用户名: 密码: 验证码:
荧光假单胞菌Pseudomonas fluorescens P-72-10菌株对烟草黑胫病的生防机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是一种重要的经济作物,由烟草疫霉Phytophthora nicotianae Breda de Haan引起的烟草黑胫病是烟草生产上的一种毁灭性真菌土传病害。该病原菌破坏性极强,烟株受害后易造成整株死亡,严重影响烟草生产。目前,生产上仍依赖于化学农药防治烟草黑胫病,但长期使用化学农药,容易诱发病原菌产生耐(抗)药性菌株,污染环境和破坏生态系统,同时烟草是叶用经济作物,农药残留会影响烟叶的品质。随着烟草及其制品向更加安全化方向发展的趋势,寻找一种安全、无毒、经济、有效和可持续发展的病害控制途径是当务之急。生物防治由于具有经济有效、且对环境安全友好的特点,被认为是一种最具潜力的、可替代化学农药的方法,现已成为植物病害防治研究的热点。鉴于此,本文以分离自连作烟田健康烟株根际土壤的5个细菌菌株为研究对象,从中筛选出对烟草疫霉具有高效拮抗作用的菌株;进一步围绕该高效菌株对病原菌的抑制机制、其在烟草幼苗根部的定殖规律以及对烟草生长的影响等方面展开系统深入的研究,初步探明该高效菌株的生防机理;在此基础上对该菌株进行鉴定并初步明确其最适的摇瓶培养条件。
     主要研究结果如下。
     高效拮抗烟草疫霉根际细菌菌株的筛选5个供试菌株中,除P-70-3菌株外,其余4个菌株对烟草疫霉均有很强的平板拮抗效果,且5个供试菌株的胞外代谢产物对病原菌也表现出不同程度的抑菌作用。其中,P-72-10菌株的拮抗效果和抑菌作用最强,平板对峙培养中抑菌带半径达13.0mm,相对抑制率为68.57%;其胞外代谢产物粗提液对病原菌的抑制作用随浓度的增加而增强,分别为24.92%(10-3)、27.18%(10-2)、39.84%(10-1)和46.03%(原液),且与对照相比差异显著(P<0.05)。
     P-72-10菌株对烟草黑胫病的温室控病效果该菌株的带菌培养液灌根处理烟草幼苗后,能减轻烟草植株的发病率和降低病情指数;其对抗病和感病品种的控病效果表现出一定的差别,相对防效分别为53.57%和66.37%,与对照处理相比均达到差异显著水平(P<0.05)。
     P-72-10菌株对烟草疫霉的抑制机制该菌株产生的挥发性代谢产物能抑制烟草疫霉菌丝的生长,相对抑制率达到32.94%。显微观察发现:对照菌丝形态饱满,细胞壁光滑,胞质均匀透明,分支正常;而平板对峙培养中受抑制菌落边缘的菌丝形态发生畸变,其菌丝不正常的分支增多,菌丝顶端细胞畸形生长,并在菌丝的顶端或中间均有泡囊形成;部分菌丝干瘪皱缩,原生质渗漏;还有部分菌丝出现扭曲集结的现象。该菌株的菌体悬浮液和无菌滤液均能诱发病原菌菌丝形态发生类似的畸变现象。该菌株能产生纤维素酶、蛋白酶和嗜铁素等抗菌物质。
     P-72-10菌株在烟草根部的定殖规律该菌株对抗生素利福平敏感,以利福平为标记抗生素,经不同浓度的利福平逐级选择压力诱导后,最终获得抗利福平(300μg/mL)的突变菌株P-72-10:Rifo该突变菌株的培养性状及对病原菌的拮抗能力与原始菌株无差异。通过种子细菌化,该突变菌株能成功地定殖于烟草幼苗的根部,其在根部的定殖动态呈现为先上升后下降的趋势;种子萌发出苗28天后,在烟草幼苗的根部仍能检测到P-72-10:Rif菌株,其定殖量维持在104cfu/g这一稳定的水平。扫描电镜定性观察发现P-72-10:Rif菌株在烟草幼苗根表不同部位的定殖分布呈现宏观不均匀性,根基部分布的菌体数量多于根中部,而根尖部分的细菌菌体数量最少。
     P-72-10菌株对烟草的促生效果及作用机制烟草种子经P-72-10菌株不同浓度的培养液浸种处理后,能促进幼根的伸长,其中,以10-1浓度促生效果最好,根长为0.53cm,而对照根长为0.47cm,与对照相比,增加了12.76%,且差异显著(P<0.05);且种子的可溶性蛋白含量增加,总淀粉酶活性升高。培养液灌根处理烟草幼苗后,也能促进幼苗的生长及对N、P、K的吸收;增强光合效率、提高叶绿素含量;幼苗中丙二醛的积累量降低,与烟草植株抗性相关的防御酶(PPO、POD、PAL、几丁质酶和p-1,3-葡聚糖酶)活性升高,而各种防御酶活性的变化趋势不一致,其活性高峰出现时间与数量也有差异。
     P-72-10菌株的鉴定该菌株在King's B培养基上菌落呈乳白色,且能产生水溶性的黄绿色荧光色素;为革兰氏阴性细菌,菌体杆状、大小(8.1-16.2)×(1.8-4.8)μm,单端生鞭毛,不形成芽孢。其最适生长温度为30℃;不耐盐;能利用柠檬酸盐和丙酸盐。接触酶反应阳性,氧化酶反应阳性,精氨酸双水解酶反应阳性,苯丙氨酸脱羧酶反应阴性,脂酶反应阴性,硝酸盐还原反应阴性;水解明胶和酪氨酸,但不水解淀粉;能发酵葡萄糖、木糖和甘露醇。该菌株基因组DNA的(G+C)mol%含量为60.72mol%,16SrDNA基因序列分析显示该菌株与假单胞菌属的荧光假单胞菌多个菌株的序列同源性达到99%,在GenBank上的登陆号为:HQ888871。因此,该菌株鉴定为荧光假单胞菌Pseudomonas fluorescens。
     P-72-10菌株摇瓶培养条件的优化摇瓶培养条件下,当pH为7.0、培养时间达52h、培养温度为25℃时,P-72-10菌株在标准发酵培养基中能获得最大量的抗菌物质,且其抑菌活性最高;该菌株的抗菌物质不能长时间地耐受高温处理。正交试验表明该菌株在摇瓶培养条件下获得抗菌物质的最佳发酵培养基组分配比为:葡萄糖23g,硫酸铵20g,硝酸钾5.5g,氯化钠0.5g,蒸馏水1000mL,pH为7.0。
     综上所述,在“根际细菌-植物-病原菌”这一微生态互作系统中,P-72-10菌株对烟草疫霉具有高效的拮抗作用,表现出良好的防病促生功效,且通过种子细菌化能成功地定殖于烟草根部,是一株具有应用潜力的生防荧光假单胞菌菌株。本研究也表明根际细菌在防治植物土传病害具有较强的应用优势和前景。
Tobacco is an important cash crop. Tobacco black shank, caused by Phytophthora nicotianae Breda de Haan, is one of the most destructive of soil-borne disease in China and other major tobacco-producing areas throughout of the world. The pathogen caused damage to tobacco at all growth stages, with a range from minor injury to complete destruction on a tobacco plant. Currently, this disease is mainly controlled through the use of the fungicide metalaxyl. Nevertheless, increasing concerns about environmental problems caused either directly or indirectly by the use of fungicides and metalaxyl-resistant strains of Phytophthora support the need to find supplemental or alternative control methods such as biological control. Biological control of plant pathogens is an ecologically mind and environmentally safe alternative to chemical control. This study focuses on screening the most effective antagonistic strain against P. nicotianae from five rhizobacteria isolates; the antagonistic mechanisms against pathogen and biocontrol efficiency on black shank disease of this isolate; the colonization dynamics and distribution of this isolate along the roots of tobacco; the influence on the growth of tobacco and its physiological and biochemical mechanisms; the taxonomic position of this isolate and the optimal shake ferment condition of antagonistic compounds produced by this isolate.
     The detailed results of the study are shown as follows.
