勇敢.2004.黄土高原设施农业中的土壤连作障碍.水土保持学报,18(4):134~136
    刘慧霞,郭正刚.2011.不同土壤水分条件下添加硅对紫花苜蓿茎叶和土壤氮磷钾含量的影响.应用与环境生物学报,17(6):809~813
    刘建国,张伟,李彦斌,孙艳艳,卞新民.2009.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,42(2):725~733
    刘苹,王梅,杨力,于淑芳,万书波.2011.花生根系腐解物对根腐镰刀菌和固氮菌的化感作用研究.安徽农业科学,39(35):21701~21703
    刘艳萍,滕松山,赵蕾.2011.高产嗜铁素恶臭假单胞菌A3菌株的鉴定及其对黄瓜的促生作用.植物营养与肥料学报,17(6):1507~1514
    刘志恒,姜成林.2004.放线菌现代生物学与生物技术.北京:科学出版社
    刘紫英,康艳萍,袁斌.2008.草莓红中柱根腐病病原菌的鉴定.植物保护,34(5):163~165
    吕德国,于翠,杜国栋,秦嗣军,李芳东,刘国成.2008.樱桃属(Cerasus)植物根围微生物多样性.生态学报,28(8):3882~3890
    吕卫光,余廷园,诸海涛,沈其荣,张春兰.2006.黄瓜连作对土壤理化性状及生物活性的影响研究.中国生态农业学报,14(2):119~121
    马宝红,甄文超,曹克强,武玉环.2004. VAM真菌对草莓促生、防草莓黄萎病效应初探.河北农业大学学报,27(4):71~73
    马汇泉,郑桂萍,赵九洲,赵淑英.1997.大豆连作障碍及产生机理.土壤,29(1):46~48
    马晶晶,蒋继志,王树桐,张俊娥,徐淑华,田菲菲,赵秀娟.2006.几种化学物质诱导草莓抗根腐病的初步研究.河北农业大学学报,29(3):62~65,70
    马琨,张丽,杜茜,宋乃平.2010.马铃薯连作栽培对土壤微生物群落的影响.水土保持学报,24(4):229~233
    马茂桐.1993.连作早晚稻的养分吸收特征及其对产量的影响.土壤通报,24(3):126~128
    马艳,常志州,赵江涛,黄红英,叶小梅,张建英.2006.一株疫病拮抗青霉P. st10菌株的抗菌活性及其对辣椒疫病的盆栽防效.中国生物防治,22(3):239~243
    马艳,李艳霞,常志州,张文芝,徐跃定,张建英.2011.强化拮抗菌有机肥在连作大棚草莓上的应用效果研究.植物营养与肥料学报,17(6):1459~1467
    马云华,魏珉,王秀峰.2004.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,15(6):1005~1008
    马云华,魏珉,王秀峰.2005.日光温室连作土壤酚类物质变化及其对黄瓜根系抗病性相关酶的影响.应用生态学报,16(1):79~82
    毛宁,薛泉宏,唐明.2010a.2株放线菌对土壤中苯甲酸和对羟基苯甲酸的降解作用.西北农林科技大学学报(自然科学版),38(5):143~148
    毛宁,薛泉宏,唐明,王玲娜,赵娟,段春梅.2010b.放线菌对对羟基苯甲酸的降解作用及草莓生长的影响.中国农业科技导报,15(5):103~108
    闵红,陈磊,呼世斌,郭文姬,景岳龙.2010.大棚果蔬连作土壤肥力限制性因子研究.西北农林科技大学学报(自然科学版),38(8):160~166
    慕康国,赵秀琴,李健强,刘西莉.2000.矿质营养与植物病害关系研究进展.中国农业大学学报,5(1):84~90
    齐国辉,陈贵林,吕桂云,乜兰春,丁平海.2001.丛枝菌根真菌对重茬草莓产量和品质的影响.果树学报,18(6):341~344
    齐祖同.1997.中国真菌志.第五卷.北京:科学出版社:61~63
    乔宝营,黄海帆,张信栓,马彩霞,李道德.2004.草莓叶面积简易测定方法.果树学报,21(6):621~623
    饶立华,覃莲祥,朱玉贤,谢学民.1986.硅对杂交稻形态结构和生理的效应.植物生理学通讯,22(3):20~24
    阮维斌,王敬国,张福锁.2003.连作障碍因素对大豆养分吸收和固氮作用的影响.生态学报,23(1):22~29
    阮维斌,赵紫娟,薛健,王敬国,张福锁.2001.高效液相色谱法检测与化感现象相关的5种酚酸.应用与环境生物学报,7(6):609~610
    邵洪家,徐祖祥,鲍琴书.2002.大棚草莓施用硅素有机肥的增产效果.浙江农业科学,(2):6~8
    申光辉,薛泉宏,陈秦,王玲娜,赵娟,薛磊.2012.硅酸钾与密旋链霉菌Act12菌剂配施对连作草莓生长、果实产量及品质的影响.中国生态农业学报,20(3):315~321
    宋志伟,陈世昌,王小琳,刘中平.2006.复合微生物制剂对重茬草莓生长及产量品质的影响研究.土壤通报,37(3):560~562
    苏世鸣,任丽轩,霍振华,杨兴明,黄启为,徐阳春,周俊,沈其荣.2008.西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响.中国农业科学,41(3):704~712
    隋丽,徐文静,杜茜,陈光,董英山,李启云.2009.放线菌769发酵液对水稻体内主要防御酶活性的影响.吉林农业大学学报,31(4):382~384,389
    孙彬.2000.粉煤灰在制造水稻苗床调酸营养壮秧剂中的应用.黑龙江农业科学,(1):28~29
    孙浩,黄璐明,黄璐琦,郭兰萍,周洁,吕冬梅,曾燕.2008.基于生态位理论的药用植物化感作用与连作障碍的探讨.中国中药杂志,33(17):2197~2200
    孙敬祖,薛泉宏,唐明,曹书苗,邢胜利.2009.放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用.西北农林科技大学学报(自然科学版),37(12):153~158
    孙万春,梁永超,杨艳芳.2002.硅和接种黄瓜炭疽菌对黄瓜过氧化物酶活性的影响及其与抗病性的关系.中国农业科学,35(12):1560~1564
    孙万春,薛高峰,张杰,范琼花,葛高飞,李兆君,梁永超.2009.硅对水稻病程相关蛋白活性和酚类物质含量的影响及其与诱导抗性的关系.植物营养与肥料学报,15(04):756~762
    谭昌华,代汉萍,雷家军.2003.世界草莓生产与贸易现状及发展趋势(上).世界农业,(5):10~12
    田峰,何仁发,李明月,王娟,叶波平.2010.浙贝母内生真菌菌株FTJZZJ09及其抑菌活性成分.微生物学通报,37(10):1475~1480
    汪海珍,徐建民,谢正苗,俞劲炎.1999.粉煤灰对土壤和作物生长的影响.土壤与环境,8(4):305~308
    汪雪静,卜春亚,靳永胜,梁为,仝宝生,师光禄,王有年.2011.草莓根腐病菌拮抗细菌的分离与鉴定.园艺学报,38(9):1657~1666
    王利静.2007.石灰氮对草莓再植病害病原菌的抑制作用研究.[硕士学文论文].保定:河北农业大学
    王玲娜,薛泉宏,唐明,申光辉,赵娟,段春梅,陈秦,薛磊,毛宁.2010.内蒙古芹菜根腐病病株和健株根域土壤的微生物生态研究.西北农林科技大学学报(自然科学版),38(8):167~172,181
    王玲娜.2010.内蒙芹菜连做障碍微生物修复研究.[硕士学位论文].杨凌:西北农林科技大学
    王茹华,张启发,靳亚忠,吴瑕,马光恕.2010.嫁接茄子根际真菌的分离、鉴定及对黄萎病菌的作用效果研究.土壤通报,41(6):1376~1379
    王素素,杜国栋,吕德国.2011.土壤高温处理对连作草莓根系呼吸代谢及植株发育的影响.果树学报,28(2):234~239
    王霞,王素英,高朋辉.2008.青霉TS67菌株对大豆根腐病和玉米小斑病的防治效果评价.微生物学通报,35(8):1246~1250
    王耀晶,郭修武,高熙,武华文.2008b.硅对草莓生长发育及产量品质的影响.北方园艺,(4):48~50
    王耀晶,郭修武,王英.2008a.盐胁迫下硅对草莓生长发育的影响.北方园艺,(1):22~24
    王占武,李晓芝,刘彦利,田洪涛.2003.枯草芽孢杆菌B501在草莓根际的定殖及其动态变化.植物病理学报,33(2):188~189
    王兆锋,冯永军,张蕾娜.2003.粉煤灰农业利用对作物影响的研究进展.山东农业大学学报(自然科学版),24(1):152~156
    王中武,臧慧明.2011.吉林地区草莓根腐病病原及生物学特性研究.吉林农业科技学院学报,20(1):1~3,14
    魏国强,朱祝军,钱琼秋,李娟,姚秋菊.2004.硅对瓠瓜酚类物质代谢的影响及与抗白粉病的关系.植物保护学报,31(2):185~189
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社
    吴凤芝,赵凤艳,刘元英.2000.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,31(3):241~247
    吴家华,刘宝山,董云中,刘继青,王岗.1995.粉煤灰改土效应研究.土壤学报,32(3):334~340
    夏石头,萧浪涛,彭克勤.2001.高等植物中硅元素的生理效应及其在农业生产中的应用.植物生理学通讯,37(4):356~360
    辛雅芬,商金杰,高克祥.2005.拮抗木霉菌的生防机制研究进展.东北林业大学学报,33(4):88~91
    邢会琴,肖占文,闫吉智,马建仓,孟嫣.2011.玉米连作对土壤微生物和土壤主要养分的影响.草业科学,28(10):1777~1780
    徐淑华,蒋继志,郝志敏.2004.河北满城地区草莓根腐病病原真菌的分离鉴定.见:中国植物病理学会2004年学术年会:68~71
    徐淑华,蒋继志,姚克文,郝志敏.2005.两株拮抗细菌对草莓根腐病菌的抑制作用.河北农业大学学报,28(3):81~83,97
    许英俊,薛泉宏,邢胜利,周永强,张晓鹿,郭志英,杨斌,林超峰,孙敬祖.2007.3株放线菌对草莓的促生作用及对PPO活性的影响.西北农业学报,16(6):146~153
    薛清,来航线.2010.放线菌制剂对连作草莓开花及结果的影响.北方园艺,(6):177~179
    薛泉宏,同延安.2008.土壤生物退化及其修复技术研究进展.中国农业科技导报,10(4):28~35
    闫艳华,王海宽,肖瑞峰,宗志友,沈发迪,孙瑶,戚薇.2011.一株乳酸菌对番茄灰霉病的防效及对几种防御酶活性的影响.微生物学通报,38(12):1801~1806
    颜艳伟,张红,刘露,咸洪泉,崔德杰.2011.连作花生田根际土壤优势微生物的分离和鉴定.微生物学报,51(6):835~842
    杨剑虹,车福才,王定勇,谢德体,魏朝富,张林.1997.粉煤灰的理化性质与农业化学行为的研究.植物营养与肥料学报,3(4):341~348
    杨祥田,周翠,李建辉,李伟龙,林俊.2010.不同轮作方式下大棚草莓产量及土壤生物学特性.中国生态农业学报,18(2):312~315
    杨艳芳,梁永超,娄运生,孙万春.2003.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,36(7):813~817
    叶波平,贾阳阳,许婷婷,刘冰,李明月.2010.来自红海榄根际土壤的曲霉属真菌F7菌株及其生物活性分析.菌物学报,29(2):241~248
    叶春,徐进,李卓士.1994.高效硅肥对草莓的使用效果初报.硅肥应用技术与前景北京:中国农业科技出版社
    尹莘耘,耿殿棨,楊开宇,陈(馬馬).1957.棉花黄萎病生物防治试验续报.植物病理学报,3(1):55~61
    于慧瑛,吕国忠,孙晓东,赵志慧.2007.病健人参根际土壤真菌种类及数量的研究.安徽农业科学,35(26):8279,8291
    于立杰,梁春莉,于强波.2009.草莓连作障碍发生机理及防治措施.安徽农业科学,37(27):13118~13119
    于晓斌,刘景华,康立娟,曲明清.2004.杂多酸稀土盐对黄瓜和番茄上2种病原真菌抑制作用的研究.吉林农业大学学报,26(4):383~385
    于妍华.2011.西洋参连作障碍微生态机制及生防放线菌的抗病作用.[硕士学位论文].杨凌:西北农林科技大学
    余晔,杜金萍,杜相革.2010.硅对黄瓜霜霉病抑制效果和抗性相关酶活性的影响.植物保护学报,37(1):37~41
    喻景权,杜尧舜.2000.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,31(1):124~126
    喻景权,松井佳久.1999.豌豆根系分泌物自毒作用的研究.园艺学报,26(3):175~179
    袁会珠,曹坳程,胡玉清,黄玉斌,张金和,朱银香.2000.破坏臭氧层物质溴甲烷在草莓土壤消毒上替代技术研究.农业环境保护,19(3):159~160,163
    曾富春,黄云,赵艳琴,马淑青.2006.草莓枯萎病菌的生物学特性.四川农业大学学报,24(2):156~160
    张炳欣,张平,陈晓斌.2000.影响引入微生物根部定殖的因素.应用生态学报,11(6):151~153
    张继光,申国明,张久权,张忠锋,石屹,李世博,刘海伟,时鹏.2011.烟草连作障碍研究进展.中国烟草科学,32(3):95~99
    张俊英,王敬国,许永利.2008.大豆根系分泌物中氨基酸对根腐病菌生长的影响.植物营养与肥料学报,14(2):308~315
    张丽萍,黄亚丽,程辉彩,张根伟,董超,陈瑞勤.2007.土壤微生物制剂防治草莓连作病害的研究.土壤,39(4):604~607
    张晓鹿,薛泉宏,郭志英,杨斌,周永强,许英俊.2008.混合接种对辣椒疫病生防菌定殖、辣椒生长及诱导抗性的影响.西北农林科技大学学报(自然科学版),36(4):151~158
    张瑜.2007.生物制剂康地3号对草莓再植病害的防治作用研究.[硕士学文论文].保定:河北农业大学
    张重义,林文雄.2009.药用植物的化感自毒作用与连作障碍.中国生态农业学报,17(1):189~196
    张子龙,王文全.2010.植物连作障碍的形成机制及其调控技术研究进展.中国农业科技导报,27(5):69~72
    赵娟,杜军志,薛泉宏,段春梅,王玲娜,申光辉,陈秦,薛磊.2010.3株放线菌对甜瓜幼苗的促生与抗性诱导作用.西北农林科技大学学报(自然科学版),38(2):109~116
    赵娟,薛泉宏,王玲娜,段春梅,薛磊,毛宁.2011.多功能放线菌Act12对土传病原真菌的拮抗性及其鉴定.中国生态农业学报,19(2):394~398
    赵秀娟,王树桐,张凤巧,杜洪忠,蒋继志.2006.草莓根腐病研究进展.中国农学通报,22(8):419~422
    赵秀娟.2007.土壤拮抗微生物防治草莓重茬病的研究.[硕士学位论文].河北农业大学
    甄文超,曹克强,代丽,胡同乐.2005b.利用药用植物源土壤添加物控制草莓再植病害的研究.中国农业科学,38(4):730~735
    甄文超,曹克强,代丽,张学英.2004c.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报,28(6):828~832
    甄文超,代丽,胡同乐,曹克强,孔俊英.2004b.连作对草莓生长发育和根部病害发生的影响.河北农业大学学报,27(5):68~71
    甄文超,代丽,胡同乐,曹克强.2005a.连作草莓土壤微生物区系动态的研究.河北农业大学学报,28(3):70~72,87
    甄文超,王晓燕,曹克强,靳增军.2004a.草莓根系分泌物和腐解物中氨基酸的检测及其化感作用研究.河北农业大学学报,27(2):76~80
    郑军辉,叶素芬,喻景权.2004.蔬菜作物连作障碍产生原因及生物防治.中国蔬菜,24(3):57~59
    郑亚萍,王才斌,黄顺之,吴正锋.2008.花生连作障碍及其缓解措施研究进展.中国油料作物学报,30(3):384~388
    钟霈霖,乔荣,王天文.2003.克服草莓连作障碍对策.耕作与栽培,(2):48
    周晓见,陈毓遒,缪莉,董昆明,董夏伟,靳翠丽.2011.一株拮抗烟草青枯病菌的真菌的筛选与鉴定.生态环境学报,20(10):1418~1423
    周永强,薛泉宏,杨斌,张晓鹿,许英俊,郭志英,林超峰.2008.生防放线菌对西瓜根域微生态的调整效应.西北农林科技大学学报(自然科学版),36(4):143~150
    朱杰华,樊慕贞,蔺成武,李国春,刘景芬,郝嘉彦,田丰,段立霄.1994.草莓根腐病原初步研究.河北农业大学学报,17(2):45~48
    庄岩,吴凤芝.2008.不同农艺措施对土壤微生物的影响研究进展.东北农业大学学报,160(6):136~140
    Abad Z G, Louws F J, Fernandez G E, Ferguson L M.2002. Predominance and pathogenicity of fungi andstramenopiles associated with black root rot of strawberries. Phytopathology,92(6): S1
    Abdet-Sattar M A, El-Marzoky H A, Mohamed A I.2008. Occurrence of soilborne diseases and root knotnematodes in strawberry plants grown on compacted rice straw bales compared with naturally infestedsoils. Journal of Plant Protection Research,48(2):223~235
    Abreo E, Martinez S, Bettucci L, Lupo S.2010. Morphological and molecular characterisation ofCampylocarpon and Cylindrocarpon spp. associated with black foot disease of grapevines in Uruguay.Australasian Plant Pathology,39(5):446~452
    Adriano D C, Weber J, Bolan N S, Paramasivam S, Koo B J, Sajwan K S.2002. Effects of high rates ofcoal fly ash on soil, turfgrass, and groundwater quality. Water Air and Soil Pollution,139(1-4):365~385
    Agusti L, Bonaterra A, Moragrega C, Camps J, Montesinos E.2011. Biocontrol of root rot of strawberrycaused by Phytophthora cactorum with a combination of two Pseudomonas fluorescens strains.Journal of Plant Pathology,93(2):363~372
    Ajaz S, Tiyagi S.2003. Effect of different concentrations of fly-ash on the growth of cucumber plant,Cucumis sativus. Archives of Agronomy and Soil Science,49(4):457~461
    Amil-Ruiz F, Blanco-Portales R, Munoz-Blanco J, Caballero J L.2011. The strawberry plant defensemechanism: A molecular review. Plant and Cell Physiology,52(11):1873~1903
    Anandhakumar J, Zeller W.2008. Biological control of red stele (Phytophthora fragariae var. fragariae)and crown rot (P. cactorum) disease of strawberry with rhizobacteria. Journal of Plant Diseases andProtection,115(2):49~56
    Arancon N Q, Edwards C A, Bierman P.2006. Influences of vermicomposts on field strawberries: Part2.Effects on soil microbiological and chemical properties. Bioresource Technology,97(6):831~840
    Arancon N Q, Edwards C A, Bierman P, Welch C, Metzger J D.2004. Influences of vermicomposts onfield strawberries:1. Effects on growth and yields. Bioresource Technology,93(2):145~153
    Ashraf M, Rahmatullah, Ahmad R, Afzal M, Tahir M A, Kanwal S, Maqsood M A.2009. Potassium andsilicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress.Journal of Agronomy and Crop Science,195(4):284~291
    Aviles M, Castillo S, Bascon J, Zea-Bonilla T, Martin-Sanchez P M, Perez-Jimenez R M.2008. First reportof Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathology,57(2):382~382
    Bélanger R R, Benhamou N, Menzies J G.2003. Cytological evidence of an active role of silicon in wheatresistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology,93(4):402~412
    Bélanger R R, Bowen P A, Ehret D L, Menzies J G.1995. Soluble silicon-its role in crop and diseasemanagement of greenhouse crops. Plant Disease,79(4):329~336
    Babalola O O.2010. Beneficial bacteria of agricultural importance. Biotechnology Letters,32(11):1559~1570
    Baino O M, Salazar S M, Ramallo A C, Kirschbaum D S.2011. First report of Macrophomina phaseolinacausing strawberry crown and root rot in Northwestern Argentina. Plant Disease,95(11):1477~1477
    Barakat R M, Al-Masri M I.2009. Trichoderma harzianum in combination with sheep manure amendmentenhances soil suppressiveness of Fusarium wilt of tomato. Phytopathologia Mediterranea,48(3):385~395
    Barbetti M J, Fang X L, Phillips D, Li H, Sivasithamparam K.2011. Severity of crown and root diseases ofstrawberry and associated fungal and oomycete pathogens in Western Australia. Australasian PlantPathology,40(2):109~119
    Basu M, Pande M, Bhadoria P B S, Mahapatra S C.2009. Potential fly-ash utilization in agriculture: Aglobal review. Progress in Natural Science,19(10):1173-1186
    Bekker T F, Kaiser C, van der Merwe R, Labuschagne N.2006. In-vitro inhibition of mycelial growth ofseveral phytopathogenic fungi by soluble potassium silicate. South African Journal of Plant and Soil,23(3):169~172
    Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel J L, Michelot P.2005. Replant diseases:Bacterial community structure and diversity in peach rhizosphere as determined by metabolic andgenetic fingerprinting. Soil Biology and Biochemistry,37(9):1738~1746
    Benlioglu S, Boz O, Yildiz A, Kaskavalci G, Benlioglu K.2005. Alternative soil solarization treatments forthe control of soil-borne diseases and weeds of strawberry in the western Anatolia of Turkey. Journalof Phytopathology,153(7-8):423~430
    Benlioglu S, Yildiz A, Doken T.2004. Studies to determine the causal agents of soil-borne fungal diseasesof strawberries in Aydin and to control them by soil disinfestation. Journal of Phytopathology,152(8-9):509~513
    Berg G, Kurze S, Buchner A, Wellington E M, Smalla K.2000. Successful strategy for the selection of newstrawberry-associated rhizobacteria antagonistic to Verticillium wilt. Canadian Journal ofMicrobiology,46(12):1128~1137
    Berg G, Marten P, Minkwitz A, Bruckner S.2001. Efficient biological control of fungal plant diseases byStreptomyces sp. DSMZ12424. Journal of Plant Diseases and Protection,108(1):1~10
    Berg G, Smalla K.2009. Plant species and soil type cooperatively shape the structure and function ofmicrobial communities in the rhizosphere. FEMS Microbiology Ecology,68(1):1~13
    Berglund R, Svensson B, Gertsson U.2006. Impact of plastic mulch and poultry manure on plantestablishment in organic strawberry production. Journal of Plant Nutrition,29(1):103~112
    Berkeley G H.1933. Strawberry root rot in England. Nature,(132):570~571
    Bhat R G, Schmidt L S, Browne G T.2011. Quantification of Cylindrocarpon sp. in roots of almond andpeach trees from orchards affected by Prunus replant disease. Phytopathology,101(6): S15~S15
    Bi Y, Tian S P, Guo Y R, Ge Y H, Qin G Z.2006. Sodium silicate reduces postharvest decay on Hamimelons: Induced resistance and fungistatic effects. Plant Disease,90(3):279~283
    Bonants P, deWeerdt M H, vanGentPelzer M, Lacourt I, Cooke D, Duncan J.1997. Detection andidentification of Phytophthora fragariae Hickman by the polymerase chain reaction. EuropeanJournal of Plant Pathology,103(4):345~355
    Botha A, Denman S, Lamprecht S C, Mazzola M, Crous P W.2003. Characterisation and pathogenicity ofRhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province,South Africa. Australasian Plant Pathology,32(2):195~201
    Brannen P M, Ferguson L M, Louws F J.2004. Methyl bromide alternatives for control of black root rot ofstrawberry in Georgia. Phytopathology,94(6): S10~S10
    Browning M, Wallace D B, Dawson C, Alm S R, Amador J A.2006. Potential of butyric acid for control ofsoil-borne fungal pathogens and nematodes affecting strawberries. Soil Biology and Biochemistry,38(2):401~404
    Cai K Z, Gao D, Luo S M, Zeng R S, Yang J Y, Zhu X Y.2008. Physiological and cytological mechanismsof silicon-induced resistance in rice against blast disease. Physiologia Plantarum,134(2):324~333
    Campbell R N, Hall D H, Schweers V H.1982. Corky root of tomato in California caused by Pyrenochaetalycopersici and control by soil fumigation. Plant Disease,66(8):657~661
    Cao K Q, Wang S T.2007. Autotoxicity and soil sickness of strawberry (Fragaria x ananassa). AllelopathyJournal,20(1):103~113
    Ceja-Torres L F, Mora-Aguilera G, Teliz D, Mora-Aguilera A, Sanchez-Garcia P, Munoz-Ruiz C,Tlapal-Bolanos B, De la Torre-Almaraz R.2008. Fungi prevalence and etiology of strawberry dry wiltunder different crop management systems. Agrociencia,42(4):451~461
    Chérif M, Asselin A, Bélanger R R.1994. Defense responses induced by soluble silicon in sucumber rootsinfected by Pythium spp. Phytopathology,84(3):236~242
    Chérif M, Bélanger R R.1992. Use of potassium silicate amendments in recirculating nutrient solutions tosuppress Pythium ultimum on Long English Cucumber. Plant Disease,76(10):1008~1011