     Screening the most effective antagonistic strain P-72-10Five antagonistic rhizobacteria isolates showed significant suppressive effect on P. nicotianae. Among these isolates, strain P-72-10had the highest suppressive effect, which produced an inhibition zone of13.0mm (radius) and a growth suppression of the fungus at68.57%on the dual culture. It was found in the study that the growth of pathogen's hypha was also suppressed by the extracellular metabolites of strain P-72-10. With the concentrations of extracellular metabolites increasing from10-3to1×, the inhibitory effect enhanced with a percentage from24.92%to46.03%. As compared with the control, the increasing variance was much significant (P<0.05).
     Biocontrol effect of strain P-72-10on black shank disease When tested on the tobacco plants grown in green house, strain P-72-10reduced disease incidence and declined the disease index significantly. This strain got a biocontrol effect on tobacco black shank disease infection and the effect on the resistant and susceptible varieties of tobacco were53.57%and66.37%respectively.
     Antagonistic mechanisms against Phytophthora nicotianae of strain P-72-10The volatile metabolites produced by strain P-72-10suppressed the growth of pathogen at32.94%. Strain P-72-10was observed microscopically to cause excessive branching of the fungal mycelia and malformation of mycelia tips; the hypha of pathogen could not grow normally and they formed chlamydospore-like, thick-walled cells with concentrated plasmas. However, the cell wall of normal hypha was even and smooth, and the form was full with the homogeneous and transparent cytoplasm. On the plate culture, strain P-72-10excreted proteinase, celluase, and siderophore, but not chitinase.
     Colonization dynamics and distribution along tobacco roots of strain P-72-10To study colonization along tobacco roots, strain P-72-10was tagged with antibiotics rifampicin capable of constitutive expression of antibiotics resistance on the King's B medium plate. The rifampicin-tagged bacteria strain colonized successfully on the tobacco roots following seeds inoculation with the rifampicin-tagged bacteria strain. The dynamics of colonization increased first, then decreased and also the considerable quantity of the rifampicin-tagged bacteria strain maintained for a while with an amount level of10cfu/g. The observations by scanning electron microscopy Scanning electron microscopy (SEM) showed that colonization pattern of rifampicin-tagged bacteria strain on the tobacco roots was inhomogeneity. Colonization on the basal part of root reached the maximum, the middle root was less, and then the upper root.
     Physiological and biochemical influence of strain P-72-10on tobacco seeds and seedlings The root elongation of tobacco was significantly increased for the seed with the treatment of inoculation with strain P-72-10(0.53cm vs0.47cm, P<0.05), and increased by12.76%comparing with the treatment of control. The contents of soluble protein and total amylase in seeds were also increased. Strain P-72-10promoted growth, enhanced photosynthetic rate, increased chlorophyll content and nutrient absorption of tobacco seedlings. MDA content of tobacco seedlings was decreased and defense enzymes related to resistance of plant were induced after treatment with root irrigation, such as PPO, POD, PAL, chitinase and beta-1,3-glucanase. The change trend of different enzymes was inconsistent, and also the activities peak and quantity of enzymes were various with the changement of time.
     Taxonomic position of strain P-72-10The colonies were cream in color on King's B culture. Cells were gram-negative, rod-shaped [(8.1-16.2)×(1.8-4.8) μm], motile owing to one or several polar flagella and did not form endospores. The growth temperature for strain P-72-10ranged from4to41℃with the optimum at30℃. The results of BIOLOG GN2showed that strain P-72-10belonged to Pseudomonas. The genomic G+C mol content was60.72mol%. Phylogenetic analysis of the16S rDNA gene sequence revealed that P-72-10was the most closely related to Pseudomonas fluorescens, with the sequence similarity of99%. Nucleotide number of the accession was HQ888871. Taxonomically, strain P-72-10was identified as P. fluorescens.