    Chérif M, Benhamou N, Menzies J G, Bélanger R R.1992a. Silicon induced resistance in cucumber plantsagainst Pythium ultimum. Physiological and Molecular Plant Pathology,41(6):411~425
    Chérif M, Menzies J G, Benhamou N, Bélanger R R.1992b. Studies of silicon distribution in wounded andPythium ultimum infected cucumber plants. Physiological and Molecular Plant Pathology,41(5):371~385
    Chaverri P, Salgado C, Hirooka Y, Rossman A Y, Samuels G J.2011. Delimitation of Neonectria andCylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-likeanamorphs. Studies in Mycology,(68):57~78
    Chen W, Yao X, Cai K, Chen J.2011. Silicon alleviates drought stress of rice plants by improving plantwater status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research,142(1):67~76
    Contreras-Cornejo H A, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J.2009. Trichoderma virens,a plant beneficial fungus, enhances biomass production and promotes lateral root growth through anauxin-dependent mechanism in arabidopsis. Plant Physiology,149(3):1579~1592
    Costa R R, Moraes J C, Antunes C S.2007. Induced resistance on wheat to Schizaphis graminum(Rondani,1852)(Hemiptera: Aphididae) by silicon and acibenzolar-s-methyl. Ciencia eAgrotecnologia,31(2):393~397
    Datnoff L E, Deren C W, Snyder G H.1997. Silicon fertilization for disease management of rice in Florida.Crop Protection,16(6):525~531
    De Cal A, Martinez-Treceno A, Lopez-Aranda J M, Melgarejo P.2004. Chemical alternatives to methylbromide in Spanish strawberry nurseries. Plant Disease,88(2):210~214
    De Cal A, Martinez-Treceno A, Salto T, Lopez-Aranda J M, Melgarejo P.2005. Effect of chemicalfumigation on soil fungal communities in Spanish strawberry nurseries. Applied Soil Ecology,28(1):47~56
    De Cal A, Sztejnberg A, Sabuquillo P, Melgarejo P.2009. Management Fusarium wilt on melon andwatermelon by Penicillium oxalicum. Biological Control,51(3):480~486
    Dias A C F, Costa F E C, Andreote F D, Lacava P T, Teixeira M A, Assumpcao L C, Araujo W L,Azevedo J L, Melo I S.2009. Isolation of micropropagated strawberry endophytic bacteria andassessment of their potential for plant growth promotion. World Journal of Microbiology andBiotechnology,25(2):189~195
    Dicklow M B, Acosta N, Zuckerman B M.1993. A novel Streptomyces species for controllingplant-parasitic nematodes. Journal of Chemical Ecology,19(2):159~173
    dos Santos G R, Neto M D D, Carvalho A R S, Fidelis R R, Afferri F S.2010. Silicon sources and soses onthe severity of the gummy stem blight and watermelon productivity. Bioscience Journal,26(2):266~272
    Doumbou C L, Salove M K H, Crawford D L, Beaulieu C.2001. Actinomycetes, promising tools to controlplant diseases and to promote plant growth. Phytoprotection,82(3):85~102
    Drake C A, Hancock J F.2005. Field and greenhouse evaluation of strawberry genotypes for tolerance toblack root rot pathogens. Hortscience,40(4):1058
    Dwivedi S, Tripathi R D, Srivastava S, Mishra S, Shukla M K, Tiwari K K, Singh R, Rai U N.2007.Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars in fly-ashamended soil grown. Chemosphere,67(1):140~151
    Ebihara Y, Uematsu S, Nomiya S.2010. Control of Verticillium dahliae at a strawberry nursery bypaddy-upland rotation. Journal of General Plant Pathology,76(1):7~20
    El-Tarabily K A.2003. An endophytic chitinase-producing isolate of Actinoplanes missouriensis, withpotential for biological control of root rot of lupin caused by Plectosporium tabacinum. AustralianJournal of Botany,51(3):257~266
    El-Tarabily K A.2006. Rhizosphere-competent isolates of streptomycete and non-streptomyceteactinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatumdamping-off disease of cucumber. Canadian Journal of Botany-Revue Canadienne De Botanique,84(2):211~222
    El-Tarabily K A.2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizospherecompetent1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes.Plant and Soil,308(1-2):161~174
    El-Tarabily K A, Hardy G E S, Sivasithamparam K.2010. Performance of three endophytic actinomycetesin relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogenof cucumber under commercial field production conditions in the United Arab Emirates. EuropeanJournal of Plant Pathology,128(4):527~539
    El-Tarabily K A, Nassar A H, Hardy G E S J, Sivasithamparam K.2009. Plant growth promotion andbiological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes.Journal of Applied Microbiology,106(1):13~26
    El-Tarabily K A, Sivasithamparam K.2006. Non-streptomycete actinomycetes as biocontrol agents ofsoil-borne fungal plant pathogens and as plant growth promoters. Soil Biology and Biochemistry,38(7):1505~1520
    Elmer W H, LaMondia J A.1999. Influence of ammonium sulfate and rotation crops on strawberry blackroot rot. Plant Disease,83(2):119~123
    Epstein E.1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciencesof the United States of America,91(1):11~17
    Epstein E.1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology,50:641~664
    Errakhi R, Lebrihi A, Barakate M.2009. In vitro and in vivo antagonism of actinomycetes isolated fromMoroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Betavulgaris L.). Journal of Applied Microbiology,107(2):672~681
    Eswaran A, Manivannan K.2007. Effect of foliar application of lignite fly ash on the management ofpapaya leaf curl disease. Chan Y K, Paull R E (eds) Proceedings of the1st International Symposiumon Papaya. Acta Horticulturae, vol740. Leuven1: International Society Horticultural Science:271~275
    Fang J G, Tsao P H.1995. Efficacy of Penicillium funiculosum as a biological-control agent againstPhytophthora root rots of azalea and citrus. Phytopathology,85(8):871~878
    Fang X L, Phillips D, Li H, Sivasithamparam K, Barbetti M J.2010. Fungal and oomycete pathogensassociated with crown and root diseases of strawberry in Western Australia. Phytopathology,100(6):S35~S35
    Fang X L, Phillips D, Li H, Sivasithamparam K, Barbetti M J.2011a. Comparisons of virulence ofpathogens associated with crown and root diseases of strawberry in Western Australia with specialreference to the effect of temperature. Scientia Horticulturae,131:39~48
    Fang X L, Phillips D, Li H, Sivasithamparam K, Barbetti M J.2011b. Severity of crown and root diseasesof strawberry and associated fungal and oomycete pathogens in Western Australia. Australasian PlantPathology,40(2):109~119
    Fauteux F, Remus-Borel W, Menzies J G, Bélanger R R.2005. Silicon and plant disease resistance againstpathogenic fungi. FEMS Microbiology Letters,249(1):1~6
    Fawe A, Abou-Zaid M, Menzies J G, Bélanger R R.1998. Silicon-mediated accumulation of flavonoidphytoalexins in cucumber. Phytopathology,88(5):396~401
    Fawe A, Menzies J G, Chérif M, Bélanger R R.2001. Silicon and disease resistance in dicotyledons.Datnof L E, Snyder G H, Kornd rfer G H.(eds) Silicon in Agriculture. Amsterdam: Elsevier:159~170
    Ferguson L M, Louws F J, Abad Z G, Fernandez G E, Poling E B, Brannen P M.2003. Strawberry rootcolonization by pathogens in transplants and field-set plants. Phytopathology,93(6): S25
    Figueiredo F C, Botrel P P, Teixeira C P, Petrazzini L L, Locarno M, de Carvalho J G.2010. Leaf sprayingand fertirrigation with silicon on the physicochemical attributes of quality and coloration indices ofstrawberry. Ciencia e Agrotecnologia,34(5):1306~1311
    Filha M, Rodrigues F, Domiciano G, Oliveira H, Silveira P, Moreira W.2011. Wheat resistance to leafblast mediated by silicon. Australasian Plant Pathology,40(1):28~38
    French-Monar R D, Rodrigues F A, Korndorfer G H, Datnoff L E.2010. Silicon suppresses Phytophthorablight development on bell Pepper. Journal of Phytopathology,158(7-8):554~560
    Gao D, Cai K Z, Chen J N, Luo S M, Zeng R S, Yang J Y, Zhu X Y.2011. Silicon enhances photochemicalefficiency and adjusts mineral nutrient absorption in Magnaporthe oryzae infected rice plants. ActaPhysiologiae Plantarum,33(3):675~682
    Garampalli R H, Deene S, Reddy C N.2005. Infectivity and efficacy of Glomus aggregatum and growthresponse of Cajanus cajan (L.) Millsp in flyash amended sterile soil. Journal of EnvironmentalBiology,26(4):705~708
    Garcia-Mendez E, Garcia-Sinovas D, Becerril M, De Cal A, Melgarejo P, Martinez-Treceno A, FennimoreS A, Soria C, Medina J J, Lopez-Aranda J M.2008. Chemical alternatives to methyl bromide for weedcontrol and runner plant production in strawberry nurseries. Hortscience,43(1):177~182
    Germar B.1934. Some functions of silicic acid in cereals with special reference to resistance to mildew. Z.Pflanzenemahr Dung. Bodenk.35:102~115:
    Golzar H, Phillips D, Mack S.2007. Occurrence of strawberry root and crown rot in Western Australia.Australasian Plant Disease Notes,2(1):145~147
    Gorecki R S, Danielski-Busch W.2009. Effect of silicate fertilizers on yielding of greenhouse cucumber(Cucumis sativus L.) in container culitivation. Journal of Elementology,14(1):71~77
    Guevel M H, Menzies J G, Bélanger R R.2007. Effect of root and foliar applications of soluble silicon onpowdery mildew control and growth of wheat plants. European Journal of Plant Pathology,119(4):429~436
    Guntzer F, Keller C, Meunier J D.2012. Benefits of plant silicon for crops: a review. Agronomy forSustainable Development,32(1):201~213
    Guo X W, Li K, Guo Y S, Xie H G, Sun Y N, Hu X X.2011. Effect of grape replant on the soil microbialcommunity structure and diversity. Biotechnology and Biotechnological Equipment,25(2):2334~2340
    Gupta M, Bhardwaj L N.2005. Studies on Phytophthora spp. attacking strawberry in Himachal Pradesh. In:Integrated Plant Disease Management. Sharma R C, Sharma J N.(eds). Challenging problems inhorticultural and forest pathology, Solan, India, pp.75-81
    Hamel C, Vujanovic V, Jeannotte R, Nakano-Hylander A, St-Arnaud M.2005. Negative feedback on aperennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbialcommunity structure. Plant and Soil,268(1-2):75~87
    Hammerschmidt R.2011. More on silicon-induced resistance. Physiological and Molecular PlantPathology,75(3):81~82
    Harman G E.2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology,96(2):190~194
    Harris D C, Simpson D W, Bell J A.1997. Studies on the possible role of micropropagation in thedissemination of the strawberry crown rot pathogen Phytophthora cactorum. Journal of HorticulturalScience,72(1):125~133
    Harris D C, Yang J R.1996. The relationship between the amount of Verticillium dahliae in soil and theincidence of strawberry wilt as a basis for disease risk prediction. Plant Pathology,45(1):106~114
    Hartmann A, Rothballer M, Schmid M.2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecologyand soil bacteriology research. Plant and Soil,312(1-2):7~14
    Hartz T K, Devay J E, Elmore C L.1993. Solarization is an effective soil disinfestation technique forstrawberry production. Hortscience,28(2):104~106
    Hayat R, Ali S, Amara U, Khalid R, Ahmed I.2010. Soil beneficial bacteria and their role in plant growthpromotion: a review. Annals of Microbiology,60(4):579~598
    Heald F D.1920. Division of plant pathology report. Wash Agr Expt Sta Rept.1919:1936
    Hiltunen L H, Ojanpera T, Kortemaa H, Richter E, Lehtonen M J, Valkonen J P T.2009. Interactions andbiocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. Journal of AppliedMicrobiology,106(1):199~212
    Huang C H, Roberts P D, Datnoff L E.2011. Silicon suppresses Fusarium crown and root rot of tomato.Journal of Phytopathology,159(7-8):546~554
    Hyakumachi M.1998. Systemic resistance in plants induced by beneficial rhizosphere microorganisms.Journal of Pesticide Science,23(4):422~426
    Jala S, Goyal D.2006. Fly ash as a soil ameliorant for improving crop production-a review. BioresourceTechnology,97(9):1136~1147
    Jia Z H, Yi J H, Su Y R, Shen H.2011. Autotoxic substances in the root exudates from continuous tobaccocropping. Allelopathy Journal,27(1):87~96
    John J, Shirmila J, Sarada S, Anu S.2010. Role of Allelopathy in vegetables crops production. AllelopathyJournal,25(2):275~311
    Kannan V, Sureendar R.2009. Synergistic effect of beneficial rhizosphere microflora in biocontrol andplant growth promotion. Journal of Basic Microbiology,49(2):158~164
    Kanto T, Maekawa K, Aino M.2007. Suppression of conidial germination and appressorial formation bysilicate treatment in powdery mildew of strawberry. Journal of General Plant Pathology,73(1):1~7
    Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M.2004. Suppressive effect of potassium silicate onpowdery mildew of strawberry in hydroponics. Journal of General Plant Pathology,70(4):207~211
    Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M.2006. Suppressive effect of liquid potassium silicateon powdery mildew of strawberry in soil. Journal of General Plant Pathology,72(3):137~142
    Karpagavalli S, Ramabadran R.1997. Effect of lignite fly ash on the growth and dry matter production(DMP) of soil bourn pathogens. In: Souv and abstracts: National Sem on Bio-Utilization of Flyash.Berhampur, Orissa, India: Khallikote Autonomous College:11
    Kaya C, Tuna L, Higgs D.2006. Effect of silicon on plant growth and mineral nutrition of maize grownunder water-stress conditions. Journal of Plant Nutrition,29(8):1469~1480
    Keeping M G, Kvedarasa O L, Bruton A G.2009. Epidermal silicon in sugarcane: Cultivar differences androle in resistance to sugarcane borer Eldana saccharina. Environmental and Experimental Botany,66(1):54~60
    Keeping M G, McFarlane S A, Sewpersad N, Rutherford R S.2011. Effects of silicon and plant defenceinducers on sugarcane yield parameters, Eldana saccharina Walker (Lepidoptera: Pyralidae) andFulmekiola serrata Kobus (Thysanoptera: Thripidae). International Sugar Journal,113(1351):502~508
    Khalil S, Alsanius B W.2010. Evaluation of biocontrol agents for managing root diseases onhydroponically grown tomato. Journal of Plant Diseases and Protection,117(5):214~219
    Khan M R, Khan M W.1996. The effect of fly ash on plant growth and yield of tomato. EnvironmentalPollution,92(2):105~111
    Khan M R, Singh W N.2001. Effects of soil application of fly ash on the fusarial wilt on tomato cultivars.International Journal of Pest Management,47(4):293~297
    Khosla K, Kumar J.2005. Management of root rot and blight (Sclerotium rolfsii Sacc.) of strawberry. In:Chauhan JS, Sharma SD, Sharma RC, Rehalia AS, Kumar K (eds). Proceedings of the VIIthInternational Symposium on Temperate Zone Fruits in the Tropics and Subtropics, Pt2. Solan, India.International Society Horticultural Science. Belgium, pp371~373
    Kim J H, Kim S G, Kim M S, Jeon Y H, Cho D H, Kim Y H.2009. Different structural modificationsassociated with development of ginseng root rot caused by Cylindrocarpon destructans. PlantPathology Journal,25(1):1~5
    Kim S G, Kim K W, Park E W, Choi D.2002. Silicon-induced cell wall fortification of rice leaves: Apossible cellular mechanism of enhanced host resistance to blast. Phytopathology,92(10):1095~1103