     Shake flask conditions of strain P-72-10In shake flask conditions, the factors influence strain P-72-10growth, included pH, time and temperature with the optimum pattern at pH7.0,52h and25℃. The culture ingredients were optimized as follows:glucose (23g), ammonium sulphate (20 g), potassium nitrate (5.5g), sodium chloride (0.5g), distilled water (1000mL), pH (7.0).
     In conclusion, results showed that strain P-72-10had antagonistic activity against P. nicotianae and biological control effect on tobacco black shank as well as plant growth-promoting potential to tobacco and root colonization. Strain P-72-10will also be used as a potential biocontrol agent to reduce the disease incidence and protect the environment.
引文
[1]朱贤朝,王彦亭,王智发.中国烟草病害[M].北京:中国农业出版社,2002:21-36
    [2]van Breda De Haan. De Bibitziekte in de Delitabakveroorzaakt door Phytophthora nicotianae Mded's lands Plentuim [J].1896,15:1-107
    [3]闫克玉,赵铭钦.烟草原料学[M].北京:科学出版社,2008:337-338
    [4]马国胜,高智谋,陈娟.烟草黑胫病菌研究进展(Ⅰ)[J].烟草科技,2003,189:35-42
    [5]Song J H, Roh S H, Park H, Moon B J. Mycological characteristics of Phytophthora nicotianae var. nicotianae causing Phytophthora rot of strawberry and resistance of strawberry cultivars to the pathogen [J]. Korean Journal of Plant Pathology,1998,14(6):46-650
    [6]Hossain M S, Banik B R. Physiological studies on the pathogen Phytophthora nicotianae var. nicotianae causing fruit rot of brinjal [J]. Indian Journal of Agricultural Research,1999,33(4): 274-280
    [7]Washington W S, McGee P. Dimethomorph soil and seed treatment of potted tomatoes for control of damping off and root rot caused by Phytophthora nicotianae var. nicotianae [J]. Australasian Plant Pathology,2000,29(1):46-51
    [8]Ma G S, Gao Z M. The host range of Phytophthora nicotianae var. nicotianae in field herbs (in Chinese) [J]. Acta Phytophylacica Sinica(植物保护学报),2011,38(5):477-478
    [9]Apple J L. Physiological specialication within Phytophthora parasitica var. nicotianae [J]. Phytopathology,1962,52:351-354
    [10]Pringsloo G C, Pauer G D C. Identification of races of Phytophthora parasitica var. nicotianae occuring in South Africa [J]. Phytophylactica,1974,6(4):217-219
    [11]McIntyre J L, Taylor G S. Race 3 of Phytophthora parasitica var. nicotianae [J]. Phytopathology,1978,68:35-38
    [12]朱贤朝,郭震业,刘保安.我国烟草黑胫病菌生理小种研究初报[J].中国烟草,1987,4:1-3
    [13]王智发,刘延荣,谢成颂.我国烟草黑胫病菌生理小种鉴定[J].山东农业大学学报,1987,18(1):1-8
    [14]Ferrin D M, Kabashima J N. In vitro insensitivity to Metalaxyl of isolates of Phytophthora citricola and Phytophthora parasitica from ornamental hosts in South California [J]. Plant Disease,1991,75:1041-1044
    [15]Zhu M L, Bai J L, Li M Y, Zhang K Q. Resistance risk of Phytophthora parasitica var. nicotianae to metalaxyl (in Chinese) [J]. Agrochemicals (农药),2007,46(10):709-712
    [16]李清飞,王岩.烟草黑胫病的研究概况及其防治措施[J].北方园艺,2011,19:179-180
    [17]Zhou J P, Wang B H. Field observation on the epiphytology of tobacco black shank [Phytophthora parasitica var. nicotianae (Breda De Haan) Tucker] (in Chinese) [J]. Acta Phytopathologica Sinica (植物病理学报),1984,14(1):39-45
    [18]黄成江,李天福,邵岩.烟草黑胫病生物防治研究进展[J].亚热带植物科学,2006,35(2):74-77
    [19]马国胜,高智谋,陈娟.烟草黑胫病菌研究进展(Ⅲ)[J].烟草科技,2004,199:44-48
    [20]Broadbent P, Baker K F. Waterworth Y. Bactetia and actinomycetes antagonistic to fungal root pathogens in Australian soil [J]. Australian Journal of Biological Science,1971,24(5):925-944
    [21]English J T, Mitchill D J. Influence of an introduced composite of microorganism on infection of tobacco by Phytophthora parasitica var. nicotianae [J]. Phytopathology,1988,78:1484-1490
    [22]王远山,王平,胡正嘉.绿针假单胞菌PL9菌株对烟草黑胫病菌的拮抗作用研究[J].华中农业大学学报,2002,21(3):248-251
    [23]方敦煌,顾金刚,李江涛.烟草黑胫病菌的拮抗根际细菌的筛选[J].云南农业大学学报,2001,16(2):93-98
    [24]曹明慧,冉炜,杨兴明.烟草黑胫病拮抗菌的筛选及其生物效应[J].土壤学报,2011,48(1):151-159
    [25]张永春,黄镇,杜怀敏.烟草黑胫病拮抗放线菌的分离与筛选[J].中国烟草科学,2007,28(5):5-8
    [26]奚家勤,宋纪真,周汉平,薛超群,尹启生.产几丁质酶菌的分离、筛选及其对烟草病原真菌的抑制作用[J].烟草科技,2006,3:55-58
    [27]奚家勤,尹启生,宋纪真,马永建,魏春阳,张仕祥,周汉平,顿松阳.产几丁质酶菌拮抗烟草黑胫病菌研究[J].中国烟草学报,2010,16(4):67-70
    [28]王清海,万平平,李安娜.土壤拮抗链霉菌R15菌株发酵产物的抑菌作用[J].中国农学通报,2006,22(2):327-330
    [29]王革,李梅云,段玉琪.木霉菌对烟草黑胫病菌的拮抗机制及其生物防治研究[J].云南农业大学学报(自然科学版),2001,23(3):222-226
    [30]Patel D N. Evaluation of plant extracts and Trichoderma harzianumrifai against Phytophthora parasitica var. nicotianae [J]. Tobacco Research,1999,25(1):4-8
    [31]Sreeramulu K R, Onkarappa T and Swamy H N. Biocontrol of damping off and black shank disease in tobacco nursery [J]. Tobacco Research,1998,24(1):1-4
    [32]Glick B R, Todorovic B, Czarny J, Cheng Z Y, Duan J and McConkey B. Promotion of plant growth by bacterial ACC deaminase [J]. Critical Reviews in Plant Sciences,2007,26:227-242