    Kim Y C, Kim K Y, Park K W, Yun H K, Seo T C, Lee J W, Lee S G.2003. Influence of silicateapplication on the sucrose synthetic enzyme activity of tomato in perlite media culture. Journal of theKorean Society for Horticultural Science,44(2):172~176
    Kimio S, Akiko Y, Tongmin S, Masahiko S.2005. Rapid, micro-methods to estimate plant silicon contentby dilute hydrofluoric acid extraction and spectrometric molybdenum method. Soil Science and PlantNutrition,51(1):29~36
    Kitazawa H, Asao T, Ban T, Pramanik M H R, Hosoki T.2005. Autotoxicity of root exudates fromstrawberry in hydroponic culture. Journal of Horticultural Science and Biotechnology,80(6):677~680
    Koike S T.2008. Crown rot of strawberry caused by Macrophomina phaseolina in California. PlantDisease,92(8):1253~1253
    Konis E.2009. Studies of integrated control of selected root diseases of sunflowers using Trichodermaharzianum (ECO-T) and silicon.[Master thesis]. Pietermaritzburg: University of KwaZulu-Natal,South Africa
    Kukkonen S, Palojarvi A, Rakkolainen M, Vestberg M.2006. Cropping history and peatamendment-induced changes in strawberry field earthworm abundance and microbial biomass. SoilBiology and Biochemistry,38(8):2152~2161
    Kurze S, Bahl H, Dahl R, Berg G.2001. Biological control of fungal strawberry diseases by Serratiaplymuthica HRO-C48. Plant Disease,85(5):529~534
    Kyselkova M, Kopecky J, Frapolli M, Defago G, Sagova-Mareckova M, Grundmann G L, Moenne-LoccozY.2009. Comparison of rhizobacterial community composition in soil suppressive or conducive totobacco black root rot disease. Isme Journal,3(10):1127~1138
    López-Aranda J M, Soria C, Santos B M, Miranda L, Domínguez P, Medina-Mínguez J J.2011. Strawberryproduction in mild climates of the world: A review of current cultivar use. International Journal ofFruit Science,11(3):232~244
    LaMondia J A.2003. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in strawberry blackroot rot. Journal of Nematology,35(1):17~22
    LaMondia J A.2004a. Field performance of twenty-one strawberry cultivars in a black root rot-infested site.Journal of the American Pomological Society,58(4):226~232
    LaMondia J A.2004b. Strawberry black root rot. Advances in Strawberry Research,23:1~10
    LaMondia J A, Cowles R S.2002. Effect of entomopathogenic nematodes and Trichoderma harzianum onthe strawberry black root rot pathogens Pratylenchus penetrans and Rhizoctonia fragariae. Journal ofNematology,34(4):351~357
    LaMondia J A, Cowles R S.2005. Comparison of Pratylenchus penetrans infection and Maladera castaneafeeding on strawberry root rot. Journal of Nematology,37(2):131~135
    LaMondia J A, Elmer W H, Mervosh T L, Cowles R S.2002. Integrated management of strawberry pestsby rotation and intercropping. Crop Protection,21(9):837~846
    Lazarovits G.2010. Managing soilborne disease of potatoes using ecologically based approaches.American Journal of Potato Research,87(5):401~411
    Lazzeri L, Baruzzi G, Malaguti L, Antoniacci L.2003. Replacing methyl bromide in annual strawberryproduction with glucosinolate-containing green manure crops. Pest Management Science,59(9):983~990
    Leandro L F S, Guzman T, Ferguson L M, Fernandez G E, Louws F J.2007. Population dynamics ofTrichoderma in fumigated and compost-amended soil and on strawberry roots. Applied Soil Ecology,35(1):237~246
    Lee J S, Park J H, Han K S.2000. Effects of potassium silicate on growth, photosynthesis, and inorganicion absorption in cucumber hydroponics. Journal of the Korean Society for Horticultural Science,41(5):480~484
    Leite B, Andersen P C.2009. Localized accumulation of silicon (Si) in grape leaves affected by Pierce'sdisease. Microscopy and Microanalysis,15:918~919
    Lewers K S, Turechek W W, Hokanson S C, Maas J L, Hancock J F, Serce S, Smith B J.2007. Evaluationof elite native strawberry germplasm for resistance to anthracnose crown rot disease caused byColletotrichum species. Journal of the American Society for Horticultural Science,132(6):842~849
    Li M Z, Asano T, Suga H, Kageyama K.2011a. A multiplex PCR for the detection of Phytophthoranicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan.Plant Disease,95(10):1270~1278
    Li Z F, Zhang Z G, Xie D F, Dai L Q, Zhu L F, Li J, Liu Z Q, Yang Y Q, Wu L K, Huang M J, Zhang Z Y,Lin W X.2011b. Positive allelopathic stimulation and underlying molecular mechanism of achyrantheunder continuous monoculture. Acta Physiologiae Plantarum,33(6):2339~2347
    Liang Y C, Sun W C, Si J, Romheld V.2005. Effects of foliar-and root-applied silicon on the enhancementof induced resistance to powdery mildew in Cucumis sativus. Plant Pathology,54(5):678~685
    Liang Y C, Sun W C, Zhu Y G, Christie P.2007. Mechanisms of silicon-mediated alleviation of abioticstresses in higher plants: A review. Environmental Pollution,147(2):422~428
    Liang Y C, Zhu J, Li Z J, Chu G X, Ding Y F, Zhang J, Sun W C.2008. Role of silicon in enhancingresistance to freezing stress in two contrasting winter wheat cultivars. Environmental andExperimental Botany,64(3):286~294
    Lilja A, Rytkonen A, Hantula J, Muller M, Parikka P, Kurkela T.2011. Introduced pathogens found onornamentals, strawberry and trees in Finland over the past20years. Agricultural and Food Science,20(1):74~85
    Liu Y H, Zeng R S, Chen S, Liu D L, Luo S M, Wu H, An M.2007. Plant autotoxicity research in southernChina. Allelopathy Journal,19(1):61~74
    Lu G, Jian W L, Zhang J J, Zhou Y J, Cao J S.2008. Suppressive effect of silicon nutrient on Phomopsisstem blight development in asparagus. Hortscience,43(3):811~817
    Luvisi A, Materazzi A, Triolo E.2006. Steam and exothermic reactions as alternative techniques to controlsoil-borne diseases in basil. Agronomy for Sustainable Development,26(3):201~207
    Ma J F.2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. SoilScience and Plant Nutrition,50(1):11~18
    Ma J F, Yamaji N.2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science,11(8):392~397
    Ma Y, Chang Z Z, Zhao J T, Zhou M G.2008. Antifungal activity of Penicillium striatisporum Pst10andits biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control,44(1):24~31
    Maekawa K, Watanabe K, Kanto T, Aino M, Saigusa M.2003. Effect of soluble silicic acid on suppressionof rice leaf blast. Japanese Journal of Soil Science and Plant Nutrition,74(3):293~299
    Manici L M, Caputo F.2009. Fungal community diversity and soil health in intensive potato croppingsystems of the east Po valley, northern Italy. Annals of Applied Biology,155(2):245~258
    Manici L M, Caputo F, Baruzzi G.2005. Additional experiences to elucidate the microbial component ofsoil suppressiveness towards strawberry black root rot complex. Annals of Applied Biology,146(4):421~431
    Marschner P.2011. Marschner's Mineral Nutrition of Higher Plants. Amsterdam: Academic Press
    Martens D C.1971. Availability of plant nutrients in flyash. Compost Science,12:15~19
    Martin F N.2003. Development of alternative strategies for management of soilborne pathogens currentlycontrolled with methyl bromide. Annual Review of Phytopathology,41:325~350
    Martin F N, Bull C T.2002. Biological approaches for control of root pathogens of strawberry.Phytopathology,92(12):1356~1362
    Martinez F, Castillo S, Carmona E, Aviles M.2009. Effect of soilless growing systems on the spread ofVerticillium dahliae and the severity of the Verticillium wilt in strawberry. Spanish Journal ofAgricultural Research,7(2):447~453
    Martinez F, Castillo S, Carmona E, Aviles M.2010. Dissemination of Phytophthora cactorum, cause ofcrown rot in strawberry, in open and closed soilless growing systems and the potential for controlusing slow sand filtration. Scientia Horticulturae,125(4):756~760
    Mazzola M.2007. Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journalof Nematology,39(3):213~220
    Mazzola M, Manici L M.2012. Apple replant disease: role of microbial ecology in cause and control.Annual Review of Phytopathology,50(1): In press
    Mervosh T L, LaMondia J A.2004. Strawberry black root rot and berry yield are not affected by terbacilherbicide. Hortscience,39(6):1339~1342
    Millner P D, Ringer C E, Maas J L.2004. Suppression of strawberry root disease with animal manurecomposts. Compost Science and Utilization,12(4):298~307
    Minuto A, Spadaro D, Garibaldi A, Gullino M L.2006. Control of soilborne pathogens of tomato using acommercial formulation of Streptomyces griseoviridis and solarization. Crop Protection,25(5):468~475
    Mishra M, Sahu R K, Padhy R N.2007. Growth, yield and elemental status of rice (Oryza sativa) grown infly ash amended soils. Ecotoxicology,16(2):271~278
    Mohaghegh P, Khoshgoftarmanesh A H, Shirvani M, Sharifnabi B, Nili N.2011. Effect of silicon nutritionon oxidative stress induced by Phytophthora melonis infection in cucumber. Plant Disease,95(4):455~460
    Morgan J A W, Bending G D, White P J.2005. Biological costs and benefits to plant-microbe interactionsin the rhizosphere. Journal of Experimental Botany,56(417):1729~1739
    Morocko-Bicevska I, Fatehi J.2011. Infection and colonization of strawberry by Gnomonia fragariaestrain expressing green fluorescent protein. European Journal of Plant Pathology,129(4):567~577
    Morocko I, Fatehi J, Gerhardson B.2006. Gnomonia fragariae, a cause of strawberry root rot and petioleblight. European Journal of Plant Pathology,114(3):235~244
    Nam M H, Park M S, Kim H G, Yoo S J.2009. Biological control of strawberry Fusarium wilt caused byFusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87and RK1formulation. Journal ofMicrobiology and Biotechnology,19(5):520~524
    Nemec S.1970. Fungi associated with strawberry root rot in Illinois. Mycopathologia et mycologiaapplicata,41(3):331~346
    Nemec S.1975. Mycoflora succession on strawberry roots developing root rot symptoms. Mycopathologia,56(2):67~72
    Newton A C, Duncan J M, Augustin N H, Guy D C, Cooke D E L.2010. Survival, distribution and geneticvariability of inoculum of the strawberry red core pathogen, Phytophthora fragariae var. fragariae, insoil. Plant Pathology,59(3):472~479
    Nezami M T, Bybordi A.2011. Effects of silicon on photosynthesis and concentration of nutrients ofBrassica napus L. in saline-stressed conditions. Journal of Food Agriculture and Environment,9(3-4):655~659
    Nihorimbere V, Ongena M, Smargiassi M, Thonart P.2011. Beneficial effect of the rhizosphere microbialcommunity for plant growth and health. Biotechnologie Agronomie Societe et Environnement,15(2):327~337
    Njoroge S M C, Kabir Z, Martin F N, Koike S T, Subbarao K V.2009. Comparison of crop rotation forVerticillium wilt management and effect on Pythium species in conventional and organic strawberryproduction. Plant Disease,93(5):519~527
    Norman J R, Atkinson D, Hooker J E.1996. Arbuscular mycorrhizal fungal-induced alteration to rootarchitecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plantand Soil,185(2):191~198
    Ogweno J O, Yu J Q.2006. Autotoxic potential in soil sickness: A re-examination. Allelopathy Journal,18(1):93~101
    Olatinwo R O, Sabaratnam S, Schilder A M C.2004. Trichoderma stromaticum: A potential biologicalcontrol agent for black root rot in strawberries. Phytopathology,94(6): S78~S78
    Olatinwo R O, Schilder A M C.2002. Transplant root dips with biocontrol agents reduce strawberry blackroot rot. Phytopathology,92(6): S61
    Pagliaccia D, Merhaut D, Colao M C, Ruzzi M, Saccardo F, Stanghellini M E.2008. Selectiveenhancement of the fluorescent pseudomonad population after amending the recirculating nutrientsolution of hydroponically grown plants with a nitrogen stabilizer. Microbial Ecology,56(3):538~554
    Pandey V, Misra J, Singh S N, Singh N, Yunus M, Ahmad K J.1994. Growth response of Helianthusannuus L. grown on fly-ash amended soil. Journal of Environmental Biology,15(2):117~125
    Pandey V C, Singh N.2010. Impact of fly ash incorporation in soil systems. Agriculture Ecosystems andEnvironment,136(1-2):16~27
    Particka C A, Hancock J F.2005. Field evaluation of strawberry genotypes for tolerance to black root roton fumigated and nonfumigated soil. Journal of the American Society for Horticultural Science,130(5):688~693
    Particka C A, Hancock J F.2008. Breeding for increased tolerance to black root rot in strawberry.Hortscience,43(6):1698~1702
    Pati S S, Sahu S K.2004. CO2evolution and enzyme activities (dehydrogenase, protease and amylase) offly ash amended soil in the presence and absence of earthworms (Drawida willsi Michaelsen) underlaboratory conditions. Geoderma,118(3–4):289~301
    Patil H J, Srivastava A K, Singh D P, Chaudhari B L, Arora D K.2011. Actinomycetes mediatedbiochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctoniasolani. Crop Protection,30(10):1269~1273
    Petit E, Gubler W D.2005. Characterization of Cylindrocarpon species, the cause of black foot disease ofgrapevine in California. Plant Disease,89(10):1051~1059
    Pilon-Smits E A H, Quinn C F, Tapken W, Malagoli M, Schiavon M.2009. Physiological functions ofbeneficial elements. Current Opinion in Plant Biology,12(3):267~274
    Pinkerton J N, Ivors K L, Reeser P W, Bristow P R, Windom G E.2002. The use of soil solarization for themanagement of soilborne plant pathogens in strawberry and red raspberry production. Plant Disease,86(6):645~651
    Plakidas A G.1930. Pythium root rot of strawberries in Louisiana. Phytopathology,20(1):121~122
    Plank C O, Maertens D C.1973. Amelioration of soils with fly-ash. Journal of Soil and WaterConservation,28:43~48
    Porras M, Barran C, Arroyo F T, Santos B, Blanco C, Romero F.2007a. Reduction of Phytophthoracactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Disease,91(2):142~146
    Porras M, Barrau C, Romero F.2007b. Effects of soil solarization and Trichoderma on strawberryproduction. Crop Protection,26(5):782~787
    Porter I J, Merriman P R, Keane P J.1989. Integrated control of pink root (Pyrenochaeta terrestris) ofonions by dazomet and soil solarization. Australian Journal of Agricultural Research,40(4):861~869
    Portz D N, Nonnecke G R.2011. Rotation with cover crops suppresses weeds and increases plant densityand yield of strawberry. Hortscience,46(10):1363~1366
    Punja Z K, Yip R.2003. Biological control of damping-off and root rot caused by Pythiumaphanidermatum on greenhouse cucumbers. Canadian Journal of Plant Pathology-Revue CanadienneDe Phytopathologie,25(4):411~417
    Qiao K, Zhu Y, Wang H, Ji X, Wang K.2012. Effects of1,3-dichloropropene as a methyl bromidealternative for management of nematode, soil-borne disease, and weed in ginger (Zingiber officinale)crops in China. Crop Protection,32:71~75
    Qin G Z, Tian S P.2005. Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and thepossible mechanisms involved. Phytopathology,95(1):69~75
    Raaijmakers J M, Paulitz T C, Steinberg C, Alabouvette C, Moenne-Loccoz Y.2009. The rhizosphere: aplayground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil,321(1-2):341~361
    Rahman M, Punja Z K.2005. Factors influencing development of root rot on ginseng caused byCylindrocarpon destructans. Phytopathology,95(12):1381~1390