    [33]王静,常平,孔凡玉,赵延昌,张成省,尹东升.拮抗细菌AR03在烟草根部及根际土壤中的定殖与鉴定[J].中国烟草科学,2010,31(3):45-48
    [34]王静,孔凡玉,秦西云,张成省,张秀玉.短小芽孢杆菌AR03对烟草黑胫病菌的拮抗活性及其田间防效[J].中国烟草学报,2010,16(5):78-81
    [35]田方,丁延芹,朱辉,姚良同,靳奉理,杜秉海.烟草根际铁载体产生菌G-229-21T的筛选、鉴定及拮抗机理[J].微生物学报,2008,48(5):631-637
    [36]顾金刚,方敦煌,李天飞,刘杏忠.防治烟草黑胫病的根际细菌分离与筛选[J].中国烟草学报,2001,7(3):19-22
    [37]方敦煌,顾金刚,李江涛,李天飞,刘杏忠.烟草黑胫病菌的拮抗根际细菌的筛选[J].云南 农业大学学报,2003,18(1):48-51
    [38]方敦煌,李天飞,沐应祥,周黎,杨硕媛,陆庆华.拮抗细菌GP13防治烟草黑胫病的田间应用[J].云南农业大学学报,2003,18(1):48-51
    [39]汪琨,崔志峰,裘娟萍,朱廷恒,金晓鲁.烟草黑胫病菌拮抗菌的筛选及鉴定[J].浙江工业大学学报,2009,37(5):525-529
    [40]赵秀香,陈华民,吴元华.硅酸盐细菌13925对烟草黑胫病菌的抑制作用及其16Sr DNA序列分析[J].烟草科技,2007,3:56-60
    [41]Harrison L A, Letrendre L, Kovacerich P, Pierson E and Weller D A. Purification of an antibiotic effective against Gaeumawaomyces glaminis var. tritici produced by a biocontrol agent Pseudomonas ameofaciens [J]. Soil Biology and Biochemistry,1993,25:215
    [42]Pal V and Jalali I. Rhizosphere bacteria for biocontrol of plant disease [J]. Indian Journal of Microbiology,1998,38:187-204
    [43]Dufry B K, Simon A, and Weller D M. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take all of wheat [J]. Phytopathology,1996,86:188-194
    [44]Guetsky R, Elad Y, Shtienberg D and Dinoor A. Combining biocontrol agents to reduce variability of biological control [J]. Phytopathology,2001,91:261-267
    [45]Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaisers S, Roskot N, Heuer H and Berg G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel eletrophoresis:plant-dependent enrichment and seasonal shifts revealed [J]. Application of Environmental Microbiology,2006,67:4742-4751
    [46]Hartmann A. Multitrophic interactions in the rhizosphere. Rhizosphere Microbiology:at the interface of many disciplines and expertise [J]. FEMS Microbiology Ecology,2008,65:179
    [47]Kleopper J W and Schroth M N. Plant growth-promoting rhizobacteria on radishes. In Proceeding International Conference:Plant Pathology of Bacreia 4th [M]. Angers, France.1978: 897-882
    [48]Babalola O O. Beneficial bacteria of agricultural importance [J]. Biotechnology Letters,2010, 32:1559-1570
    [49]Diallo S, Crepin A, Barbey C, Orange N, Burini J F and Latour X. Mechanisms and recent advances in biological control mediated through the potato rhizosphere [J]. FEMS Microbiology Ecology,2011,75:351-364
    [50]Nihorimbere V, Ongena M, Smargiassi M and Thonart P. Beneficial effect of the rhizosphere microbial community for plant growth and health [J]. Biotechnology, Agronomy, Society and Environment,2011,15(2):327-337
    [51]陈晓斌,张炳欣.植物根围促生细菌(PGPR)作用机制的研究进展[J].微生物学杂志,2000,20(1):38-44
    [52]黄云.植物病害生物防治学[M].北京:科学出版社,2010,7
    [53]Anith K N, Momol M T, Kloepper J W, Marois J J, Olson S M and Jones J B. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl and soil amendment for integrated management of bacterial wilt on tomato [J]. Plant Disease,2004,88 (6):669-673
    [54]Kloepper J W, Zablotowicz R M, Tipping E M and Lifshitz R. Plant growth promotion mediated by bacteria rhizosphere colonizers.//Keist D L, Cregan P B. The rhizosphere and plant growth. Kluwer Academic Publishers, Netherlands,1991:315-326
    [55]Weller D M. Biological control of soil borne pathogens in the rhizosphere with bacteria [J]. Annual Review of Phytopathology,1988,26:379-407
    [56]Kleopper J W, Lifshita R and Zablotowica R M. Free-living bacteria inoculation for enhancing crop productivity [J]. Trends in Biotechnology,1989,7:39-43
    [57]王金生,赵立平,冯家勋.植物病害防治微生物[c]//黄大昉,林敏.农业微生物基因工程.北京:科学出版社,2001:316-408
    [58]Dong X Z, Cai M Y. Manual of systematic and determinative bacteriology (in Chinese) [M]. Beijing:Chinese Science Press(北京:中国科学出版社),2001
    [59]Suresh A, Pallavi P, Srinivas P, Kumar V P, Chandra S J and Reddy B R. Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants [J]. African Journal of Microbiology Research,2010,4(14):1491-1494
    [60]Stanier R Y, Palleroni N J and Doudoroff M. The aerobic pseudomonads:a taxonomic study [J]. Journal of General Microbiology,1966,43:159-271
    [61]Zhou H Y, Wei H L, Liu X L, Wang Y, Zhang L Q and Tang W H. Improving biocontrol activity of Pseudomonas fluorescens through chromosomal integration of 2,4-diacetylphloroglucinol biosynthesis genes [J]. Chinese Science Bulletin,2005,50(8):775-781
    [62]Lugetenberg B J, Dekkers L, Bloemberg G V. Molecular determinants of rhizosphere colonization by Pseudomonas [J]. Annual Review of Phytopathology,2001,39:461-490
    [63]Defago G, Haas D. Pseudomonads as antagonists of soilborne pathogens:modes of action and genetic analysis [J]. New York:Marcel Dekker Press,1990:249-291