    Raj H, Sharma S D.2005. Integrated management of collar and root rot (Sclerotium rolfsii) of strawberry.In: Chauhan JS, Sharma SD, Sharma RC, Rehalia AS, Kumar K (eds). Proceedings of the VIIthInternational Symposium on Temperate Zone Fruits in the Tropics and Subtropics, Pt2. Solan, India.International Society Horticultural Science. Belgium, pp375~379
    Rautaray S K, Ghosh B C, Mittra B N.2003. Effect of fly ash, organic wastes and chemical fertilizers onyield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequenceunder acid lateritic soils. Bioresource Technology,90(3):275~283
    Raziq F, Fox R T V.2005. Combinations of fungal antagonists for biological control of Armillaria root rotof strawberry plants. Biological Agriculture and Horticulture,23(1):45~57
    Remus-Borel W, Menzies J G, Bélanger R R.2009. Aconitate and methyl aconitate are modulated bysilicon in powdery mildew-infected wheat plants. Journal of Plant Physiology,166(13):1413~1422
    Reynolds O L, Keeping M G, Meyer J H.2009. Silicon-augmented resistance of plants to herbivorousinsects: A review. Annals of Applied Biology,155(2):171~186
    Rodrigues F A, Benhamou N, Datnoff L E, Jones J B, Bélanger R R.2003. Ultrastructural andcytochemical aspects of silicon-mediated rice blast resistance. Phytopathology,93(5):535~546
    Rodrigues F A, McNally D J, Datnoff L E, Jones J B, Labbe C, Benhamou N, Menzies J G, Bélanger R R.2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: A potential mechanismfor blast resistance. Phytopathology,94(2):177~183
    Ruan W B, Zhu X H, Li H B, Zhang X, Guo S Y, Wang J G, Zhang F S, Gao Y B.2009. Soybeanautotoxicity: Effects of m-hydroxy-phenylacetic acid on cell ultrastructural changes and geneexpression in soybean roots. Allelopathy Journal,24(2):271~282
    Ryan P R, Dessaux Y, Thomashow L S, Weller D M.2009. Rhizosphere engineering and management forsustainable agriculture. Plant and Soil,321(1-2):363~383
    Sabaratnam S, Traquair J A.2002. Formulation of a Streptomyces biocontrol agent for the suppression ofRhizoctonia damping-off in tomato transplants. Biological Control,23(3):245~253
    Sabuquillo P, Sztejnberg A, De Cal A, Melgarejo P.2009. Relationship between number and type ofadhesions of Penicillium oxalicum conidia to tomato roots and biological control of tomato wilt.Biological Control,48(3):244~251
    Samtani J B, Ajwa H A, Weber J B, Browne G T, Klose S, Hunzie J, Fennimore S A.2011. Evaluation ofnon-fumigant alternatives to methyl bromide for weed control and crop yield in Californiastrawberries (Fragaria ananassa L.). Crop Protection,30(1):45~51
    Samtani J B, Gilbert C, Ben Weber J, Subbarao K V, Goodhue R E, Fennimore S A.2012. Effect of steamand solarization treatments on pest control, strawberry yield, and economic returns relative to methylbromide fumigation. Hortscience,47(1):64~70
    Samuels A L, Glass A D M, Ehret D L, Menzies J G.1991. Distribution of silicon in cucumber leavesduring infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal ofBotany-Revue Canadienne De Botanique,69(1):140~146
    Samuels A L, Glass A D M, Menzies J G, Ehret D L.1994. Silicon in cell-walls and papillae ofcucumis-sativus during infection by sphaerotheca-fuliginea. Physiological and Molecular PlantPathology,44(4):237~242
    Sanguin H, Sarniguet A, Gazengel K, Moenne-Loccoz Y, Grundmann G L.2009. Rhizosphere bacterialcommunities associated with disease suppressiveness stages of take-all decline in wheat monoculture.New Phytologist,184(3):694~707
    Sankari S A, Narayanasamy P.2007. Bio-efficacy of fly ash-based herbal pesticides against pests of riceand vegetables. Current Science,92(6):811~816
    Sarathchandra U, Duganzich D, Burch G.1993. Occurrence of antifungal fluorescent Pseudomonas spp. onsome horticultural and pastoral plants. New Zealand Journal of Crop and Horticultural Science,21(3):267~272
    Savant N K, Korndorfer G H, Datnoff L E, Snyder G H.1999. Silicon nutrition and sugarcane production:A review. Journal of Plant Nutrition,22(12):1853~1903
    Scherwinski K, Wolf A, Berg G.2007. Assessing the risk of biological control agents on the indigenousmicrobial communities: Serratia plymuthica HRO-C48and Streptomyces sp HRO-71as modelbacteria. Biocontrol,52(1):87~112
    Schuerger A C, Hammer W.2003. Suppression of powdery mildew on greenhouse-grown cucumber byaddition of silicon to hydroponic nutrient solution is inhibited at high temperature. Plant Disease,87(2):177~185
    Seigies A T, Pritts M.2003. Cover crop alternatives for strawberry replant preparation. Hortscience,38(5):658~659
    Seigies A T, Pritts M.2006. Cover crop rotations alter soil microbiology and reduce replant disorders instrawberry. Hortscience,41(5):1303~1308
    Sharon M, Freeman S, Kuninaga S, Sneh B.2007. Genetic diversity, anastomosis groups and virulence ofRhizoctonia spp. from strawberry. European Journal of Plant Pathology,117(3):247~265
    Sharon M, Sneh B, Freeman S.2006. Pathogenicity, morphological and molecular characterization ofRhizoctonia spp. isolates from strawberry plants in Israel. In: Waite G (ed). Proceedings of the VthInternational Strawberry Symposium. International Society Horticultural Science. Belgium, pp155~159
    Shaw D V, Gubler W D, Hansen J, Larson K D.1997. Response to family selection for field resistance toVerticillium dahliae in California strawberries. Journal of the American Society for HorticulturalScience,122(5):653~655
    Shen G H, Xue Q H, Tang M, Chen Q, Wang L N, Duan C M, Xue L, Zhao J.2010. Inhibitory effects ofpotassium silicate on five soil-borne phytopathogenic fungi in vitro. Journal of Plant Diseases andProtection,117(4):180~184
    Shetty R, Frette X, Jensen B, Shetty N P, Jensen J D, Jorgensen H J L, Newman M A, Christensen L P.2011. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoidpathway genes during the interaction between miniature roses and the biotrophic pathogenPodosphaera pannosa. Plant Physiology,157(4):2194~2205
    Shetty R, Jensen B, Shetty N P, Hansen M, Hansen C W, Starkey K R, Jorgensen H J L.2012. Siliconinduced resistance against powdery mildew of roses caused by Podosphaera pannosa. PlantPathology,61(1):120~131
    Shishido M, Sakamoto K, Yokoyama H, Momma N, Miyashita S I.2008. Changes in microbialcommunities in an apple orchard and its adjacent bush soil in response to season, land-use, and violetroot rot infestation. Soil Biology and Biochemistry,40(6):1460~1473
    Siddiqui Z A, Singh L P.2005. Effects of fly ash and soil micro-organisms on plant growth, photosyntheticpigments and leaf blight of wheat. Journal of Plant Diseases and Protection,112(2):146~155
    Silva R V, Oliveira R D L, Nascimento K J T, Rodrigues F A.2010. Biochemical responses of coffeeresistance against Meloidogyne exigua mediated by silicon. Plant Pathology,59(3):586~593
    Singh A, Agrawal S B.2010. Response of mung bean cultivars to fly ash: Growth and yield. Ecotoxicologyand Environmental Safety,73(8):1950~1958
    Singh H P, Batish D R, Kohli R K.1999. Autotoxicity: Concept, Organisms, and Ecological Significance.Critical Reviews in Plant Sciences,18(6):757~772
    Singh J S, Pandey V C, Singh D P.2011. Coal fly ash and farmyard manure amendments in dry-land paddyagriculture field: Effect on N-dynamics and paddy productivity. Applied Soil Ecology,47(2):133~140
    Singh L P, Siddiqui Z A.2003. Effects of fly ash and Helminthosporium oryzae on growth and yield ofthree cultivars of rice. Bioresource Technology,86(1):73~78
    Singh N, Yunus M.2000. Environmental impacts of fly-ash. In: Iqbal M, Srivastava PS, Siddiqui TO (eds).Environmental hazards: plant and people. CBS. New Delhi, pp60~79