    [64]Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Hass D and De fago G. Suppression of root diseases by Pseudomonas fluorescens CHA0:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol [J]. Molecular Plant-Microbe Interactions,1992,5:4-13
    [65]魏海雷,周洪友,张力群,王烨,唐文华.抗生素2,4.二乙酰基间苯三酚作为荧光假单胞菌2P24菌株生防功能因子的实证分析[J].微生物学报,2004,44(5):663-666
    [66]葛宜和,黄显清,张雪洪,许煜泉.假单胞菌M18调控因子GacA与RsmA的相关性及对抗生物质代谢调控机制的分析[J].微生物学报,2006,46(4):531-536
    [67]Cronin D, Moenne-Loccoz Y, Fenton A. Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora sub sp. atroseptica [J]. FEMS Microbiology Ecology,1997a,23(2):95-106
    [68]Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling D N and O'gara F. Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain Fl 13 with the potato cyst nematode Globodera rostochiensis [J]. Applied and Environmental Microbiology, 1997b,63(4):1357-1361
    [69]周洪友,王烨,张力群,唐文华.产抗菌素2,4-二乙酰基间藤黄酚假单胞杆菌的分离及其防治沙打旺根腐病的室内测定[J].中国生物防治,2004,20(3):197-201
    [70]周宇平,吴小刚,周洪友,何月秋,张力群.荧光假单胞菌2P24中phlF基因对抗生素2,4-二乙酰基间苯三酚产生的影响[J].植物病理学报,2010,40(2):144-150
    [71]Howell C R. Suppression of Pythium ultimum induced damping-off cotton seedlings by Pseudomonas fluorescens and its antibiotics pyoluteorin [J]. Phytopathology,1980,70:712-71
    [72]Nielsen T H, Thrane C, Christophersen C. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54 [J]. Journal of Application Microbiology,2000,89:992-1001
    [73]Nielsen T H, Soresen D, Tobiaeen C. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beer rhizosphere [J]. Application of Environmental Microbiology,2002,68:3416-3423
    [74]Bangera M G, and Thomashow L S. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 [J]. Journal of Bacteriology,1999,181:3155-3163
    [75]Ramette A, Frapolli M, Defago G, Moneme Y. Phylogeny of HCN synthesis-encoding hen BC genes in biocontrol fluorescent pseudomonas and its relationship with host plant species and HCN synthesis ability [J]. Molecular Plant-Microbe Interaction,2003,16:525-535
    [76]Muleta D, Assefa F and Granhall U. In vitro antagonism of rhizobacteria isolated from Coffea arabica L against emerging fungal coffee pathogens [J]. Engineering in Life Sciences,2007,7 (6):577-586
    [77]Gooday G W. The ecology of chitin degradation. In Advances in microbial ecology [J]. Edited by Marshall K C. New York.1990,11:387-430
    [78]Lim H S and Kim S D. The role and characterization of β-1,3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YPL-1 [J]. Journal of Microbiology Biotechnology, 1995,33:295-301
    [79]Lee H S, Lee H J, Choi S W, Her S and Oh D H. Purification and characreization of antifungal chintinase from Pseudomonas sp YHS-A2 [J]. Journal of Microbiology Ecology,1997,7: 107-113
    [80]Garbeva P, van Veen J A and van Elsas J D. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3 of Pseudomonas species in soil from different agricultural regimes [J]. FEMS Microbiology Ecology,2004,47:51-64
    [81]Arora N K, Kim M J, Kang S C and Maheshwari D K. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani [J]. Canadian Journal of Microbiology,2007,53(2):207-212
    [82]Kloepper J W, John L, Teintze M and Schroth M N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria [J]. Nature,1980,286:885-886
    [83]Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent Pseudomonas [J]. Natural Review of Microbiology,2005,3:307-319
    [84]Loper J E. Role of fluorescent siderophore production in biological control of Phythium ultimum by a Pseudomonas fluorescens strain [J]. Phytophathology,1988,78:166-172
    [85]Lugtenberg B and Kamilova F. Plant growth-promoting rhizobacteria [J]. Annual Review of Microbiology,2009,63:541-556
    [86]Kloepper J W. A review of issues related to measuring colonization of plant roots by bacteria [J]. Canadian Journal of Microbiology,1992,38 (6):667-672
    [87]Kamilova F, Validov S, Azarova T, Mulders I and Lugtenberg B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacreia [J]. Environmental Microbiology,2005,7(11):1809-1817
    [88]Pliego C and Deweert S, Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia matrix hyphae [J]. Environmental Microbiology,2008,10:3295-3304
    [89]刘国奇,蒋如璋.韭菜根际荧光假单胞菌的分离与初步研究[J].微生物学报,1999,26(3):189-192
    [90]van Loon L C, Bakker P A H M and Pieterse C M J. Systemic resistance induced by rhizosphere bacteria [J]. Annual Reviews of Phytopathology,1998,36:453-483
    [91]Maurhofer M, Hase C, Meuwly P, Induction of systemic resistance of tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0 [J]. Influence of the gacA gene and of pyoverdine production [J]. Phytopathology,1994,84:139-146
    [92]Van Peer R, Schippers B. Lipo polysaccbarides of plant-growth promoting Pseudomonads sp. strain WCS417 induce resistance in carnation to fusarium Wilt [J]. Nethelend Journal of Plant Pathology,1992,98:129-139
    [93]Alstron S. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere Pseudomonas [J]. General Application of Microbiology,1991,37:495-501
    [94]Vleesschauwer D D, Djavaheri M, Bakker P A H M and Hofte M. Pseduomonas fluorescens WCS374r induced systemic resistance in rice against Magnaporthe oryzae is based on Pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response [J]. Plant Physiology,2008,148:1996-2012
    [95]Ramamoorthy V, Raguchander T and Samiyappan R. Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads [J]. European Journal of Plant Pathology,2004,70:5493-5502
    [96]Burd G I, Dixon D G and Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants [J]. Canadian Journal of Microbiology,2000,46(3):237-245
    [97]John Whipps M. Microbial interactions and biocontrol in the rhizosphere [J]. Journal of Experimental Botany,2003,56:451-487
    [98]Thomashow L S, Well D M. Current concepts in the use of introduced bacteria for biological disease control:mechanisms and antifungal metabolites. In:Plant Microbe Interactions [M]. Edited by Stancey G and Keen N,1996:187-235
    [99]Defago G, Haas D. Pseudomonads as antagonists of soilborne pathogens:modes of action and genetic analysis [J]. New York:Marcel Dekker Press,1990:249-291
    [100]Keel C, Schnider U, Maurhofer M. Suppression of root diseases by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol [J]. Molecular Plant-Microbe Interactions,1992,5:4-13
    [101]宋顺华,吴萍,刑宝田,宫国义.多粘类芽孢杆菌WY110对西瓜枯萎病的控制作用[J].植物保护学报,2011,38(6):571-572
    [102]黎志坤,朱红惠.一株番茄青枯病生防菌的鉴定与防病、定殖能力[J].微生物学报,2010,50(3):342-349
    [103]Sharma S, Kaur M. Antimicrobial activities of rhizobacterial strains of Pseudomonas and Bacillus strains isolated from rhizosphere soil of carnation (Dianthus caryophyllus cv. Sunrise) [J]. Indian Journal of Microbiology,2010,50:229-232
    [104]王丽娟,冯听,王吉中.一株油菜内生细菌的分离及其色素性质的研究[J].食品开发与机械,2008,7:14-17
    [105]Shi J R, Wang Y Z, Chen H G. Screening of bacteria antagonistic to Rhizoctonia cerealis (in Chinese) [J]. Chinese Journal of Biological Control (中国生物防治),1996,12(4):161-164
    [106]罗鹏,许煜泉,陈峰.荧光假单胞菌菌株M18产吩嗪-1-羧酸的条件[J].上海交通大学学报,2003,37(5):650-653
    [107]王万能,全学军,肖崇刚.烟草疫霉的产抱和接种方法研究[J].植物保护学报,2005,32(1):18-22
    [108]沈萍,闫淑珍,陈双林.具ACC脱氨酶活性的植物内生细菌对辣椒的促生作用和对疫霉病的防治作用[J].植物保护学报,2008,35(1):28-32
    [109]Kumatani T, Yoshimi Y, Nakayashiki H, Aino M. Phylogenetic analyses of plant-growth-promoting rhizobacteria isolated from tomato, lettuce, and Japanese pepper plants in Hyogo Prefecture, Japan [J]. Journal of General Plant Pathology,2009,75:316-321
    [110]Zhang W R, Bai Y, Xiao M. Diversity of the Pseudomonas fluorescens from rhizosphere of different plants in Shanghai(in Chinese) [J]. Journal of Shanghai Normal University (上海师范大学学报),2008,37(2):182-188
    [111]张美云,李伟,陈怀谷,鲁国东,工宗华.小麦根围禾谷丝核菌拮抗菌的鉴定、抗生素产生和根部定殖研究[J].江苏农业学报,2010,26(4):721-728
    [112]肖爱萍,游春平,周丹华,张国民.3株拮抗细菌对节瓜枯萎病菌的抑菌作用[J].中国蔬菜,2009,24:62-64
    [113]杨树军.烟草黑胫病菌生防菌筛选及防效初探[J].中国农学通报,2009,25(02):222-225
    [114]张永春,黄镇,杜怀敏,陆宁,谢已书,王彬,关国经.烟草黑胫病拮抗放线菌的分离与筛选[J].中国烟草科学,2007,28(5):5-8
    [115]顾金刚,方敦煌,李天飞,刘杏忠.荧光假单胞菌RB-42、RB-89促烟草生长机理初探[J].植物营养与肥料学报,2002,8(4):493-496
    [116]Kamensky M, Ovadis M, Chet I and Chernin L. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases [J]. Soil Biology and Biochemistry,2003,35(2):323-331
    [117]Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14 [J]. Application and Environment Microbiology,1996,62(11):4081-4085
    [118]Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilim formation and surfactin production [J]. Plant Physiology,2004,134(1):307-319
    [119]Rajkumar M, Lee W H, Lee K J. Screening of bacterial antagonists for biological control of Phytophthora blight of pepper [J]. Journal of Basic Microbiology,2005,45(1):55-63
    [120]O'Sullivan D J, O GaRa F Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogen [J]. Microbiological Review,1992,56(4):662-676
    [121]Leah R, Tommerup S and Murphy J. Biochemical molecular characterization of three barley seed protein with antifungal properties [J]. Journal of Biological Chemistry,1991,266: 1564-1573
    [122]Upadhyay R S and Jayaawal P K. Pseudomonas cepacia causes mycelial deformities and inhibition of condition in Phytopathogenic fungi [J]. Current Microbiology,1992,24:181-187
    [123]Cupta C P, Dubey R C, Kang S C and Maheshwari D K. Atibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal pathogens [J]. Current of Science,2001,81:91-94