    Singh N B, Singh A, Singh D.2008. Autotoxic effects of Lycopersicon esculentum. Allelopathy Journal,22(2):429~442
    Singh R P, Gupta A K, Ibrahim M H, Mittal A K.2010. Coal fly ash utilization in agriculture: its potentialbenefits and risks. Reviews in Environmental Science and Bio-Technology,9(4):345~358
    Singh S N, Kulshreshtha K, Ahmad K J.1997. Impact of fly ash soil amendment on seed germination,seedling growth and metal composition of Vicia faba L. Ecological Engineering,9(3-4):203~208
    Sinha S, Gupta A K.2005. Translocation of metals from fly ash amended soil in the plant of Sesbaniacannabina L. Ritz: Effect on antioxidants. Chemosphere,61(8):1204~1214
    Smith L, O'Neill W, Kochman J, Lehane J, Salmond G.2005. Silicon shows promise for Fusarium wiltsuppression. Australian Cotton grower,26(2):50~52
    Sommer A L.1926. Studies concerning the essential nature of aluminum and silicon for plant growth.University of California press, Agricultural Science5(2):57~81
    Sowik I, Bielenin A, Michalczuk L.2001. In vitro testing of strawberry resistance to Verticillium dahliaeand Phytophthora cactorum. Scientia Horticulturae,88(1):31~40
    Soylemezoglu G, Demir K, Inal A, Gunes A.2009. Effect of silicon on antioxidant and stomatal responseof two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil.Scientia Horticulturae,123(2):240~246
    Stammler G, Seemuller E.1993. Specific and sensitive detection of Phytophthora fragariae var rubi inraspberry roots by PCR amplification. Journal of Plant Diseases and Protection,100(4):394~400
    Sturz A V, Christie B R.2003. Beneficial microbial allelopathies in the root zone: the management of soilquality and plant disease with rhizobacteria. Soil and Tillage Research,72(2):107~123
    Subbarao K V, Kabir Z, Martin F N, Koike S T.2007. Management of soilborne diseases in strawberryusing vegetable rotations. Plant Disease,91(8):964~972
    Sun W C, Zhang J, Fan Q H, Xue G F, Li Z J, Liang Y C.2010. Silicon-enhanced resistance to rice blast isattributed to silicon-mediated defence resistance and its role as physical barrier. European Journal ofPlant Pathology,128(1):39~49
    Tahmatsidou V, O'Sullivan J, Cassells A C, Voyiatzis D, Paroussi G.2006. Comparison of AMF andPGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria x ananassa cv.Selva). Applied Soil Ecology,32(3):316~324
    Tian S P, Qin G Z, Xu Y.2005. Synergistic effects of combining biocontrol agents with silicon againstpostharvest diseases of jujube fruit. Journal of Food Protection,68(3):544~550
    Topa F O, Ba kaya H S, Alkan U.2008. The effects of fly ash incorporation on some available nutrientcontents of wastewater sludges. Bioresource Technology,99(5):1057~1065
    Tripathi R C, Masto R E, Ram L C.2009. Bulk use of pond ash for cultivation of wheat-maize-eggplantcrops in sequence on a fallow land. Resources Conservation and Recycling,54(2):134~139
    Utkhede R S.2006. Soil sickness, replant problem or replant disease and its integrated control. AllelopathyJournal,18(1):23~38
    van de Weg W E, Giezen S, Henken B, denNijs A P M.1996. A quantitative classification method forassessing resistance to Phytophthora fragariae var fragariae in strawberry. Euphytica,91(1):119~125
    Van Wees S C M, Van der Ent S, Pieterse C M J.2008. Plant immune responses triggered by beneficialmicrobes. Current Opinion in Plant Biology,11(4):443~448
    Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L, Devos N, Weekers F, Kevers C,Thonart P, Lemoine M C, Cordier C, Alabouvette C, Gianinazzi S.2004. Microbial inoculation forimproving the growth and health of micropropagated strawberry. Applied Soil Ecology,27(3):243~258
    Wainwright M, Al-Wajeeh K, Grayston S J.1997. Effect of silicic acid and other silicon compounds onfungal growth in oligotrophic and nutrient-rich media. Mycological Research,101(8):933~938
    Wan M G, Li G Q, Zhang J B, Jiang D H, Huang H C.2008. Effect of volatile substances of Streptomycesplatensis F-1on control of plant fungal diseases. Biological Control,46(3):552~559
    Wang G X, Dong J, Zhang Y T.2009. Recent state in strawberry production and research in China. In:López-Medina J (ed). VI International Strawberry Symposium. Huelva, Spain. International SocietyHorticultural Science. Belgium, pp627~630
    Weller D M, Raaijmakers J M, Gardener B B M, Thomashow L S.2002. Microbial populations responsiblefor specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology,40:309~348
    Wieland G, Neumann R, Backhaus H.2001. Variation of microbial communities in soil, rhizosphere, andrhizoplane in response to crop species, soil type, and crop development. Applied and EnvironmentalMicrobiology,67(12):5849~5854
    Wong J W C, Wong M H.1990. Effects of fly ash on yields and elemental composition of two vegetables,Brassica parachinensis and B. chinensis. Agriculture, Ecosystems and Environment,30(3–4):251~264
    Wu H S, Yang X N, Fan J Q, Miao W G, Ling N, Xu Y C, Huang Q W, Shen Q R.2009. Suppression ofFusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonisticmicroorganisms. Biocontrol,54(2):287~300
    Wydra K, Boszo Z, Diogo R, Ghareeb H, Huong N, Ott P, Schacht T, Stahl F.2008. Silicon-inducedresistance affects basal resistance mechanisms of tomato infected with Ralstonia solanacearum.Journal of Plant Diseases and Protection,115(1):40~41
    Yildiz A, Benlioglu S, Boz O, Benlioglu K.2010. Use of different plastics for soil solarization instrawberry growth and time-temperature relationships for the control of Macrophomina phaseolinaand weeds. Phytoparasitica,38(5):463~473
    Yu J Q, Shou S Y, Qian Y R, Zhu Z J, Hu W H.2000. Autotoxic potential of cucurbit crops. Plant and Soil,223(1-2):147~151
    Yu J Q, Ye S F, Zhang M F, Hu W H.2003. Effects of root exudates and aqueous root extracts ofcucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes incucumber. Biochemical Systematics and Ecology,31(2):129~139
    Yuen G Y, Schroth M N, Weinhold A R, Hancock J G.1991. Effects of soil fumigation with methylbromide and chloropicrin on root health and yield of strawberry. Plant Disease,75(4):416~420
    Yunusa I A M, Manoharan V, DeSilva D L, Eamus D, Murray B R, Nissanka S P.2008. Growth andelemental accumulation by canola on soil amended with coal fly ash. Journal of EnvironmentalQuality,37(3):1263~1270
    Zhang G, Li X, Shang J, Jin B.2011. Identification of the pathogens caused greenhouse strawberry rootand crown diseases in Beijing area, China. Phytopathology,101(6): S203~S203
    Zhang S S, Jin Y L, Zhu W J, Tang J J, Hu S J, Zhou T S, Chen X.2010. Baicalin released from Scutellariabaicalensis induces autotoxicity and promotes soilborn pathogens. Journal of Chemical Ecology,36(3):329~338
    Zhang Y T, Fan T F, Jia W S, Zhang W, Liu Q Z, Li B B, Zhang L S.2012. Identification andcharacterization of a Bacillus subtilis strain TS06as bio-control agent of strawberry replant disease(Fusarium and Verticilium wilts). African Journal of Biotechnology,11(3):570~580
    Zou L Y, Ogweno J O, Sun Y, Shi K, Zhou Y H, Yu J Q.2006. Autotoxic potential of root exudates andassociated phenolics in watermelon. Allelopathy Journal,18(1):103~109
    Zveibil A, Freeman S.2005. First report of crown and root rot in strawberry caused by Macrophominaphaseolina in Israel. Plant Disease,89(9):1014~1014
    Zveibil A, Mor N, Gnayem N, Freeman S.2012. Survival, host-pathogen interaction, and management ofMacrophomina phaseolina on strawberry in Israel. Plant Disease,96(2):265~272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700