    [124]John D R, David M O. Chitinase-overproducing mutant of Serratia marcescens [J]. Applied and Environmental Microbiology,1981,41(3):664-669
    [125]Ghose T K. Measurement of cellulase activities [J]. Pure & Application Chemistry,1987,59: 257-268
    [126]Wei H L, Wang Y, Zhang L Q. Identification and characterization of biocontrol bacteria strain 2P24 and CPF-10 (in Chinese) [J]. Acta Phytopathologica Sinica(植物病理学报),2004,34(1):80-85
    [127]Schwyn B and Neilands J B. Universal Chemical Assay for the Detection and Determination of Siderophores [J]. Analytical Biochemistry,1987,160:47-56
    [128]李爱荣,安德荣.两株生防荧光假单胞杆菌的室内筛选试验[J].微生物学杂志,2003,23(4):11-13
    [129]Zhu X D, Feng Z T, Xu Y Q. Biocontroling of melon gummy stem blight (Mycosphaeralla melonis) using Pseudomonas fluorescens M18 (in Chinese) [J]. Journal of Shanghai Jiaotong University(上海交通大学学报),2001,35(7):1062-1065
    [130]Chen L H, Zhang A X, Zhu T. Identification and characterization of bacteria antagonistic to Rhizoctonia cerealis (in Chinese) [J]. Acta Phytopathologica Sinica (植物病理学报),2008,38(1):88-95
    [131]李长松.拮抗性细菌生物防治植物土传病害研究进展[J].生物防治通报,2003,18(2):168-172
    [132]Suslow T V. Role of root colonizing bacteria in plant growth [C]//Mount M S, Lacy G H. Phytopathogenic Prokaryotes,1982,1:187-223
    [133]Elad Y and Chet I. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria [J]. Annual Review of Phytopathology,1987,77:190-195
    [134]Benizri E, Baudoin E, Guckert A. Root colonization by inoculated plant growth promoting rhizobacteria [J]. Biocontrol Science and Technology,2001,11(5),557-574
    [135]陈晓斌,顾震芳,周杭英.PGPR生防作用的稳定性及可能的改进策略[J].上海交通大学学报(农业科学版),2002,20:89-96
    [136]徐瑞富,陆宁海,李小丽.土壤微生物群落对棉花黄萎病的影响[J].棉花学报,2004,16(6):357-359
    [137]蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态[J].福建农林大学学报(自然科学版),2003,32(1):41-45
    [138]仝赞华,郭荣君.生防菌AS818抗药性标记在大豆根际定殖[J].微生物学通报,2001,28(4):40-44
    [139]尹敬芳,张文华,李健强,李永红,侯红利,周向阳.辣椒疫病生防菌的筛选及其抑菌机制初探[J].植物病理学报,2007,37(1):88-94
    [140]陈晓斌,顾震芳,周杭英.黄瓜PGPR菌株根部定殖的扫描电镜研究[J].上海交通大学学报(农业科学版),2004,22(2):153-156
    [141]王震,郭爱玲,冯莉.绿色荧光蛋白基因在植病研究中的应用[J].中国农学通报,2007,23(6):493-496
    [142]陈晓斌,张炳欣,楼兵干,Ryder M H.运用生色基因标记黄瓜根围促生菌(PGPR)筛选菌株[J].微生物学报,2001,41(3):287-292
    [143]Bahme J B, Schroth M N. Spitial-temporal colonization patterns of a thizobacterium on underground organs of potato [J]. Phytopathology,1987,77:1093-1100
    [144]Weller D M, Cook R J. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads [J]. Phytopathology,1983,73; 465-469
    [145]Weller D M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria [A]. Annual Review of Phytopathology [M]. St. Paul, MN:American Phytopathological Society, 1988,26:379-407
    [146]陈晓斌.PGPR在黄瓜根围的分子生态学及其作用机制的研究[D].杭州:浙江大学,2000
    [147]Bull C T. Wheat root colonization by disease suppressive or nonsuppressive bacteria and the effect of population size on severity of take-all cased bu Gaeumannomyces graminis var. tritici [D]. Pullmam:Washington State University,1987
    [148]Loper J E, Suslow T V, Schroth M N. Lognormal distribution of bacterial population in rhizosphere [J]. Phytopathology,1984,74:1454-1460
    [149]刘健,李俊,姜昕,等.荧光假单胞菌AS1.867和3-PHB的luxAB基因标记及其在小麦根际 的定殖[J].华东理工大学学报,2002,28(6):606-609
    [150]Adesemoye A O, Torbert H A, Kloepper J W. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system [J]. Candian Journal of microbiology,2008,54(10):876-886
    [151]Okhee Choi, Jinwoo Kim, Jung-Gun Kim, Yeonhwa Jeong, Jae Sun Moon, Chang Seuk Park, and Ingyu Hwang. Pyrroloquinoline Quinone Is a Plant Growth Promotion Factor Produced by Pseudomonas fluorescens B16. Plant Physiology.,2008,146:657-668
    [152]McAleese D M. Environmental pollution and health:fertilizers and pesticides [J]. Journal of Irish Medical Association,1971,64(421):521-522
    [153]Baset-Mia M A, Shamsuddin Z H, Wahab Z. High-yielding and quality banana production through plant growth-promoting rhizobacterial (PGPR) inoculation [J]. Fruits,2005,60(3): 179-185
    [154]Meziane H, Van der Sluis I, Van Loon L C. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants [J]. Molecular of Plant Pathology,2005, 6(2):177-185
    [155]Karthiba L, Saveetha K, Suresh S. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice [J]. Pest Management of Science,2010,66(5):555-564
    [156]黎兆安,韦善富.微波辐射对水稻种子发芽势及生理生化特性的影响[J].中国种业,2010,1:46-47
    [157]李志江.考马斯亮蓝G250染色法测定啤酒中蛋白质含量[J].酿酒,2008,35(1):70-72
    [158]汪良驹,姜卫兵.银杏叶片可溶性蛋白质测定非直线性原因分析[J].果树学报,2002,19(1):32-35
    [159]王秀奇,秦淑媛,高天慧.基础生物化学实验[M].高等教育出版社,1996:205-209
    [160]吴叶玲.测定叶绿素a方法的改进[J].福建分析测试,2006,15(2):38-39
    [161]梁军锋,薛泉宏,牛小磊.7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响[J].西北植物学报,2005,25(10):2119-2123
    [162]李玉泉,宋占午,金祖萌.朱砂叶螨危害初期豇豆幼苗叶片PPO、PAL及POD的研究[J].2003,39(3):61-64
    [163]朱广廉,钟海文,张爱琴.植物生理学实验[M].北京大学出版社,1990:51-54
    [164]靳晓芸.甘蔗叶几丁质酶测定条件的优化[J].广西民族大学学报(自热科学版),2010,16(1):85-88
    [165]陆宁海.哈茨木霉RT-12对黄瓜幼苗促生作用的机理[J].江苏农业农报,2007,23(3):254-255
    [166]Lavania M, Chauhan P S, Chauhan S V S, Singh H B, Nautiyal C S. Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213 [J]. Current Microbiology,2006,52(5):363-368
    [167]Zahir Z A, Munir A, Asghar H N, Shaharoona B, Arshad M. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions [J]. Journal of Microbiology Biotechnology,2008,18(5):958-963
    [168]Zheng L, Liang J G and Shi Y F. Study on induced resistance of biocontrol bacteria ZJH-10 to Cucumber Grey Mould (in Chinese) [J]. Chinese Agricultural Science Bulletin (中国农学通报), 2009,23(3):197-201
    [169]Malhotra M and Srivastava S. An ipdC gene knock-out of Azospirillium brasilense strain SM and its implication on indole-3-acid biosynthesis and plant growth promotion [J]. Antonie van Leeuwenhoek,2008,93:425-433
    [170]Saleem M, Arshad M, Hussain S, Bhatti A S. Perspective of plant growth promoting rhizobacreia (PGPR) containing ACC deaminase in stress agriculture [J]. Journal of Indian Microbiology Biotechnology,2007,34(10):635-648
    [171]Shaharoona B, Bibi R, Arshad M, Zahir Z A, Zia UI H.1-Aminocylopropane-l-carboxylate (ACC) deaminase rhizobacteria extenuates ACC-induced classical triple response in etiolated pea seedlings [J]. Pak J Bot,2007,38(5):1491-1499
    [172]Shaharoona B, Jamro G M, Zahir Z A, Arshad M, Memon K S. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L) [J]. Journal of Microbiology Biotechnology, 2007,17(8):1300-1307
    [173]Liu F Q, Wang J S. Systemic induction of several defense response enzymes in rice seedling by salicylic acid (in Chinese) [J]. Plant Physiology Communications(植物生理学通讯),2002,38(2):121-123
    [174]Wang T, Wang S P, Guo S R, Gao H B. Changes of polyamines metabolism in roots of cucumber seedlings under root-zone hypoxia stress (in Chinese) [J]. Acta Horticulturae Sinicai(园艺学报),2005,32(3):433-437
    [175]张晓鹿,薛泉宏,郭志英,杨斌,周永强,许英俊.混合接种对辣椒疫病生防菌定殖、辣椒生长及诱导抗性的影响[J].西北农林科技大学学报(自然科学版),2008,364:151-158
    [176]Ardebili Z O, Ardebili N O and Mahdi Hamdi S M. Physiological effects of Pseudomonas fluorescens CHA0 on tomato (Lycopersicon esculentum Mill.) plants and its possible impact on Fusarium oxysporum f. sp. Lycopersici [J]. Austrilian Journal of Crop Science,2011,5(2): 1631-1638
    [177]焦震权,刘秀梅.细菌分类与鉴定的新热点:16S-23S rDNAf司区[J].微生物学通报,2001,28(1):85-89
    [178]Buchanan R E, Gibbons N E. Bergey's manual of systematic bacteriology 8th ed [M]. Baltimore:Williams& Wilkins Company,1994
    [179]Dai D L, Zhang Q M. Methods of preparation for biochemistry electron microscopy (in Chinese) [M]. Tianjin:Tianjin university Press(天津:天津大学出版社),1993:102-103
    [180]Zhu X F. The Experimental Guide for Gene Engineering (in Chinese) [M]. Beijing:Higher Education Press(北京:高等教育出版社),2006:24-25
    [181]Deng A H, Wang N, Yi X. Determination of the DNA(G+C)mol% in Bacillus claussi strains by reversed-phase high performance liquid chromatography (in Chinese) [J]. Biotechnology(生物技术),2006,16(4):42-45
    [182]Franco W, Ramon J, Sedler. A highly selective PCR protocol for detecting 16S rDNA Genes of the genus Pseudomonas (sensu stricto) in environmental samples [J]. Application Environmental Microbiology,1998,64(7):2545-2553
    [183]Marten R, Smalla K, Berg G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis [J]. Journal of Applied Microbiology,2000,89: 463-471
    [184]彭于发,陈善铭.荧光假单胞菌Tn5诱变菌株防治小麦全蚀病初步研究[J].植物病理学报,1992,20(3):229-233
    [185]lavicoli A, Boutet E, Buchala A and Metraux J P. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO [J]. Molecular Plant-Microbe Interactions,2003,16(10):851-858
    [186]Suresh A, Pallavi P, Srinivas P, Kumar V P, Chandra S J and Reddy B R. Plant growth promoting activities of fluorescent pseudomonads associated with some crop plants [J]. African Journal of Microbiology Research,2010,4(14):1491-1494
    [187]Duffy B K, Defago G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens bicontrol strains [J]. Applied and Environmental Microbiology,1999,56:2429-2438
    [188]杨海君,谭周进,肖启明,何可佳.假单胞菌的生物防治作用研究[J].中国生态农业学报,2004,12(3):158-161
    [189]张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展[J].生物学杂志,2007,24(3):9-12
    [190]沈萍.微生物学[M].北京:高等教育出版社,2000
    [191]朱昌雄,宋培国.中产菌素高产菌株发酵条件的研究[J].中国生物防治,1997,13(3):114-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700